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Abstract: We investigate perovskite oxides from different perspectives, namely their pseudo-harmonic
dynamical properties, their dynamical properties when strong anharmonicity exists, and the intrigu-
ing functionalities arising from domain walls. Taking these viewpoints together yields a rather
complex picture of this material class, which has not been found in previous approaches. It opens
pathways to novel applications and reveals the rich ground states beyond the fictitious belief in the
‘simplicity of perovskites and such structures’.
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1. Introduction

Perturbation approaches have dominated the field of phase transitions ever since the
celebrated papers by Landau and Lifshitz from the late 1930s [1,2]. When Bill Cochran,
in 1959 [3], first formulated the idea that parameters like temperature, pressure, chemical
potential, etc., gently modify phonons, the concept of optical soft modes was born. In
all displacive systems, phonons are weakly anharmonic, which leads to linear temper-
ature dependences of the squared phonon frequency ω2. In the high-symmetry phase,
the linear ω2 dependence is virtually always observed over relatively large temperature
intervals, while phonon branches at lower temperatures split in the symmetry-broken
phase. Additional anharmonicities become apparent in the symmetry-broken phase. In
second-order phase transitions, as exemplified in SrTiO3, an additional conundrum was
discussed by Alex Müller: if the phonon frequency approaches zero, the phonon amplitude
diverges [4,5]. Terms like ‘critical slowing down’ for motion and ‘central peak’ for the
frequency spectrum were coined to describe this situation [6,7]—often without identifying
the exact physical process that stabilizes phonons close to the transition point. Here, we
describe these phenomena in simple models without resorting to DFT techniques [8] in
order to emphasise the underlying physical principles in the most transparent way.

2. Pseudo-Harmonic Approach

The first theories devoted to lattice dynamics in ferroelectric perovskites can be traced
back to Cochran (1961) [9], where he introduces a shell model description for ferroelectrics
to account for the electronic polarizability of the ions, i.e., they are not describable as rigid
ions because the relative displacements of their electronic shells with respect to the core
have to be included. By using the adiabatic principle, the electronic and ionic degrees of
freedom are decoupled, and the renormalized ionic model must be considered in deeper
detail. In view of the discovery that in perovskite oxides, the ferroelectric phase transition is
accompanied by the softening of an optic mode, the model explicitly considers anharmonic-
ity by introducing a fourth-order term in the lattice dynamical Hamiltonian [10,11]. The
linear T-dependence of the squared soft optic mode is obtained within the self-consistent
phonon approximation (SPA), where the fourth-order term is replaced by its cumulant

Condens. Matter 2024, 9, 39. https://doi.org/10.3390/condmat9040039 https://www.mdpi.com/journal/condensedmatter

https://doi.org/10.3390/condmat9040039
https://doi.org/10.3390/condmat9040039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/condensedmatter
https://www.mdpi.com
https://orcid.org/0000-0003-1380-6399
https://doi.org/10.3390/condmat9040039
https://www.mdpi.com/journal/condensedmatter
https://www.mdpi.com/article/10.3390/condmat9040039?type=check_update&version=1


Condens. Matter 2024, 9, 39 2 of 18

expansion [12]. However, a closer look at the temperature evolution of ω2 reveals that
such simple dependence is not realized, neither in the limit of ω2→0 nor at T >> TC, where
saturation of ω2 is observed [13]. In the limit ω2→0, very apparent deviations from the
above law are commonly seen in quantum paraelectrics, e.g., SrTiO3 [14], where saturation
of the soft mode takes place due to quantum fluctuations that are larger than the original
soft mode, which is related to the displacement coordinates. Both temperature regimes have
been successfully described within the polarizability model [15], where anisotropic core–
shell coupling at the oxygen ion is explicitly incorporated [16,17]. With respect to the rigid
A ion in ABO3, this coupling is purely harmonic. Regarding the B ion, the coupling consists
of an attractive harmonic term g2 and a stabilizing anharmonic fourth-order term g4, which,
within the SPA, is replaced by a temperature-dependent pseudo-harmonic approximation,
namely gT = g2 + 3g4

〈
w2

T
〉
, where

〈
w2

T
〉

is the relative core–shell displacement coordinate
at the oxygen ion lattice site. The Hamiltonian of the polarizability model is given by

H = T + V (1a)

T = ∑n

[
m1

.
u2

1n + m2
.
u2

2n + mel
.
v2

1n

]
(1b)

V = ∑n

[
f ′(u1n − u1n−1)

2 + f (u2n − w1n − u1n)
2 + f (u2n+1 − w1n − u1n)

2 + g2 w2
1n + g4w4

1n

]
(1c)

where uin, v1n are the displacement coordinates of ion mi (i = 1, 2) and shell m1 in the
n-th unit cell, and w1n = v1n − u1n, f and f ′ are nearest- and second-nearest-neighbour
harmonic coupling constants. Within this approach, the lowest transverse optic and acoustic
modes are well described as a function of momentum q and temperature T, where the
latter is obtained through the SPA. The soft transverse q = 0 optic mode is explicitly
given by µω2

TO(q = 0) = 2 f gT/(2 f + gT), with µ being the reduced cell mass. While
the conventional approach yields the linear in T behaviour [13] for any temperature,
this equation reproduces the quantum paraelectric behaviour as well as the saturation
limit due to the T-dependence of the denominator (explicit consequences for quantum
extensions to phase transitions were discussed in [2]). An interesting feature appears in
the limit when optic and acoustic modes start to couple, which happens as a function
of temperature and momentum [18–20]. In such a case, a critical momentum qc can be
defined where the modes are closest to each other. On cooling, qc approaches zero and
defines with decreasing temperature and defines real space regions that are identified
with elastic anomalies and polar nanoregions. Both grow in size when approaching the
phase transition temperature TC, at which point the nano-regions coalesce into a global
polar state. The onset temperature for their formation does not coincide with Burn’s
temperature TB [21,22], which is notoriously difficult to determine experimentally, but
occurs well below estimated values of TB. A precursor temperature is defined where
the crossover between the high-temperature saturation and the pre-transitional softening
occurs. This temperature was predicted to be T* ≈ 1.1 TC. [23]. Other values, which are of
the same order of magnitude, stem from molecular dynamics simulations [24] and have
been discussed in Ref. [24] (between 1.01 Tc and 1.4 Tc). These temperatures have been
observed experimentally in many perovskite oxides by Brillouin scattering [25], dielectric
spectroscopy [26], birefringence [27], ultrasound, RUS of elastic softening [28–31] and
various other techniques. Importantly, this demonstrates that a nominally displacive
system always carries an order–disorder component and thereby indicates a coexistence
of both classification classes [23,32]. As is evident from Equation (1c), a local double-well
potential is inherently present in perovskite oxides, which stems from the oxygen ion
nonlinear polarizability, which diverges as a function of its volume and is temperature-
dependent [33,34].
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3. Periodons and Incommensurations

In the following, the concept of soft modes is extended to nonlinear solutions where
the continuum aspect of the Φ4 model, i.e., a model based on a double-well potential [35],
is complemented by discrete solutions appearing on the lattice [36]. These are relevant
to systems in which local lattice distortions break the translational symmetry caused by,
e.g., defects, impurities, doping or intrinsic nonlinearity. First exact nonlinear solutions
are compared to SPA solutions for the case of ferroelectric non-perovskite SnTe, which is a
chalcogenide where Te2− exhibits a comparable role to O2− in perovskite oxides [37,38].
This IV-VI semiconductor undergoes a cubic-to-rhombohedral phase transition and a fer-
roelectric phase at TC ≈ 100 K. In addition, it exhibits phonon anomalies in the various
dispersion branches, which appear as a dips or kinks [37,38]. Next, the coupling between
the nonlinear and SPA phonons is discussed, which leads to phase transitions at finite
critical momentum qc ̸= 0, which is applicable to K2SeO4. Note that this system undergoes
a paraelectric incommensurate transition at Ti = 127 K, and one to a truly ferroelectric one at
TC = 96 K. By analogy with perovskite ionic systems, this compound can also be modelled
within the dipolar shell model approximation (see above). The harmonic lattice potential is
given by φ(2) = φii + φei + φee′ where φii is the ion–ion, φei the electron–ion and φee′ the
electron–electron interaction. In analogy to the case discussed above, the electron–ion inter-
action potential is extended by a fourth-order anisotropic term φ

(4)
ei = 1

4 ∑L,α g4,α(κ)w4
α(L),

where w is the relative core–shell displacement coordinate at lattice site L = (l, κ) and
α = x, y, z. Within the SPA, this term is replaced by w3

α(L) = 3wα(L)
〈
w2

α(L)
〉

T , with the
bracketed term being the thermal average. While in the continuum limit, kink-type and soli-
tary solutions exist, here, nonlinear periodic three-dimensional lattice solutions (periodons)
are obtained using the ansatz for the displacements x = u, v, w:

→
x (L) = Re

{→
X1exp

[
i
(

ωt −→
q
→
R(L)

]
+

→
X3exp

[
3i
(

ωt −→
q
→
R(L)

]}
, (2)

with the amplitudes
→
X1,

→
X3 being determined by the equations of motion. The periodon

dispersion relation is given by ωp

(→
q
)
= 1

3 ωR

(
3
→
q
)

, where ωR

(→
q
)

is the SPA dispersion
relation. In Figure 1, periodons and phonons are shown for the ferroelectric rock-salt struc-
ture IV-VI compound SnTe. By including the interaction between phonons and periodons,
finite momentum soft modes are obtained, which freeze at momentum q = qc. This is best
exemplified for the case of a pseudo-linear model with nearest-neighbour interactions and
one polarizable ion in the unit cell. This model is a simplification of the polarizability model,
but it captures its essential features, namely the nonlinear polarizability of the oxygen ion.
Correspondingly, its Hamiltonian is only slightly varied as compared to Equation (1):

H =
1
2∑n

[
M1

.
u2

1n + m
.
v2

1n + f ′(u1n − u1n−1)
2 + f (v1n − v1n−1)

2 + g2w2
1n +

1
2

g4w4
1n

]
(3)

where the same notations as above have been used. Since, here, only a single ion ap-
proximation is used, the index 1 is omitted in the following. The equations of motion are
given by:

M
..
u2

n = g2wn + g4w3
n + f ′Dun (4a)

me
..
vn = −g2wn − g4w3

n + f D(wn + u n

)
= 0 (4b)

where Dxn = xn+1 + xn−1 − 2xn is the difference operator. Solutions to these
equations are given by wn = Asin(ωt − nqa), un = Bsin(ωt − nqa) + Csin3(ωt − nqa)
with the dispersion relation Mω2

p(q) = 4
9 ( f + f ′)sin2

(
3qa
2

)
and amplitudes

A2(q) = 4
3

[
−g2 − Mω2

f (1 −
ω2

f

ω2
R−ω2

p
)

]
, with ω2

f , ω2
R being the ferroelectric and rigid ion

squared frequencies. The coupling between phonon and periodon is imposed by a super-
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position of their displacements, namely wn = wnp + wns, un = unp + uns. This leads to two
types of equations of motion, namely one in the periodon displacement coordinate, unp,
and the other in the phonon-related one, uns :

M
..
uns =

(
f + f ′

)
Duns + f Dwns (5a)

0 =
[

gT + 3g4w2
np

]
− f D[wns + uns] (5b)

M
..
unp =

(
f + f ′

)
Dunp + f Dwnp (5c)

0 = gTwnp + g4w3
np − f D

[
wnp + unp

]
(5d)

where for wns, the SPA has been used, and gT has been defined above. As is apparent from
the above equations, the periodon amplitude adopts a temperature dependence where two
regimes can be differentiated, namely the high-temperature one where SPA phonons exist
in a fluctuating periodon field, whereas at low temperatures, static periodons are observed.
This yields a site-dependent electron–ion coupling:

gT + 3g4w2
np

(
2π

3

)
=

{
gT , n ≡ 0 (mod3)
−2gT − 9

1
f +

1
f ′

, n ≡ 1 or 2 (mod3)

}
(6)
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Figure 1. Dispersion curves of phonons (dashed lines) and periodons (solid lines) in SnTe at
100 K. Capital (small) letters denote the polarization of them. Parameters have been adopted from
Refs. [37,38].

In Figures 2 and 3, the theoretical results for K2SeO4 are compared to experimental
data [39,40]. The temperature dependence is given by gT and concerns the commensurate
part, whereas f ′(T) determines the incommensurate intersite elastic coupling, which shifts
the minimum in the dispersion ω(q) away from the commensurate value qa = 2π/3 to
higher values.
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Figure 2. Dispersion of the coupled phonon–periodon mode in the paraelectric regime (T > TC = 127 K)
of K2SeO4 with f + f′ = 09.THz2x mass unit. Experimental data (crosses, dots, triangles, and crosses)
have been taken from Refs. [39,40].
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Figure 3. Tripling of the transverse acoustic coupled mode in the ferroelectric regime at T = 40 K.

Upon extrapolating gT and f ′(T) to zero (Figure 4), it is obvious that the former
governs the second-order phase transition at Ti = 127 K, while the latter determines the
lock-in transition at TC = 93 K. Reformulating this phenomenological approach in terms of
a Landau free energy expansion, we are dealing with coupled-order parameters, where
f ′(T) corresponds to the Lifshitz invariant strain component, while gT represents the field
one. In view of the simplicity of the model, the agreement between experiment and theory
is amazingly good.
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Figure 4. Temperature dependence of the coupling parameters gT and f ′(T) in the paraelectric and
incommensurate regimes.

4. Breather Solutions and Relaxor Ferroelectrics

For many years, it has been well known that perovskite oxides exhibit an enormous
variety of ground states, induced by oxygen-doping or deficiencies and/or by the replace-



Condens. Matter 2024, 9, 39 6 of 18

ments of the B or A sites by isovalent ions. The doped and mixed compounds are a platform
for applications and new technologies. For these reasons, increased scientific research has
focussed on their local and global properties, often employing novel tools. Especially, it has
been shown that their average global and local structures vary considerably [41–46]. This
implies that the Bloch theorem is no longer fulfilled, and conventional approaches can no
longer be used. This intrinsic heterogeneity implies that large anharmonicity is inherent to
these compounds, which suggests the formation of new intrinsic local modes (ILM) and dis-
crete breather (DB)-bound states [47–50]. Generic solutions in the form of discrete breathers
are time-periodic and (typically exponentially) localized in space. Discrete breathers are
not confined to certain lattice dimensions. Necessary ingredients for their occurrence are
the existence of upper bounds on the phonon spectrum (of small fluctuations around
the ground state) of the system as well as the nonlinearity in the differential equations.
The fascinating properties of these nonlinear solutions are that they are sources of energy
localization and transport in nonlinear media.

A fundamental problem related to ILM and DB states is confining them to an energeti-
cally allowed stability regime, namely the gap region between the lowest optic and acoustic
phonon modes. If the nonlinear modes lie above this gap, they are unstable and decay into
the optic mode. In addition, it has been argued that hard-core nonlinearity is not realizable
physically [49], where hard-core refers to negative values for the harmonic interaction,
namely g2, whereas the anharmonic one, g4, is positive. The latter statement stems from the
fact that a rigid ion or rigid spin-lattice potential has been considered for the calculations.
Here, we instead use the polarizability model as defined by Equation (1), where charge
transfer, dynamical covalency and hybridization effects are explicitly included.

Instead of the above discussed periodon solutions, the possible formation of DB is
investigated [51], which requires that its frequency is constant within a limited spatial
region and zero beyond that, which corresponds to a multi-vibrational quanta-bound state.
In order to obtain the equations of motion, the displacement coordinates are assumed to be
time-periodic:

u1n(t) = Aξ1ncos(ωt) (7a)

u2n(t) = Bξ2ncos(ωt) (7b)

w1n(t) = Cη1ncos(ωt) (7c)

with A, B, and C being the amplitudes and ξ, η the corresponding displacements. The
amplitudes are obtained through the equations of motion and are frequency-dependent,
and the electronic shells are treated in the adiabatic limit. The equations of motion are
given by:

−m1ω2ξ1n Acos(ωt) = f ′ADξ1ncos(ωt) + g2Cη1ncos(ωt) + grCr−1ηr−1
1n [cos(ωt)]r−1 (8a)

−m2ω2ξ2nBcos(ωt) = f C(η1n+1 + η1n)cos(ωt) + f A(ξ1n+1 + ξ1n)cos (ωt)− 2 f Bξ2ncos(ωt) (8b)

0 = −g2Cη1n − grCr−1ηr−1
1n [cos(ωt)]r−1 − 2 f Cη1ncos(ωt)− 2 f Aξ1ncos(ωt) + f B(ξ2n−1 + ξ2n)cos(ωt) (8c)

Here, r is the degree of anharmonicity. In order to reduce the number of degrees of
freedom, Equation (8b) is replaced by one lattice constant:

−m2ω2ξ2n−1Bcos(ωt) = f C(η1n−1 + η1n)cos(ωt) + f A(ξ1n−1 + ξ1n)cos (ωt)− 2 f Bξ2n−1cos(ωt) (9)

Adding Equations (8b) and (9) and twice the adiabatic approximation yields:(
m2ω2 − 2 f

){
g2Cη1ncos(ωt) + grCr−1ηr−1

1n [cos(ωt)]r−1
}
+

(
m2ω2 − 2 f

)
[Cη1n + Aξ1n]cos(ωt) =

− f 2cos(ωt)[CDη1n + ADξ1n]
(10)
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Equations (10) and (8a) have analytical solutions that can be evaluated by the rotating
wave approximation, namely:

cosp(Θ) =
p!

2p−1 ∑p
k=1

cos(kΘ)[
p+k

2

]
!
[

p−k
2

]
!

p, k ≡ odd (11)

cosr−1(ωt) = Crcos(ωt) + higher harmonics (12)

with Cr =
(r−1)!

2r−2( r
2 )!( r

2−1)!
, where only the first term in the expansion is taken into account

since all higher-order terms rapidly decrease. The so-called worst case, r = 4, is considered
for systems with inversion symmetry, which excludes the case r = 3 and defines Cr = 3/4.
The resulting potential is a hard-core nonlinear one if g2 < 0, g4 > 0 and a soft one if
g2 > 0, g4 > 0. With the harmonic coupling being attractive and the anharmonic coupling
repulsive, hard-core anharmonicity is given, which might turn into a soft one when lattice
and ILM solutions are superimposed.

The equations of motion are thus similar to those obtained from Equation (1). Inter-
esting novel solutions are obtained by the ansatz w = −2u, which yields complex results
not discussed here. A rather natural choice for ILM’s odd parity displacement patterns
have been chosen, where at site n = 0, a dipole moment with “length” nc is formed,
which is compensated by the surrounding ordered lattice by creating at site n, counted
from nc, a dipole moment in the opposite direction with displacement ξn according to
ξn = ξ0 − n

2 : n ≡ even; ξn = −
[
ξ0 − n

2
]

: n ≡ odd. This choice guarantees that at
lattice site nc, the breather extensions have reached their limit. The spread of the breather
spatial extensions depends on the magnitude of the central dipole moment. With the choice
ηn = −2ξn, two solutions for ω are obtained, which need to be the same over all sites of the
breather extent until nc is reached (Figure 5 topleft). Figure 5 right provides an approximate
description of the top figure in terms of a damped oscillator.
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Figure 5. (Left) Displacements of ion 1 with mass m1 within the breather region. The breather centre
is marked by the red arrow. For clarity, ion 2 is omitted. The black line corresponds to an envelope
function proportional to 1/cosh and −1/cosh. (Right) The displacement pattern stemming from
the superposition of DB and regular lattice modes. I refers to the regular lattice modes, III defines a
charge transfer region, and II corresponds to the DB centre. Region III is characterized by the mixing
of DB and regular lattice displacement.

Thus, the breather spatial spread is 2nc with small deviations for the n = 0 solution

when g4 becomes site-dependent, e.g.,
∼
g
(n)
4 = g4/2(n − nc)

2. The result is consistent
with the fact that the double-well potential is steep and broad in the breather centre and
becomes smoother with increasing n to be pseudo-harmonic for distances further apart.
Simultaneously, this implies that the centre the electron is far apart from its core, delocalized
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and spread over the whole DB extent, whereas at the boundaries, it is completely localized.
This scenario closely resembles polaron physics, with the distinction that the electron is not
trapped by the lattice distortion but moves almost freely through the distorted region.

The frequencies for the displacement patterns are given by:

ω2
1 =

1
m1

[
4 f ′ + g

C
A

]
− 2 f ′

ncm1
(13a)

ω2
2 =

2 f
m2

[1 − 1
nc

1

2 + gC
2 f (2C−A)

] (13b)

with g = 2g2 + Cr
∼
g4C2. Outside the DB region, the frequencies are ω2

1 = 1
m1

(
4 f ′ + g C

A

)
and ω2

2 = 2 f
m2

. The existence regimes of the solutions Equation (13) are defined by com-
paring those to the SPA solutions. As already outlined above, these need to lie in the gap
region between optic and acoustic modes, which excludes ω2

2 from further considerations.
However, ω2

1 is also subject to certain restrictions, since this lies only in the gap regions if

the following inequality is true: (2
∼
f )1/2 < (g C

A )1/2 <

[
2
∼
f (m1+m2)

m2
− 4 f ′

]1/2

This is correct.

Apparently, a decisive role for the DB formation is played by the ionic masses, elasticity re-

lated to f ′, and the lattice stability, as determined by 2
∼
f = 2 f gT/(2 f + gT). Elastic softness

clearly supports DB formation, whereas lattice stability does not contribute significantly.
Analogous to the periodon solutions, the interplay between the lattice and DB modes

can be explored by a linear superposition of the corresponding displacement patterns.
This leads to a stabilization of the phonon frequencies, where even in the case of gT = 0,
the coupling to the breather prevents a freezing of any soft mode. This enlarges the DB
existence regime. Conversely, the breather adopts a temperature dependence, since g2 is
replaced by gT , which renormalizes its potential from hard-core to soft. This ansatz has
the consequence that the dynamical interplay between the regular lattice and the locally
distorted regions manifests as strongly enhanced diffuse scattering, e.g., as observed in
relaxor ferroelectrics. Especially, ghost modes may be observed, which take away spec-
tral weight from the regular lattice modes at certain wave vectors, as defined by the DB
spatial extent. Three regions of the coupled modes can be differentiated (Figure 5 right): I,
the regular lattice modes; III, a charge-transfer regime where the lattice mode amplitude
is modified by the breather; and II, where the breather centre induces large distortions
with almost freely moving charges. Since the nonlinearity, as defined by g4, becomes site-
dependent, the dielectric response ε also varies locally. This is what is observed in relaxor
ferroelectrics, where ε is frequency-dependent and indicates that ILM formation could
be the origin [52–55]. Of course, the modelling of relaxor ferroelectrics described above
does not fully capture the consideration of structural disorder, random fields, and related
heterogeneity, including dynamic and static polar nanoregions (PNRs) (for a comprehen-
sive review, see, e.g., Ref. [56]); however, essential features such as the frequency depen-
dence of the dielectric response, its temperature dependence, and local charge transfer are
well described.

5. Domains and Domain Walls

An alternative approach was developed for when phonon anharmonicity is beyond
perturbation theory and is transformed into solitary waves [57,58]. These excitations are
often better understood in a quasi-static context where their dynamics are considered
separately from their phonon origins. The probably most obvious example for such solitary
waves is a twin boundary. As an example, when SrTiO3 undergoes the symmetry-breaking
phase transition near 105 K, the low-temperature phase is commonly riddled with twin
domains [59–62]. These twin domains have been the bane of most research, and a common
approach has been to simply ignore them. This is justifiable because the twist between twin
domains is small, and each twin domain follows very closely the same physics of any other
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twin domain or even of an entire, untwinned sample. These ‘bulk’ properties are hardly
influenced by the twins, and twinning was considered a nuisance at best. This is not true
for the geometrical joints between the twin domains, namely the twin boundaries (or twin
walls). Since 2010, research on twin walls has massively expanded because it was discovered
that these twin walls house many new and useful physical properties that the bulk do
not possess. These ‘emerging’ properties include polarity, (ionic and super) conductivity,
photovoltaic effect, and pn junctions [63–68]. There is another dynamic wall property
that is widely used. Most twin walls are mobile under external forcing when pinning is
weak [68–72]. This means that small external stresses, such as the tip of a preparation
needle, will move domain walls to desired positions. Even without external forces, domain
walls can be moved by thermal stresses depending on the shape of the sample [73–79].
Importantly, twin walls often interact. They also contain internal geometrical structures,
namely kinks, which represent walls in walls and lead to additional excitations where
such kinks move at supersonic speed [77]. We now focus on the dynamical features in
the ‘critical slowing down’ regime in both phases and relate them to the interactions and
correlations [58,70] between interfaces such as twin walls. The movement of correlated
twin walls, with and without external forcing, often occurs in avalanches. Such avalanches
are known to geophysicists from earthquakes. Avalanches in nano-materials have come
to the forefront and dominate much of the current research [80,81]. Their experimental
incarnation is often called ‘crackling noise’ [82].

The concept of crackling noise has been around for a long time. It refers to the jerky
response of many systems to a slowly changing driving force or field. For example, a
piece of paper crackles when it is slowly crumpled, and corn flakes crackle when you pour
milk over them. Breaking a chopstick [83] or a piece of coal or sandstone leads to audible
crackles [84] and can easily be measured by putting microphones next to the sample [85].
Other examples include the braking of bones [86] or the destruction of kidney stones in
operating theatres [87]. Earthquakes follow similar patterns [88–90]. Similarly, magnetic
materials magnetize via jumps in the magnetization that span a wide range of jump sizes.
These jumps were originally observed as crackling Barkhausen noise when a search coil
was wrapped about the sample and hooked up to a loudspeaker [91,92]. Starting with the
Barkhausen analysis of magnetization jumps in slowly magnetized ferromagnetics, the
concept of crackles with a broad (power-law) size distribution was generalized to crackling
noise because it was found that similar phenomena are surprisingly widespread [80,82,93].

Anharmonic phonons transmute hence to domain walls that have, like phonons, some
universal properties. Renormalization group calculations suggest that, on long-length
scales, the avalanche systems of domain walls flow to the same fixed point under coarse
graining, which suggests that their scaling behaviour is the same for all systems [94,95].
Important open questions concern the size of the underlying universality class, i.e., how
many systems show the same crackling noise statistics. This is often quantified by power
laws and scaling functions underlying the avalanche size and duration distributions,
the power spectra of acoustic emissions (AEs), and related quantities. The power law
distributions of crackling noise also imply that these processes are scale-invariant: each
measurement interval shows exactly the same functional form of the jerk probability. This
scale invariance is absolutely stunning because, in many large systems, it extends over
8 decades of the crackling noise energy and is truncated only by the limitations of the
electronic equipment that measures the different jerk parameters [e.g., 80]. It is rare to find
physical laws in solid-state physics that have excellent validity over 8 energy decades! A
large body of experimental studies have proven these ideas to be largely correct. The power
laws of the various observables are very similar indeed, including the energy, amplitude
and size exponents, and the duration of the excitation. The universality of the crackling
noise is further focused because energy exponents in ferroic materials are often near the
mean field (MF) values of 1.33 and 1.66, while higher values were measured more rarely in
other systems [80].
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In this chapter, we propose that domain boundaries evolve out of anharmonic phonons.
This gives the system an order–disorder component that coexists with the phonon de-
grees of freedom. Alternatively, starting from an order–disorder spin model, Salje and
Dahmen [80] have argued that very simple theoretical models can describe domain wall
avalanches rather well. Using magnets as an instructive case, the random-field Ising
model (RFIM), with or without added long-range dipolar interactions, is a typical exam-
ple. In the RFIM, the material is modelled as a cubic crystal with N sites, each with a
spin Si = +−Yes, it should be plus/minus1, i = 1. . . N. The Hamiltonian for the RFIM is
H = −∑ij JijSiSj − (Hext(t) + hi)Si, where the first term represents the ferromagnetically
coupled nearest neighbours (with nearest-neighbour coupling Jij[J < 0]), Hext(t) is the
external applied field, and hi is the quenched local random magnetic field with Gaussian
distribution. In the simplest non-equilibrium dynamics, each spin is aligned with its local
effective field, hj, e f f ective = −∑ij JijSiSj + Hext(t) + hi

)
. As the external magnetic field

is slow compared to hi, it triggers spins with positive random fields to flip from down
(Sj = −1) to up (Sj = +1) whenever their local effective field first becomes positive. Because
of the ferromagnetic coupling between the spins, each such spin flip can trigger neigh-
bouring spins to also flip, causing a spin-flip avalanche. In the adiabatic limit, the external
driving field is kept fixed until an avalanche is completed. Only afterward is it increased
until the next spin flips. We call S the size of a spin-flip avalanche. Two limiting cases are
illustrative for avalanches. In a pure system with all random fields, one expects that all
spins will flip in one giant spin-flip avalanche that covers the entire system. For infinite
disorder, the random fields are so far apart that each spin flips separately, and there are no
large spin-flip avalanches. The model predicts that between these two extremes at a critical
disorder, a power-law avalanche size distribution [D(S)] is observed when the magnetic
field is near a critical field (Hc). The power law is multiplied with an exponential cut-off
if H is tuned away from Hc or the disorder is tuned away from the critical disorder. The
predictions only depend on general properties, such as symmetries, dimensions, range of
interactions, etc. Many more quantities have been predicted, but the scaling form of the
avalanche size distribution is quite general. This picture appears valid for ferroic domain
walls and has been advocated for the behaviour of SrTiO3 [96] and BaTiO3 [81].

For soft magnets, the coupling Jij is generalized to also include added long-range
dipolar interactions, and simplified power laws apply. Twin walls follow the same non-
equilibrium pathways with typical avalanche exponents near mean field values. Changing
the RFIM to a ‘soft’ spin model with long-ranging elastic interactions leads then to the same
coexistence between phonon and domain walls.

6. SrTiO3 as an Example

SrTiO3 undergoes a second-order phase transition with one transverse acoustic soft
mode at high temperatures, which splits into two soft modes in the symmetry-broken
phase. In addition, domain walls appear, and their characteristics are shown in Figure 6.
Above the transition point, near 106.5 K, a large precursor regime is seen by elastic softening
(Figure 6b). Below the transition point, domains form and increase the damping of the
acoustic wave (Figure 6a). The domain walls freeze with a very small pinning energy
and, on cooling, form clusters. These clusters give the crystal a glassy or solid damping
behaviour with greatly diminished elastic Young modulus [96].

In SrTiO3, as expected, even more complex jerky avalanches were observed [97]. The
movement of the twin walls under weak external forcing is shown in Figure 6. Close to the
transition point, the walls are so weakly pinned that their mutual interaction dominates,
and the domain wall pattern fluctuates like in a liquid. In the pinned regime, jerks and
avalanches are observed, and below 40 K, quantum effects destroy individual avalanches
and lead to strongly coupled movements of clusters. The avalanches are seen as random
jerks when the external strain exceeds some 10−7 and unpins the walls (Figure 6c).
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Figure 6. Domain wall characteristics in SrTiO3 with (a) the damping of acoustic waves, (b) the
elastic modulus, and (c) the damping as function of the applied strain. The strain amplitudes are
extremely small and can be generated simply by heating or cooling samples with irregular shapes.
Some unpinning already happens when the sample is cooled in a cryostat, with the noise of the
cryostat as the sole unpinning force. Measurements were made under ‘silent’ conditions [97].

We now discuss the interaction between twin walls, which is crucial for avalanche
formation [98]. The observed glassy behaviour [97] and the very existence of avalanches
require such interactions, which appears counterintuitive following the work of Lajzerowicz
and Levanyuk [99]. They and others showed that such interactions are extremely weak
unless domain walls intersect [100]. While this argument is correct, we need to consider a
further dimensional reduction. While domain walls are planes with some 1 nm thickness,
they host walls inside these wall [62]. These finer walls are often geometrical kinks that
emit strong strain fields. These kink–kink strain fields interact like monopoles (~1/r where
r is the distance between kinks) if the twin wall is inside the bulk and like dipoles (~1/r2)
close to surfaces. This weakening of interactions is due to elastic image forces and has been
shown experimentally by investigations of thin, freestanding sample lamellae [73,77,78,100].
The long-ranging strain interaction between kinks leads to effective wall–wall interactions
like spin–spin interactions in spin glasses [101].
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7. Precursor Effects in SrTiO3

Anharmonic phonons become solitary waves and ultimately contribute to domain
walls. Domain walls occur in the symmetry-broken phase, but very similar excitations
are seen also in high-temperature phases. At temperatures above the transition point,
we find precursor clusters that have properties very similar to those of wall-dominated
systems in the symmetry-broken phase. Experimentally, the measurement of the tempera-
ture evolution of the elastic moduli was very successful in demonstrating this precursor
effect [102]. In a simple soft-mode model, the moduli transform stepwise in improper
ferroelastics [103,104] with no temperature evolution at T > Tc. This behaviour is hardly
ever observed, and typical lowering or enhancement of the moduli when approaching
Tc in a second-order phase transition is commonly observed. The scaling of the elastic
moduli follows a power law E~E0 |T − Tc|−κ, where κ is the precursor exponent. These
exponents depend on the dispersion of the soft modes and hence on the dimensionality of
the softening in reciprocal space. In a very simple model, values of κ have been predicted to
be 1.5 if a single phonon branch flattens. If two orthogonal phonon branches flatten while
the third remains relatively steep, we expect κ = 1. Finally, if three orthogonal branches
flatten, the expected value is κ = 0.5. The experimental observations are surprisingly close
to these values in SrTiO3. The range of exponents is typically between 0.5 and 2 in most
domain wall systems. The power-law dependence is well demonstrated, with an exponent
κ~0.2 for BaTiO3 and 1.8 for SrTiO3 [102]. Alternative Vogel–Fulcher fits

∆Cik = Bikexp
(

Ea/kB
T − TVF

)
(14)

are also shown in Figure 7. Here, the activation energy is Ea, and the Vogel–Fulcher
temperature is TVF. Typically, distinguishing between power laws and Vogel–Fulcher
statistics is extremely difficult. In SrTiO3, Cordero et al. and Ishibashi and Iwata [102,103]
have argued that the power law gives a better agreement with the experimental data. The
precursor regime extends in SrTiO3 to 125 K; other materials show similar or larger is
okprecursor temperature intervals (e.g., [105]).
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Figure 7. Elastic precursor softening in SrTiO3. The red and green lines represent the power law
and the Vogel–Fulcher fits, respectively; the dotted lines are the baseline for the moduli at higher
temperatures (after [102]).

The softening of the elastic moduli is not purely a phonon effect. In a very simple
model of an anharmonic Landau system [100], the crystalline structure inside the precursor
regime was investigated by molecular dynamics simulations. The anharmonicity is a
sheared NaCl-type structure that was simulated by anharmonic springs in the ball and
strings model in Figure 8.
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Figure 8. Ball and spring model for phonons and domain walls. The red springs are Landau springs
with two energy minima.

The potentials are
Black springsU(r) = 0.1

(
r − 1)2 (15a)

Red springsU(r) = −0.05(r − 2)2 + 40(r − 2)4 (15b)

along diagonals in the lattice unit, which has two energy minima and generates the Landau
potential. The fourth-order third-nearest interactions are given as:ok

U(r) = 0.04(r − 2)4 (blue arrow), (15c)

and an anharmonic fourth-nearest Landau-type double-well interaction is given as:ok

U (r) = −0.05(r −
√

5)2 + 25.5(r − 5)4 (green arrow), (15d)

Models of this kind have been successfully used to investigate ferroelastic materials [106]
and phase transitions and to reproduce both phonons and nano-structures very well [107].
They show the correct softening as measured in SrTiO3 and show the related nano-structure
in Figure 9.
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temperatures the system is homogeneous (a), with lowering the temperature wall-like nano-structures
appear at (b,c) and become dominant in (d). These precursor structures reduce the relevant elastic
modulus and link the anharmonic phonons at high temperatures with the domain walls at low
temperatures [104].

This remarkable result shows that fine structures are visible at temperatures as high
as 1.4 Tc and become very strong at 1.016 Tc, while the time-averaged structure is firmly
in the high-temperature phase. The structural deformation resembles the typical tweed
structure in order/disorder phase transitions [108–114], with a closely interwoven domain
pattern. The domain structures seem to emerge in these structures, although they are
dynamic excitations that fluctuate and eliminate the actual symmetry-breaking of the phase
transition. Such excitations can be described as highly anharmonic ‘phonon’ branches or as
solitary waves. When the actual phase transition occurs, stable domain walls appear (f–h),
which are no longer described by phonon excitations.

8. Summary and Conclusions

In summary, we have shown that the central peak and ‘critical slowing down’ regimes
are characterised by the appearance of mobile, short-lived domain wall excitations that
emerge out of phonon branches at higher temperatures. This idea refines the interpretation
by Alex Müller, where terms like ‘entropic clusters’ were used to describe what is rather like
the features summarized in this paper. The emerging mechanism can then be depicted as
follows: at T >> Tc, phonons are harmonic and become weakly anharmonic under cooling
when the soft mode lowers the frequency. Above but near Tc, the phonon amplitudes
increase, and the frequencies collapse. This leads to highly anharmonic phonons that
can be described by higher-order dispersion terms like in periodons, as observed in the
rather complex K2SeO4 compound, but also in simple binary ferroelectrics as, e.g., SnTe.
Structurally, local clusters appear already at 1.4 Tc in our simulations. They are widely
separated. They grow and form denser patterns when approaching Tc. Characteristic
temperatures have been defined to describe this process. While the lifetime of these
clusters is much longer than the phonon time, they remain dynamic. At the transition
point, the clusters form domains with long-lived domain boundaries that still contain
features of the precursor clusters. Lowering the temperature even further can lead (e.g., in
SrTiO3) to strong interactions between domains, domain walls and kinks inside domain
walls, and to the formation of quantum domain glasses and quantum domain solids.
Specifically, we have addressed the interconnection between phonons, domain walls and
nonlinear excitations, which are common to the lattice as well as to domains and form a
link between them.
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