
Citation: Hayami, S. Double-Q

Checkerboard Bubble Crystal in

Centrosymmetric Tetragonal Magnets.

Condens. Matter 2024, 9, 40. https://

doi.org/10.3390/condmat9040040

Received: 16 August 2024

Revised: 9 October 2024

Accepted: 13 October 2024

Published: 16 October 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Double-Q Checkerboard Bubble Crystal in Centrosymmetric
Tetragonal Magnets
Satoru Hayami

Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; hayami@phys.sci.hokudai.ac.jp

Abstract: We report our numerical studies on the emergence of a double-Q checkerboard bub-
ble crystal in centrosymmetric tetragonal magnets. The double-Q checkerboard bubble crystal is
characterized by a fourfold-symmetric collinear spin configuration consisting of a superposition of
two sinusoidal waves with the out-of-plane spin modulations along the [110] and [1̄10] directions.
The numerical calculations based on the simulated annealing for an effective spin model with the
momentum-resolved easy-axis exchange interactions reveal that the double-Q checkerboard bubble
crystal is energetically degenerate with the single-Q collinear state when the ordering wave vector
lies on the quarter of the reciprocal lattice vector along the ⟨110⟩ direction. We show that such
a degeneracy is lifted by considering the biquadratic interaction. We also find that the double-Q
checkerboard bubble crystal turns into another double-Q state characterized by the in-plane spin
modulations by increasing an external magnetic field.

Keywords: bubble crystal; biquadratic interaction; multiple-Q state; square lattice; magnetic
phase diagram

1. Introduction

Exploring unconventional magnetic orderings has been one of the central issues in con-
densed matter physics. Depending on the spin configurations, various intriguing physical
phenomena occur, such as the anomalous Hall effect in ferromagnets [1–10] and collinear
antiferromagnets [11–20], spin current generation in noncollinear antiferromagnets [21–28],
and the nonreciprocal transport in noncoplanar antiferromagnets [29–36]. The findings of
unconventional magnetic orderings and their related physical phenomena can not only
provide fundamental understandings but also bring about future electronic and spintronic
device applications [37–39].

The magnetic orderings can be described by a superposition of spin density waves,
where the spin at site i, Si, is generally expressed as

Si =
n

∑
ν=1

(eiQν ·ri SQν + e−iQν ·ri S−Qν). (1)

Here, Sq with the wave vector q is the Fourier transform of Si, and ri is the position vector
at site i. For n = 1, the spin state is referred to as the single-Q state, while it is referred
to as the multiple-Q state for n > 1 [40–43]. The multiple-Q spin configurations can
describe a variety of complicated spin configurations, such as a skyrmion crystal [44–51],
hedgehog crystal [52–57], meron–antimeron crystal [58–62], and vortex crystal [63–67]. For
example, a double-Q superposition of spiral waves leads to the skyrmion crystal on a
two-dimensional square lattice and a triple-Q superposition of spiral waves leads to the
hedgehog crystal on a three-dimensional cubic lattice. Since the resultant multiple-Q spin
configurations depend on the type of the constituent spin density waves, further exotic
magnetic orderings can be expected.

In the present study, we explore a further multiple-Q state and its stabilization mecha-
nism based on the spin model analysis. We perform the simulated annealing for the spin
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model on the two-dimensional centrosymmetric square lattice and construct the magnetic
phase diagram at low temperatures. By changing an easy-axis anisotropic interaction and
an external magnetic field, we find that the energy of the double-Q state is the same as
that of the single-Q state within the bilinear exchange interaction. The infinitesimally
small biquadratic interaction stabilizes two types of the double-Q states depending on the
magnetic field. In the small field region, a double-Q checkerboard bubble crystal (2Q CBX),
which consists of double-Q sinusoidal waves with the z-spin modulation, appears without
the uniform magnetization, while a double-Q state with xy-spin modulations (2Q I state)
appears in the high-field region. Our results indicate a possibility of further multiple-Q
states by considering the interplay between the biquadratic interaction and magnetic field.

The rest of this paper is organized as follows: In Section 2, we construct an effec-
tive spin model on the square lattice to induce the 2Q CBX by taking into account the
momentum-resolved spin interactions. We also introduce the simulated annealing, which
enables us to obtain the thermodynamic spin configurations in an unbiased way. In
Section 3, we discuss the stability of the 2Q CBX by changing the model parameters. First,
we show that the energy of the 2Q CBX is degenerate with that of the 1Q collinear state
within the easy-axis anisotropic bilinear exchange interaction. Then, we show that the
biquadratic interaction favors the 2Q CBX rather than the 1Q collinear state. Finally, we
present the magnetic phase diagram against the external magnetic field. Section 4 is devoted
to the conclusion of the present paper.

2. Model and Method

We analyze the following spin model with the momentum-resolved interaction on the
two-dimensional square lattice, whose Hamiltonian is given by

H =− 2 ∑
ν

(
JΓQν +

K
N

Γ2
Qν

)
− H ∑

i
Sz

i , (2)

with

ΓQν = SQν · S−Qν + IzSz
Qν

Sz
−Qν

, (3)

where SQν denotes the Qν component of the spin and ν is the index of the ordering wave
vectors Qν. SQν = (Sx

Qν
, Sy

Qν
, Sz

Qν
) is related to the localized spin at site i, Si = (Sx

i , Sy
i , Sz

i ),
via the Fourier transformation. We set the spin length as unity, i.e., |Si| = 1.

The first term represents the bilinear and biquadratic exchange interactions with the
coupling constants J and K, respectively; N denotes the total number of spins in the system.
We take into account the interactions at particular wave vectors by supposing the nesting of
the Fermi surface at Qν; we set Q1 = (π/2, π/2) and Q2 = (−π/2, π/2); and the lattice
constant is set to be unity. It is noted that the coupling constants J and K are common for
Q1 and Q2, since they are connected by the fourfold rotational symmetry of the square
lattice. The prefactor 2 is due to the contribution from −Q1 and −Q2. In the nesting regime,
the bilinear exchange interaction corresponds to the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction [68–70], while the biquadratic exchange interaction corresponds to the
higher-order RKKY interaction [71,72]. Microscopically, the RKKY (higher-order RKKY)
interaction is obtained in the lowest-order (second-lowest-order) perturbative expansions
with respect to the spin–charge coupling in the Kondo lattice model. The bilinear exchange
interaction tends to favor the single-Q state at Qν, while the biquadratic interaction tends
to favor the multiple-Q state, such as the vortex crystal [73], bubble crystal [74], and the
higher-order skyrmion crystal [75]. In addition, we introduce the dimension-less easy-
axis anisotropic form factor in ΓQν as Iz > 0, while we neglect other symmetry-allowed
magnetic anisotropic form factors, such as the bond-dependent magnetic anisotropy [76].
Such magnetic anisotropy in both two-spin and four-spin interactions originates from
the interplay between the spin–orbit coupling and crystalline electric field; in particular,
the easy-axis anisotropy arises from the inequivalence between the xy- and z-spin com-
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ponents. Although we choose the same ratio of the interactions between the xy and z
components for the bilinear and biquadratic interactions, the following results are not
altered even for different interaction ratios in the xy and z components of the biquadratic
interaction, since the biquadratic interaction is introduced to lift the degeneracy between
the single-Q and double-Q states detailed in Section 3 in the present study. The second
term stands for the effect of the external magnetic field along the out-of-plane direction; H
represents the magnitude of the magnetic field.

We examine the instability toward the multiple-Q states by numerically solving the
model in Equation (2). Although the model includes only a few interactions in momentum
space, it gives an almost accurate internal energy for the ground-state spin configurations
when the interactions at the other wave vectors are smaller than those at Q1 and Q2. In other
words, the effective momentum-resolved spin model enables us to efficiently search for the
multiple-Q states [77,78]. Such a simplification is especially useful for the examination of the
instability toward the multiple-Q states in the ground state, since the ground-state energy
is determined by the dominant multiple-Q (or single-Q) modulations, and the contribution
from the higher-harmonic wave vectors like Q1 + Q2 is negligible [79]. Indeed, the simpli-
fication of the model can capture the essential interactions in materials hosting multiple-Q
magnetic orderings, such as EuPtSi [80], GdRu2Si2 [81], and EuNiGe3 [82], where the exper-
imental complicated phase diagrams are well reproduced. Meanwhile, the simplification
of the model does not capture unconventional multiple-Q states, whose ordering wave
vectors are not symmetry-related. In addition, the model with the momentum-resolved
interaction is not appropriate for the analysis of the impurity effect. In the following, we
set J = 1 as the energy unit of the model, and change Iz and H. For K, we set K = 0
or K = 0.05, since infinitesimally small K is enough to lift the degeneracy between the
single-Q and multiple-Q states.

The magnetic phase diagram is calculated in the plane of Iz and H based on the
simulated annealing. For the system size with N = 162 under the periodic boundary
conditions, we perform the Monte Carlo simulations with standard metropolis local updates
in real space from a high temperature, T0 = 1.5, to the final temperature, T = 0.0001. In
the simulations, we flip the spin in real space according to the Metropolis algorithm. Then,
we evaluate the Fourier transform of the spins only for the Q1 and Q2 components in
order to evaluate the energy of the model in Equation (2). Starting from a random spin
configuration at T0, we gradually reduce the temperature with a rate of Tn+1 = 0.999999Tn
while performing the above procedure, where Tn is the nth-step temperature. When the
temperature reaches T, we perform 105–106 Monte Carlo sweeps for measurements. In
addition, the simulations are performed from the spin configurations obtained at low
temperatures in the vicinity of the phase boundaries in order to avoid the meta-stable
solution. We independently perform the above procedure for a set of Iz and H.

We calculate the following physical quantities in order to identify magnetic phases
obtained by the simulated annealing. The spin structure factor is given by

Ss(q) =
1
N ∑

i,j
(Si · Sj)e

iq·(ri−rj), (4)

where q is the wave vector in the first Brillouin zone. The net magnetization along the
magnetic field direction is given by

Mz =
1
N ∑

i
Sz

i . (5)

3. Results

We discuss the multiple-Q instability in the model in Equation (2). First, we discuss the
result without the biquadratic interaction in Section 3.1, where the single-Q and double-Q
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states are energetically degenerate with each other. Then, we introduce the biquadratic
interaction to lift such a degeneracy in Section 3.2.

3.1. Without Biquadratic Interaction

Let us discuss the case without the biquadratic interaction, i.e., K = 0. For Iz = 0,
the single-Q state with the up–up–down–down spin configuration is realized in the ground
state. We deduce the spin ansatz satisfying the local spin length constraint for the spin
configurations obtained by the simulated annealing. In the case of H = 0, one of the
expressions of this spin configuration is given by

Sx
i = Sy

i =
1√
2
(cos Q1 · ri − sin Q1 · ri), Sz

i = 0, (6)

where we assume that the spin oscillates along the [110] direction. This spin configuration
leads to the lowest energy of the model Hamiltonian, −J = −1, under the constraint of the
spin length |Si| = 1.

Meanwhile, we find that the double-Q spin configuration gives the same lowest energy
as the above single-Q state. By considering the superposition of two spin density waves
at Q1 and Q2 while the local spin length is kept, the spin ansatz for the double-Q state is
given as follows:

Sx
i = c1 cos Q1 · ri −

√
1 − c2

1 sin Q2 · ri,

Sy
i = −c1 sin Q1 · ri +

√
1 − c2

1 cos Q2 · ri, (7)

Sz
i = 0,

where 0 < c1 < 1 is the numerical coefficient. The same energy between the single-Q
and double-Q states is unnderstood from the fact that the spin pattern in Equation (7)
satisfies the local spin constraint as |Si| = 1, owing to the special value of the ordering wave
vectors Q1 = (π/2, π/2) and Q2 = (−π/2, π/2). In other words, all the intensities in the
spin structure factor lie at Q1 and Q2 rather than the higher-harmonic wave vector like
Q1 + Q2 and other wave vectors. This indicates no energy loss in terms of the exchange
energy compared to the single-Q state, which leads to the energy degeneracy between the
single-Q and double-Q states. Such a situation also holds for nonzero H. A similar energy
degeneracy has been found at particular ordering wave vectors like Q = (π, 0) [72,83]
and Q = (5π/8, 3π/8). Thus, the magnetic states with arbitrary c1 are obtained after
the simulated annealing. We show the real-space spin configurations in the left panels
of Figure 1a,b. Although the spin configurations in Figure 1a,b seem to be completely
different from each other, both are described by the expression in Equation (7) and their
energy is given by −J[1 − (Mz)2] + HMz, which takes the same value as the single-Q state.
The corresponding spin structure factors are shown in the right panels of Figure 1a,b; all
the intensities are found at Q1, Q2, and q = 0.

When Iz is introduced, the energy degeneracy between the single-Q state and the
double-Q state also holds. At zero field, both single-Q and double-Q states are characterized
by the collinear spin configurations with the z-spin component in order to gain the energy
by Iz. The single-Q spin configuration is given by

Sx
i = Sy

i = 0, Sz
i = cos Q1 · ri − sin Q1 · ri, (8)

and the double-Q spin configuration is given by

Sx
i = Sy

i = 0, Sz
i = sin Q1 · ri + cos Q2 · ri. (9)

We show the real-space spin configuration of the double-Q state in the left panel of Figure 1c
and that of the single-Q state in the left panel of Figure 1d. Their spin structure factors are
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shown in the right panels of Figure 1c,d. For the double-Q state, the up and down spins
form the 2 × 2 squares, and they are aligned in a way that resembles a checkerboard. We
refer to this state as the 2Q CBX. A similar CBX has also been found in the tetragonal model
with the different ordering wave vectors; in contrast to the present CBX state, another
CBX state in the previous study was characterized by the quadruple-Q superposition at
Q′

1 = (π/4, 3π/4), Q′
2 = (3π/4,−π/4), Q′

3 = (3π/4, π/4) and Q′
4 = (−π/4, 3π/4). In

this way, various types of the single-Q and double-Q states are energetically degenerate
within the bilinear exchange interaction for Q1 = (π/2, π/2) and Q2 = (−π/2, π/2).

(a)

(b)
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Figure 1. (Left panel) Real-space spin configurations of (a) the anisotropic double-Q state at Iz = 0
and H = 1.1, (b) the isotropic double-Q state at Iz = 0 and H = 1.15, (c) the 2Q CBX state at Iz = 0.4
and H = 0, and (d) the 1Q collinear state at Iz = 0.4 and H = 0.05. In (a,b), the arrows represent the
directions of the spin moments and the contour shows the z-spin component. In (c,d), the color of the
circles represents the z-spin component; there are no x- and y-spin components. (Right panel) Square
root of the spin structure factor corresponding to the left panel.
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3.2. With Biquadratic Interaction

In order to lift the degeneracy between the single-Q and double-Q states, we take into
account the effect of the biquadratic interaction K. Since positive K tends to lead to the
energy loss for the single-Q state compared to the multiple-Q state [71,72], the stabilization
of the double-Q state is expected. Meanwhile, negative K tends to stabilize the single-Q
state rather than the multiple-Q state. Accordingly, we focus on the effect of positive
K = 0.05 in the following analysis.

Figure 2 shows the magnetic phase diagram while varying Iz and H at K = 0.05. There
are mainly two magnetic phases except for the fully polarized state appearing for H ≳ 2.
For Iz = 0, the double-Q spin configuration in Equation (7) is realized irrespective of H; we
denote it as 2Q I in the phase diagram in Figure 2. The real-space spin configuration and
spin structure factor of the 2Q I state are presented in the left and right panels of Figure 3a,
respectively. In order to gain the energy by K, the intensities of the spin structure factor at
Q1 and Q2 become almost equal; the isotropic double-Q state has a lower energy than the
anisotropic double-Q state. The magnetization in this state exhibits the linear development
against H, and continuously turns into the fully polarized state, as shown in Figure 4a.

fully polarized state

2Q CBX

2Q I
2Q II

Figure 2. Magnetic phase diagram in the plane of the two-spin easy-axis anisotropic interaction Iz

and the magnetic field H obtained by the simulated annealing at K = 0.05.

For Iz ̸= 0, the 2Q CBX is stabilized in the low-field region, which indicates that the
energy of the 2Q CBX is lower than that of the single-Q collinear state in the presence
of K. The real-space spin configuration and spin structure factor are shown in Figure 3b,
which are the same as those in Figure 1c. When H increases, the magnetization remains
zero in the 2Q CBX, as shown in the case of Iz = 0.1 in Figure 4b. With a further increase
in H, the 2Q CBX changes into the 2Q I state with a jump of M at H ≃ 0.6. This first-
order phase transition is regarded as the spin–flop transition, where the spin moments are
flopped from the parallel direction to the perpendicular direction in terms of the magnetic
field. For larger Iz, the region where the 2Q CBX is stabilized becomes wider, and then,
the magnetization jump becomes larger, as shown in the case of Iz = 0.3 in Figure 4c and
Iz = 0.48 in Figure 4d.
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(a)

0
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0
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Figure 3. (Left panel) Real-space spin configurations of (a) the 2Q I state at Iz = 0.1 and H = 1.0,
(b) the 2Q CBX at Iz = 0.1 and H = 0.3, and (c) the 2Q II state at Iz = 0.48 and H = 1.35. In (a,c),
the arrows represent the directions of the spin moments and the contour shows the z-spin component.
In (b), the color of the circles represents the z-spin component; there are no x- and y-spin components.
(Right panel) Square root of the spin structure factor corresponding to the left panel.

Finally, let us comment on the intermediate magnetic phase (2Q II) appearing in the
narrow region sandwiched by the 2Q CBX and 2Q I state for large Iz, as shown in Figure 2.
This state is characterized by the isotropic double-Q superposition in both xy- and z-spin
components like the magnetic skyrmion; the isotropic double-Q feature is found in the spin
structure factor in the right panel of Figure 3c. Meanwhile, the spin configuration does
not exhibit the scalar spin chirality corresponding to the topological charge, which means
that the 2Q II state is topologically trivial in contrast to the magnetic skyrmion. We show
the real-space spin configuration of the 2Q II state in the left panel of Figure 3c; there is no
vortex with the nonzero winding number. The magnetization in this state takes almost the
median value between the 2Q CBX and 2Q I states, as shown in Figure 4d, which indicates
that two first-order phase transitions occur when the 2Q II state appears.
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Figure 4. H dependence of the magnetization Mz at (a) Iz = 0, (b) Iz = 0.1, (c) Iz = 0.3, and (d) Iz = 0.48.
The vertical dashed lines represent the phase boundary between different magnetic phases. FP
represents the fully polarized state.

4. Conclusions

We have investigated the instability toward a new type of multiple-Q states in cen-
trosymmetric tetragonal magnets by focusing on the position of the ordering wave vectors.
We have shown that the single-Q and double-Q states are energetically degenerate within
the easy-axis anisotropic bilinear exchange interaction and the magnetic field when the
ordering wave vectors lie on (π/2, π/2) and (−π/2, π/2). By performing the simulated
annealing and constructing the magnetic phase diagram, we have found that two types
of the double-Q states, i.e., 2Q CBX and 2Q I state, are mainly realized in the presence of
the biquadratic interaction. In particular, the low-field phase corresponds to the 2Q CBX
state characterized by the double-Q collinear spin texture without a net magnetization. We
have also found that another double-Q state denoted as 2Q II appears in the narrow region
sandwiched by the low-field 2Q CBX and high-field 2Q I states. The present results indicate
that the position of the ordering wave vectors might lead to further intriguing multiple-Q
states distinct from the magnetic skyrmion and other well-known multiple-Q states.
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