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Abstract: The Josephson and Proximity effects play a pivotal role in the design of superconducting
devices for the implementation of quantum technology, ranging from the standard Al based to the
more exotic twisted high-Tc junctions. Josephson critical currents have been recently investigated
also in ultracold atomic systems where a potential barrier acts as a weak link. The unifying feature
of the above systems, apart from being superconducting/superfluid, is the presence of spatial
inhomogeneity, a feature that has to be properly taken into account in any theoretical approach
employed to investigate them. In this work, we review the novel (dubbed LPDA for Local Phase
Density Approximation) approach based on a coarse graining of the Bogoliubov–de Gennes (BdG)
equations. Non-local and local forms of this coarse graining were utilized when investigating
Proximity and Josephson effects. Moreover, the LPDA approach was further developed to include
pairing fluctuations at the level of the non-self-consistent t-matrix approximation. The resulting
approach, dubbed mLPDA (modi f ied LPDA), can be used whenever inhomegeneity and fluctuations
effects simultaneously play an important role.

Keywords: Josephson effect; pairing fluctuations; ultracold atoms; Bogoliubov–de Gennes equations;
non-self-consistent t matrix

1. Introduction

When investigating inhomogeneous superconducting/superfluid systems, the most
natural tool which comes to one’s mind is probably the BdG equations [1] (or equivalently
the Gorkov’s ones [2,3]). This approach, which allows for a straightforward description of
the physical system at hand, in its most known form, consists in solving Schroedinger-like
equations for two-component single-particle eigenfunctions. At the cost of a long evalu-
ation time and the need for a huge memory space, these equations return a complete set
of orthonormal eigenfunctions in terms of which all physical quantities of interest can be
evaluated. For these reasons, over the years, when dealing with interfaces or inhomoge-
neous systems in general, alternative equations such as Usadel [4,5] and Eilenberger [5,6]
equations have been solved in place of BdG, at the cost of limiting the validity of the
obtained results in a restricted region of the coupling-temperature phase diagram.

In 2014, Simonucci and Strinati [7] developed a new approach using as a starting
point the self-consistent equation for the order parameter ∆(r) written in terms of the
finite temperature Green functions (solving this equation is equivalent to solving BdG
equations [8]). They applied a double-coarse-graining procedure to the equation, assuming
that the magnitude of the order parameter |∆(r)| varied on a larger length scale than
that where the gradient of its phase varied. Doing so, they obtained a highly non-linear
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integral equation for ∆(r), which allows for the investigation of systems with interfaces
with no a priori assumption on the boundary conditions (see for example [9]). Performing
a further approximation on that equation, which was dubbed NLPDA (Non-Local Phase
Density Approximation) [10], they obtained a highly non-linear second-order differential
equation for ∆(r) named LPDA, for it entails a Local Phase Density Approximation. Ar-
riving eventually at an equation like this one has been a long standing problem [11–13].
This equation could in principle be applied in any region of the coupling-temperature
phase diagram (in fact, it reduces to the Ginzburg–Landau [14] and Gross–Pitaevskii [15]
equations in the appropriate limits), thereby allowing for faster results than BdG (a factor
of 105 was estimated in ref. [10] when investigating the isolated vortex problem) with no
a priori limitation in that regard (as instead is for Usadel or Eilenberger equations). The
only inherent limitation of the LPDA approach is linked to the coarse-graining procedure
itself: in ref. [10], it was established that the granularity size is of the order of the Cooper
pair size ξpair, therefore limiting the reliability of LPDA results at low temperature in the
BCS (Bardeen–Cooper–Schrieffer) limit, where ξpair is of the same order of the healing
length ξphase (which, by definition, corresponds to the length scale over which the order
parameter varies).

In addition, we recall that BdG equations rely on a mean-field decoupling which is
expected not to be valid at finite temperature not only in the BEC (Bose–Einstein condensa-
tion) limit but also at unitarity, where the Cooper pair size is of the same size as the mean
interparticle distance. As a consequence, in that region of the coupling-temperature phase
diagram, the outcomes of the LPDA equation, as well as the NLPDA equation, are not
quantitatively reliable. For this reason, in ref. [16], we developed the mLPDA approach,
where pairing fluctuations at the level of the non-self-consistent t-matrix approximation
are added directly to the LPDA equation in order not to lose its inherent numerical ad-
vantages with respect to the BdG. This inclusion allows for an improvement in both the
pairing gap [17] and critical temperature [18] with respect to the mean-field estimations.
The mLPDA approach was validated in ref. [19], where it was applied to investigate the
experimental systems realized in refs. [20,21], obtaining good quantitative agreement with
the experimental data for the Josephson critical current both at low temperature for various
couplings across the BCS-BEC crossover and at unitarity for T varying from 0 to the critical
temperature Tc.

In this work, we provide an overview of the NLPDA, LPDA, and mLPDA approaches
and summarize the most significant results we obtained when investigating the Josephson
effect. The usefulness of these methods, apart from the significant speedup in the calcula-
tions with respect to BdG equations, relies on the fact that the only underlying assumption
is the smoothness of the gap profile, and for this reason, they can be applied to the whole
coupling-temperature phase diagram in the broken-symmetry phase with no limitations.
In particular, the mLPDA approach, allowing for the description of inhomogeneity and
pairing fluctuations in a superfluid system within a single approach and with no need of
external parameters, poses itself as a powerful method to investigate a plethora of physical
mechanisms, such as the intrinsic depairing limit of the critical current in superconduc-
tors [22,23], the paraconductivity probed by the Josephson effect [24], the giant Proximity
effect in high-Tc superconductors [25,26], and the combined features of Proximity [27] and
Josephson [28,29] effects in a SNS junction.

The paper is organized as follows. Section 2 introduces the NLPDA, LPDA, and
mLPDA approaches, Section 3 presents the main numerical results obtained, and Section 4
provides our conclusions. Throughout the paper, we consider balanced spin populations
and set h̄ = 1.

2. Theoretical Approach

In this section, we briefly summarize the main features of the NLPDA, LPDA and
mLPDA approaches. Both the specific form of the equations used when investigating
Proximity and Josephson effects and the details of the numerical procedures can be found
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in the original works [9,16,30]. Here, instead, we intend to provide an overview of these
approaches focusing on their building blocks, pointing out, at the same time, the main
motivations for their development.

Throughout this work, we will span the BCS-BEC crossover using the dimensionless
coupling parameter (kFaF)

−1, where aF is the scattering length of the two-fermion problem,
and kF = (3π2n)1/3 is the Fermi wavevector associated with (uniform) particle density n.
In the weak-coupling (BCS) regime, aF < 0 and the coupling parameter (kFaF)

−1 ≤ −1,
while in the strong-coupling (BEC) regime, aF > 0 and (kFaF)

−1 ≥ +1, across the unitary
limit where |aF| diverges and (kFaF)

−1 = 0.

2.1. The NLPDA Approach

The NLPDA equation for the local order parameter, as derived in ref. [7], reads

− m
4πaF

∆(r) =
∫ dQ

π3 e2iQ·r∆(Q)KA(Q|r), (1)

where ∆(Q) is the Fourier transform of ∆(r), and the kernel KA(Q|r) is defined by

KA(Q|r) ≡
∫ dk

(2π)3

[
1 − 2 fF(EA

+(k; Q|r))
2EA(k; Q|r) − m

k2

]
, (2)

where m is the fermion mass, fF(E) = (eE/(kBT) + 1)−1 the Fermi function at temperature
T (kB being the Boltzmann constant), and

EA
±(k; Q|r) ≡

√(
k2

2m
+

Q2

2m
− µ̄(r)− A(r)

m
· Q

)2

+ |∆(r)|2 ± k
m

· (Q − A(r)), (3)

2EA(k; Q|r) ≡ EA
+(k; Q|r) + EA

−(k; Q|r), (4)

where µ̄(r) ≡ µ − V(r)− A2(r)/(2m) is the local chemical potential (where V is a single-
particle external potential, and A is the vector potential). The thermodynamical chemical
potential µ is obtained by supplementing the NLPDA equation with the density equation

n(r) =
∫ dk

(2π)3

{
1 − ξA(k|r)

EA(k|r)

[
1 − 2 fF(EA

+(k|r))
]}

, (5)

where

ξA(k|r) = k2

2m
− µ(r) +

1
2m

(∇φ(r)− A(r))2,

EA(k|r) =
√

ξA(k|r)2 + |∆(r)|2,

EA
+(k|r) = EA(k|r) + k

m
· (∇φ(r)− A(r)),

(6)

where µ(r) = µ − V(r) and φ(r) is the phase of the order parameter (∆(r) = |∆(r)|eiφ(r)).
In ref. [9], Equations (1) and (5) are simultaneously solved for an infinite homogeneous

SN interface by setting A(r) = 0 and letting the scattering length change across the interface.
The coupling parameter varies from (kFaF)

−1
L on the far left of the system to (kFaF)

−1
R to

the far right. The critical temperatures associated with those couplings satisfy the relation
TL

c > TR
c so that in the temperature interval [0, TR

c ], the whole system is superfluid, while
for T in [TR

c , TL
c ], the right region is normal. In that work, we obtain the penetration depth

ξN , which describes the length scale over which the order parameter penetrates into the N
region, at various temperatures in the interval [0, Tc] and for different combinations of the
couplings (kFaF)

−1
S and (kFaF)

−1
N , extending the validity of the results obtained in ref. [31].

However, in the theoretical approach, an important feature is missing, namely, the flow of
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a superfluid current. In condensed matter experiments, indeed, a well-known procedure
to obtain the penetration depth is to measure the critical current Ic for various widths of
the N region of an SNS junction (see, for example, ref. [28]). The physical constraint of the
continuity equation is difficult to implement within the NLPDA approach from a numerical
perspective, due to the non-locality of the equation, but it is needed when investigating
superfluid currents. Accordingly, we resort to the LPDA approach.

2.2. The LPDA Approach

The LPDA equation is obtained expanding the kernel in Equation (2) in powers of Q
up to the quadratic order [7] and reads

− m
4πaF

∆(r) = I0(r)∆(r) + I1(r)
∇2

4m
∆(r)− I1(r)i

A(r)
m

· ∇∆(r), (7)

with the notation

I0(r) ≡
∫ dk

(2π)3

[
1 − 2 fF(EA

+(k|r))
2E(k|r) − m

k2

]
, (8)

I1(r) ≡
1
2

∫ dk
(2π)3

{
ξ(k|r)

2E(k|r)3 [1 − 2 fF(EA
+(k|r))] +

ξ(k|r)
2E(k|r)2

∂ fF(EA
+(k|r))

∂EA
+(k|r)

− k · A(r)
A(r)2

1
E(k|r)

∂ fF(EA
+(k|r))

∂EA
+(k|r)

}
. (9)

When considering a superfluid flow, the vector potential A(r) entering Equation (7)
formally plays the role of an “effective” vector potential, and its physical meaning differs
from that in classical electrodynamics. For this reason, we identify A(r) with a constant
wavevector −q. As a consequence, in the presence of an inhomogeneity, such as, for exam-
ple, a barrier, the phase of the order parameter solution of the LPDA equation can be written
as φ(r) = 2q · r + 2ϕ(r), where the term 2ϕ(r) develops because of the inhomogeneity in
the system. Within the LPDA approach, the expression for the local current density is

j(r) =
1
m
(q +∇ϕ(r))n(r) + 2 ∑

k

k
m
Gmf

11 (k; q | r), (10)

where n(r) is the local density (5), and Gmf
11 (k; q | r) is the single-particle finite-temperature

Green’s function in the mean-field approximation (see ref. [16] for further details).
In ref. [30], we use the LPDA approach to investigate the effects of a potential barrier

embedded by an otherwise homogeneous superfluid system. In particular, we develop a
numerical procedure to efficiently solve the real part of Equation (7), superimposing at the
same time the current conservation, i.e., the continuity equation, using the expression (10)
(see the Appendix of ref. [30]). In that work, we determine the Josephson critical current Jc
for barriers of different geometries, for various couplings across the BCS-BEC crossover, and
at different temperatures. The results obtained in that work, the Josephson characteristics,
the order parameter profiles, and the temperature dependence of the Josephson critical
current, are in good qualitative agreement with the results of previous theoretical [29,32–35]
and experimental [28,36–38] works on Josephson junctions. However, those results are
expected not to be quantitatively reliable in the region of the coupling-temperature phase
diagram, where the mean-field decoupling, on which BdG (and as a consequence, the LPDA
approach) relies, is not valid. For this reason, in the subsequent work [16], we develop the
mLPDA approach.

2.3. The mLPDA Approach

We develop the mLPDA approach, including the effect of pairing fluctuations at the
level of the non-self-consistent t-matrix approximation in a minimal albeit essential way
directly on top of the LPDA approach. Accordingly, we retain the self-consistent equation
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for the gap parameter (7) and replace the expressions for the local density (5) and for the
local current density (10) with the following ones

n(r) = 2kBT ∑
n

eiωnη
∫ dk
(2π)3 G

pf
11(k, ωn; q | r), (11)

j(r) =
1
m
(q +∇ϕ(r))n(r) + 2kBT ∑

n
eiωnη

∫ dk
(2π)3

k
m
Gpf

11(k, ωn; q | r), (12)

where ωn = (2n + 1)πkBT (n integer) is a fermionic Matsubara frequency and η a positive
infinitesimal. The Green functions Gpf

11 entering these expressions are evaluated by means
of the replacement µ(r) = µ − V(r) in the spirit of a local density approach. Their explicit
form can be found in ref. [16], where they are obtained by generalizing the expression of
the t-matrix propagator in the presence of a stationary flow of momentum q.

This approach has been used to investigate the role of pairing fluctuations in the
Josephson effect and has been validated against the experimental data for the Josephson
critical current of refs. [20,21]. The main results of this investigation are briefly presented
in the next section.

3. Results

In the first part of this section, we briefly present the results we obtained when
investigating the superfluid flow with associated momentum q = qx̂ in a SsS slab geometry
where the superfluid is homogeneous along the y and z directions orthogonal to the
superfluid flow and extends to infinity on both sides of the Gaussian barrier

V(r) = V0 exp
(
− x2

2σ2

)
(13)

with V0/EF = 0.1 (EF being the Fermi energy) and kFσ = 2.5.
The second part of this section is instead devoted to the investigation of the experimen-

tal systems realized in refs. [20,21], where two superfluid reservoirs of ultracold trapped Li
atoms are coupled through a repulsive barrier of the form

V(r) = V0(z) exp
(
−2

x2

w(z)2

)
, (14)

with

V0(z) = V0

/√
1 +

(
z

zR

)2
and w(z) = w

√
1 +

(
z

zR

)2
,

where zR = πw2/λ is the Rayleigh range of the laser (λ being its wavelength) used to
generate the repulsive barrier.

3.1. Case of Study: Homogeneous Superfluid

When investigating the Josephson effect, we are mainly interested in determining the
Josephson critical current Jc. In order to do that, we solve the mLPDA equation for different
values of q, and for each of them, we obtain the profile of the order parameter (both its
phase and magnitude) which preserves the current density. In this way, evaluating the
asymptotic phase difference δϕ across the barrier (13), we are able to draw the Josephson
characteristic J(δϕ) [29,39] and identify its maximum with the critical current Jc. Typical
outcomes of this procedure are shown in Figure 1, where we report, for selected points
of the Josephson characteristic, the corresponding order parameter and density profiles
(matching colors). These profiles refer to the region x > 0 since, on physical grounds, we
expect the profile of the magnitude of the order parameter to be symmetric, and that of the
phase to be antisymmetric.
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Figure 1. (a) Current vs. phase Josephson characteristic for a unitary homogeneous superfluid
at T = 0.15Tc embedding the barrier (13). The current density J is normalized to JF = kFn/m.
Corresponding profiles (matching colors) (b) of the magnitude of the order parameter normalized to
the bulk value, (c) of the phase of the order parameter and (d) of the density normalized to the bulk
(homogeneous) value. [Reproduced from Figure 3 of ref. [16]].

We apply this procedure to superfluids at different temperatures and for coupling
spanning the BCS-BEC crossover. In this way, we investigate the dependence of the critical
current Jc on coupling and temperature separately but also determine the role of pairing
fluctuations by comparing the Josephson critical currents obtained solving the LPDA and
mLPDA equations when considering the same physical system. In Figure 2, we show this
comparison both at low temperature for coupling spanning the BCS-BEC crossover (panel
(a)) and at representative couplings for T ranging from 0 to Tc (panels (b–d)). Looking at
panel (a), we note that LPDA and mLPDA return at low temperature the same qualitative
dependence on coupling for the Josephson critical current; however, the inclusion of pairing
fluctuations lowers the values of Jc. This feature reverses when increasing the temperature
as it can be seen in panels (b–d) of Figure 2. Moreover, we note that, while the LPDA
approach predicts the same qualitative dependence of the Josephson critical current on
temperature, the mLPDA returns a curve which passes from being convex to concave going
from the BCS to the BEC limit of the crossover, across an essentially linear behavior at
unitarity. This temperature dependence is shared by the critical velocity of superfluid 4He
(see Figure 12 of ref. [40]), extending de facto the parallelism noted over the years between
these two systems [41,42].

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

�0.6�0.4�0.2  0  0.2  0.4  0.6

(a)

J c
/J

F

(kFaF)
-1

T/Tc=0.1

LPDA
mLPDA

0

0.05

0.1

0.15

0.2

 0  0.2 0.4 0.6 0.8

(b)

J c
/J

F

T/Tc

(kFaF)
-1=-0.5

LPDA
mLPDA

 0  0.2 0.4 0.6 0.8

(b)(c)

T/Tc

(kFaF)
-1=0.0

LPDA
mLPDA

 0  0.2 0.4 0.6 0.8  1

(d)

T/Tc

(kFaF)
-1=0.5

LPDA
mLPDA

Figure 2. (a) Comparison of the results for the Josephson critical current vs. coupling at T/Tc = 0.1
for the barrier (13) obtained solving the LPDA (orange squares) and mLPDA (green dots) equation.
When solving the LPDA equation, the critical temperature Tc is evaluated using the mean-field ap-
proximation, while when applying the mLPDA approach, it is evaluated using the non-self-consistent
t-matrix approximation. For comparison, the ascending and descending black lines represent the
pair-breaking and phonon branch, respectively, of the Landau critical velocity throughout the BCS-
BEC crossover. (b–d) Josephson critical current vs. temperature for three representative couplings
across the BCS-BEC crossover as obtained within the LPDA (squares) and mLPDA (dots) approaches.
[Reproduced from Figures 4 and 5 of ref. [16]].



Condens. Matter 2024, 9, 41 7 of 10

3.2. Case of Study: Trapped Ultracold Atoms

A main result of the present work, with the ensuing validation of the mLPDA approach,
is the quite good agreement obtained with the recent experimental measurements of the
critical current both as a function of coupling [20] and temperature [21]. In both the
experiments, the physical system consists of N Li atoms confined by means of a cigar-
shaped harmonic potential. The trapping frequency ωx is considerably smaller than ωy and
ωz so that the atomic cloud acquires an ellipsoidal shape. The latter is further affected by
the superimposition of two hard-wall potentials (homogeneous along the y and z directions)
at ±xw, which ensure the stability of the system and reduce the atoms from N to Nw. The
potential barrier (14) is moved with different velocities along the x axis, starting from the
center of the atomic cloud, in order to infer its critical current.

When evaluating the critical current to compare with the experimental data, we
adopt some approximations. We treat the trapping potential within the local density
approximation, neglect ωx since the barrier spans only the central region of the atomic
cloud, and assume the current density lines to be straight. As a consequence, upon dividing
the atomic cloud in tubular filaments, we evaluate the critical current Ic as the maximum of
the Josephson characteristic I(δϕ) of the whole system, obtained by integrating the local
characteristics J(δϕ) of the filaments.

In Figure 3, we show the mLPDA results and experimental data for the Josephson
critical current. Panels (a–c) report Ic as a function of coupling for three different heights of
the barrier (14), while panel (d) shows the temperature dependence of the critical current at
unitarity. The shaded green area in panels (a–c) correspond to the experimental uncertainty
on the physical quantities involved in the simulation. The orange squares, representing
the results obtained solving LPDA equations, are also reported for comparison. The first
three panels of Figure 3 show that the qualitative behavior of the experimental data for
Ic at low temperature is well reproduced even at the LPDA level, but the inclusion of
pairing fluctuations is fundamental to obtain a quantitative agreement. Furthermore, the
good agreement between the mLPDA predictions and experimental data for the Josephson
critical current at unitarity (see panel (d)) validates the mLPDA approach even at higher
temperatures.
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Figure 3. (a–c) Comparison between the theoretical results (the orange squares and the green dia-
monds represent the LPDA and mLPDA outcomes, respectively) and the experimental data (blue dots)
for the Josephson critical current vs. coupling at low temperature. In the upper right of each panel,
the height of the barrier is reported in units of the trap Fermi energy Et

F = (6Nωxωyωz)1/3. The asso-
ciated wavevector kt

F allows for the definition of the normalization current It
F = kt

F
∫

dy dz n(xw, y, z).
(d) Comparison between the theoretical results (green diamonds) and the experimental data (blue
dots) for the Josephson critical current at unitarity as a function of temperature. The trap critical tem-
perature Tt

c is evaluated in the self-consistent [43] (non-self-consistent [18]) t-matrix approximation
when normalizing the experimental (theoretical) temperatures. [Reproduced from Figures 3 and 4 of
ref. [19]].
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4. Discussion

In this work, we reviewed three different approaches which can be employed when
investigating inhomogeneous superfluid systems. The NLPDA approach is a convenient
choice when the boundary conditions due to the presence of interfaces in the system are
not known. On the other hand, at the cost of a further approximation, the LPDA is an easier
equation to handle and returns reliable results at the mean-field level as long as the size
of the inhomogeneity is larger than ξpair. To conclude, the mLPDA approach poses itself
as a good candidate when one plans to investigate systems with non-trivial geometrical
constraints and to consider at the same time the effect of pairing fluctuations.

In the near future, we envision investigating the Josephson effect in an SNS slab
geometry, allowing for the coupling to change with the spatial variable. In this regard, the
inclusion of pairing fluctuations could play a key role in reproducing the features of the
temperature dependence of the experimental data for the critical current (see Figure 1 of
ref. [28]). Indeed, the identification between the Josephson critical current with the critical
intrinsic current at the center of the Gaussian barrier (13) in ref. [44] suggests that the
different qualitative temperature dependencies of the critical current along the BCS-BEC
crossover (see Figure 2), obtained within the mLPDA approach, could be the key aspect to
reproduce the change in slope in Figure 1 of ref. [28].
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