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Abstract: The emergence of a charge density wave (CDW) in transition-metal dichalcogenides opens
up a route to charge order, followed by superconductivity at low temperatures. A key question here
concerns how many particle electron–electron interations govern the low-energy electronic structure
in the normal and CDW states. Using dynamical mean-field theory, we explore the many-body
properties of an extended, two-band Hubbard model applicable to 2H-TaSe2. We reveal the electronic
structure reconstruction in the normal and CDW states driven by two-band dynamical correlations.
Our results demonstrate a remarkable renormalization of the Ta-5d bands crossing the Fermi level,
showing a continuous reduction in the CDW gap up to an incomplete gapping, followed by a CDW
to a CDW–Mott phase transition pertinent to strongly correlated transition-metal dichalcogenides.
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1. Introduction

The relationship between the dimensionality of a lattice and the correlation between
electrons is a long-standing issue in the fields of condensed matter and material physics,
particularly in regard to the emergence of diverse quantum phases. A correlated electron
system is defined by the presence of significant to pronounced many-particle Coulomb
interactions between electrons, which give rise to a distinct set of physical properties that
are not observed in a weakly interacting electron system. The most significant consequence
of electron correlation is the Mott metal–insulator transition [1–3], which occurs when a half-
filled paramagnetic metal is converted into a correlated insulator when the on-site Coulomb
interaction, U, exceeds the bare bandwidth, W (i.e., the effective Coulomb interaction to
bandwidth U/W ratio). Consequently, following decades of fundamental and applied re-
search, it has been established that the impact of electron–electron interactions in correlated
electron systems is contingent upon the ratio of energy scales between U and W. In the limit
of small U/W, the electronic properties are predominantly governed by electron hopping and
electron–phonon interactions [4]. Conversely, when U/W ≈ 1, electron–electron interactions
become a dominant factor, and in the limit of large U/W, the double occupancy of electrons
on a single site is prohibited [5]. This results in a Mott insulating state at half-filling [1–3],
which could lead to the emergence of novel electronic states such as superconductivity
(unconventional or not) upon external perturbations [6–13]. Interesting examples in this
context are the transition-metal dichalcogenides (1T, 2H)-MX2 (M = Ta X = S,Se), which
are considered to be systems with similar U and W energy scales [14–17]. As common
to this material class, charge density wave (CDW)-phase instabilities [17–21] coexisting
with superconductivity [21–23] emerge at low temperatures (T). Interestingly, while the
low-T commensurate CDW phase of 1T-TaS2 is considered to be a Mott insulator [24,25]
because of the half-filling insulating behavior [12,26–29], the monolayer 1T-TaSe2 shows a
CDW–Mott phase transition around 530 K [17], which has also been reported for heteroge-
neous Ta-dichalcogenide bilayers [30]. Also noteworthy is that both the commensurate and
incommensurate CDW phases lead to incomplete gapping or pseudogapped electronic ex-
citations at low energies [21,22,31–33] similar to that observed in high-TC cuprates [34–37]
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due to their proximity to Mottness [38]. Motivated thereby, here, we show the emergence
of a pseudogap regime as the precursor to the CDW–Mott phase [17] in a two-band (T B)
model relevant to 2H-TaSe2 [39].

In recent decades, transition-metal dichalcogenides have been the subject of extensive
study due to the intrinsic electronic properties resulting from the interplay between the
lattice structure, CDW ordering, disorder, and electron–phonon and electron–electron
correlation effects. These effects have been the subject of numerous studies, as evidenced by
the extensive literature on the topic [17,20,21,24,25,28,29,31,39–48]. These systems have a
layered structure, and they are characterized by the formula MX2; M represents a transition
metal ion (M = Ti, Zr, Hf, V, Nb, Ta, Mo, W, and Re), while X denotes a chalcogen atom
(X = S, Se, Te) [18,37]. Each layer is constituted by a hexagonal transition-metal sheet
sandwiched between two analogous chalcogen layers, which are coupled to each other via
weak van der Waals (vdW) forces. Within the layers, they form-bonded, two-dimensional
X − X layers, while M has either trigonal prismatic or octahedral coordination with X [22].
In some of these systems, the induction of superconductivity can be achieved through the
intercalation of a variety of elements into the van der Waals gaps [8–10], the application of
pressure [11,12], or the application of gate voltages [13]. Importantly, the electronic phase
diagram, as a function of external perturbations like chemical doping or pressure, is analogous
to those of high-TC cuprates, as well to some iron-based superconductors, suggesting the
role of Mottness in the emergence of superconductivity at a low T in these vdW systems.
However, the physical origin for stabilizing the pseudogapped state [21,22,31–33], which is
the precursor to the CDW–Mott [17] phase, has not been well understood, and this is one
of our focuses here.

Similar to cuprates and some Fe-based superconductors, the 2H-polymorph TaSe2
shows a strange metal, T-linear resistivity [22] in the normal state at a high T, which enters
into an incommensurate CDW phase at a T close to 122 K, followed by a transition to a com-
mensurate CDW phase near to 90 K [49,50]. Angle-resolved photoemission spectroscopy
(ARPES) and optical spectroscopy data suggest the presence of a low-energy pseudogap for
T above 122 K, similar to that observed in high-TC cuprates and Fe-based superconductors.
Notably, from room-T down to the CDW-phase transition, the resistivity of Pd-intercalated
2H-TaSe2 [22] and 2H-TaSe1−xSx [23] systems decreases nearly linearly with T [22], a char-
acteristic akin to the strange-metal phase in which the resistivity varies linearly over a broad
T range [51]. Upon entering the CDW phase, the resistivity shows a Fermi liquid (FL)-like
T2 dependence at a low T [22], implying the importance of self-energy corrections [20] in
the CDW phase. Therefore, clarifying the role of electron correlations [17,46,52] in the deli-
cate balance between the CDW and non-CDW phases is necessary. Motivated by this and
the fact that 2H-TaSe2 is considered to be a promising material for nano-electronic devices,
as well as a material for flexible, two-dimensional (2D) optoelectronic applications [53], in
this work, we derive the electronic properties of a T B [39] extended Hubbard model similar
to that proposed for bilayer cuprate superconductors [54], showing the role of dynamical
correlations in the non-CDW and CDW ordered states of 2H-TaSe2. Our results are relevant
to understanding the electronic structure modification that could result in the creation of
BCS-like s-wave [33] superconductivity at a low T, as well as the emergence of CDW–Mott
localization [22] in the vicinity of a correlation-induced quantum phase transition [2].

2. Theory and Results

Based on Ref. [39], the two-band (T B) tight-binding model considered in this work
reads as

HTB(k) = f (t0, t1, t2; k)σ0 + f (t̃0, t̃1, t̃2; k)σx , (1)
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where σ0 is a (2 × 2) identity matrix, σx is the x Pauli matrix, a = 3.43 Å is the lattice
constant of 2H-TaSe2, t0 = 0.113 eV is the Ta on-site energy, t̃0 = 0.184 eV is the direct
interlayer coupling, and t1 = 0.073 eV (t̃1 = 0.029 eV) and t2 = 0.142 eV (t̃2 = 0.038 eV)
are the nearest- and next-nearest intralayer (interlayer) couplings. In Ref. [39], the one-
particle parameters were fixed using a hybrid approach that fits the tight-binding (TB)
model to the ARPES data below the Fermi level (EF) and density functional theory (DFT)
calculations above it. It is noteworthy that, while the f × σ0 contribution to HTB(k) (in
Equation (2)) stands for the diagonalized band dispersion, εa(k), of the a ( ̸= b) = 1, 2 bands,
the f × σx term in HTB(k) corresponds to a non-local, k-dependent hybridization [55–57]
(here denoted as V(k)) between the two a-bands of 2H-TaSe2 crossing EF, as reported in
Ref. [39]. Finally, we shall mention here that, according to the ARPES data of Ref. [39],
the dispersions εa(k) are split by an energy ∆ of the order of 0.15 eV; thus, in our study,
we set ε1(k) = ∆ + ε2(k). These are the relevant one-particle inputs to T B+DMFT [54],
which generates a strongly renormalized T B electronic state due to correlation and CDW
effects. The local (U, U′) and non-local (V) interactions of 2H-TaSe2 are contained in
Hint = U ∑i,a ni,a,↑ni,a,↓ + U′ ∑i,a ̸=b ni,ani,b + V ∑i ̸=j ninj. Here, the indices i run over the
lattice sites in the a, b = 1, 2 bands. U and U′ are the on-site intra- and inter-band Coulomb
interactions and V is the nearest-neighbor Coulomb repulsion, all responsible for the many-
particle electronic structure reconstruction in the extended (V ̸= 0) T B Hubbard model
considered here for 2H-TaSe2: without a loss of generality, here, we set U′ = V = 0.8U.
Finally, as in earlier works [54,58,59], we decouple the intersite Coulomb interaction term
of Hint in the Hartree approximation, which is exactly under the large D limit [5].

Inspired by earlier theory studies on bilayer cuprates [55,60,61], in this work, we
consider an extended T B Hubbard model [54] for 2H-TaSe2 using hopping integrals
introduced in Ref. [39] for the parent compound, as described above. We evaluate the
retarded, one-particle Green’s functions

Ga,σ(ω, k) =
[

ξa,σ(ω)− εa(k)−
V2(k)

ξb,σ(ω)− εb(k)

]−1

, (2)

where ξa,σ(ω) ≡ ω + iη − Σa,σ(ω + iη) [62], of the hybrid T B system at zero T and real
frequencies using the T B [62] iterated perturbation theory as an impurity solver for DMFT.
The detailed formulation of this algebraic DMFT solver for correlated electron systems has
been introduced in the context of real materials with different charge, orbital, and spin
degrees of freedom (see Refs. [63,64]). It has also been used to study the evolution of the
one-particle spectra of the periodic Anderson model with the incorporation of inter-band
Coulomb correlations [62]. Therefore, we do not repeat the equations here. It should be
noted, however, that this interpolative ansatz is based on second-order perturbation theory,
which takes into account all dynamical scattering processes arising from intra- and inter-
band Coulomb interactions in a self-consistent manner. Furthermore, for the sake of clarity,
it should be noted that, in the T B Hubbard model, the one-particle Green’s functions of
each band are coupled via the inter-band (inter-orbital in the multi-orbital case) Coulomb
interaction U′, as well as the k-dependent interband hybridization V(k) [55–57]. In general,
our formalism can be regarded as an extension of the periodic Anderson model [5], in which
the two channels are dispersive and subject to on-site electron–electron interactions, which
are proximitized [65] by k-dependent interband hopping integrals [39]. As demonstrated
below, the integration of realistic T B [39] inputs with multi-particle, many-body effects [5]
provides a comprehensive account of the electronic properties of 2H-TaSe2 in both the
normal and CDW states.
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Let us now discuss our T B and T B+DMFT results. We begin by considering the many-
body Hamiltonian H = HTB(k) + Hnt within the normal, non-CDW ordered state. In this
regime, the two non-equivalent CDW sites A, B of the bipartite (2 × 2) superlattice [39]
considered here will have the same electronic structures and the total on-site band fillings
n = nA = nB. In Figure 1, we show the TB-based electronic state at U = 0.0 eV. Several
features are noteworthy in this limit. Due to finite band splitting ∆ [39], the unperturbed
density of states (DOS) shows different lineshapes, with band two being more populated
as compared to the higher-energy band, as shown in the lower and upper panels of
Figure 1, respectively. From the band-resolved DOS up to the Fermi level (EF = ω = 0.0),
we obtain n2,σ = 0.56 and n1,σ = 0.44, which would correspond to half-filled bands at
∆ = 0.0, i.e., one electron per band. Also notably, in the bare T B DOS is the particle-
hole asymmetry characteristic TB models with sizable nearest and next-nearest neighbor
hopping integrals [54], an aspect consistent with extant band structure calculations for
2H-TaSe2 [14]. Also interesting in the bare DOS of Figure 1 is the van Hove-like peak at
0.52 eV, binding energy in ρ2,σ(ω)[= − 1

π Im ∑k G2,σ(ω, k)], and the valence band edge,
which almost coincides with that reported in Ref. [14], providing support for the TB
model proposed in Ref. [39]. It is also noteworthy that the local spectral functions ρa,σ(ω)
undergo changes with an increasing on-site Coulomb interaction, U, in the non-CDW limit,
as illustrated in Figure 1. As can be observed in the main panel of Figure 1, the results
presented correctly reproduce the expected behavior for the correlated spectral functions
within the DMFT approximation. Of particular interest are the emergence of the lower
(LHB) and upper (UHB) Hubbard bands at high energies and the Kondo–quasiparticle
resonances [5] near EF, which narrow with an increasing U. Furthermore, as a result
of particle-hole asymmetry and the interplay between sizable U, U′, and V, the pinning
of the correlated spectral function to its bare value at EF [5] obtained for the one-band
Hubbard model is no longer valid in the extended T B Hubbard model of 2H-TaSe2. This
occurs despite the fact that the self-energy imaginary parts show ω2 dependence, which is
characteristic of good FL metals [5], as can be seen in the right insets of Figure 1. However,
in accordance with previous research [54,55,66], the non-CDW state of the extended T B
Hubbard model exhibits a significant influence of many-body effects on the U = 0.0 DOS,
resulting in a notable transfer of spectral weight from low to high energies and a discernible
ω-dependence in the self-energy real and imaginary parts, as seen in Figure 1.

Let us now elucidate the evolution of the electronic structure of the correlated spectral
function of 2H-TaSe2 by focusing on the total DOS [ρtotal(ω) = ∑a,σ ρa,σ(ω)]. To this end,
we have obtained the total DOS for two U values, as shown in Figure 2. As anticipated
within the framework of the dynamical mean-field theory (DMFT) [5], the narrowing of the
coherent Kondo-quasiparticle resonance is attributed to dynamical correlations, which also
result in the enhancement of the Hubbard satellites due to the increased dynamical transfer
of spectral weight with an increasing U. Of particular interest is the peak deep hump
observed in the DFT+DMFT total DOS below EF, as illustrated in the main panel of Figure 2.
This finding aligns well with the energy-distribution curve (EDC) reported in Ref. [17],
where the EDC curve of the pristine 1T-TaSe2 at the Γ point displays a comparable behavior,
exhibiting a deep binding energy of approximately 1.0 eV, as illustrated in Figure 2. It is also
noteworthy that the peak positions of the low-energy Kondo-quasiparticles blueshift [67,68]
with an increasing U, a behavior associated with dynamical changes in the correlated
spectral functions. Furthermore, the inset of Figure 2 presents a direct comparison between
ρtotal(ω) and EDC curves [32] obtained at T = 290 K, which corresponds to the non-
CDW ordered state of 2H-TaSe2. As can be observed, our results for a U between 2.0
and 2.5 eV provide a qualitative account of the main lineshape seen in the EDC curves
of Ref. [32], particularly in terms of the energy position of the shoulder features and the
depth of the EDC below 0.1 eV binding energy. This provides support for our modeling
and parameter choice.



Condens. Matter 2024, 9, 42 5 of 11

-3.0 -2.0 -1.0 0.0 1.0 2.0

ω (eV)

0.0

0.5

1.0

1.5

ρ
2

,σ
(ω

)

0.0

0.5

1.0

1.5

2.0

ρ
1

,σ
(ω

)

U=0.0 eV

U=1.5 eV

U=2.0 eV

U=2.5 eV

-3 -2 -1 0 1 2 3

ω (eV)

-6

-4

-2

0

2

4

R
e
Σ

2
(ω

)

-3 -2 -1 0 1 2 3

ω (eV)

-6

-4

-2

0

2

4

R
e
Σ

1
(ω

)
-3 -2 -1 0 1 2 3

ω (eV)

-6

-4

-2

0

Im
Σ

2
(ω

)

-3 -2 -1 0 1 2 3

ω (eV)

-6

-4

-2

0

Im
Σ

1
(ω

)

Figure 1. Local spectral functions for the extended two-band Hubbard model as a function of the
on-site Coulomb repulsion U in the normal, non-CDW ordered state. Notice the particle-hole asymmetry
of U = 0.0 eV density of states (DOS), the emergent Hubbard bands at a finite U, and the Kondo-
quasiparticle resonances at low energies. The inset diplays the energy dependence of the self-energy
real (left panels) and imaginary (right panels) parts for the two-band model of 2H-TaSe2, showing ω2

dependence of ImΣα,σ(ω) near the Fermi energy (EF = ω = 0), a fingerprint of a Fermi liquid metal.
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Figure 2. U-dependence of the total DOS within the non-CDW phase of 2H-TaSe2. Notice the
enhancement of the Hubbard bands and the narrowing of the Kondo-quasiparticle resonance at
high and low energies, respectively, induced via the dynamical transfer of spectral weight with an
increasing U. The inset displays a theory-experiment comparison between the total DMFT DOS
and energy-distribution curves (EDC) in the normal state along the Γ (dots), K (squares), and M
(diamonds) cuts in momentum space taken from Ref. [32].
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To provide additional insights into the T B electronic structure reconstruction 2H-
TaSe2, we have extended our DMFT Green’s function formalism above (see Equation (2)) to
incorporate the CDW degree of freedom. For the sake of simplicity, we consider here the
(2 × 2) CDW ordered state, [39] where, similar to an antiferromagnetic spin-density wave
(SDW) state [69], the four-component lattice Green’s functions relevant to 2H-TaSe2 can be
written as

Ga,γ,σ(ω, k) =
[

ξa,σ(ω)− ε2
a(k)

ξγ̄,σ(ω)
− V2(k)

ξb,γ,σ(ω)− εb(k)

]−1

, (3)

where γ( ̸= γ̄) = A or B labels the sublattice [70] of the (2× 2) CDW-induced superlattice [39].
In the main panel of Figure 3, we show the correlated spectral functions that emerge

when considering a (2 × 2) charge ordering state [39] and U = 2.0 eV as a representative
Coulomb interaction parameter value. To derive the CDW ordered state, we consider
polarized site-resolved band fillings as the starting point towards fully self-consistent
DMFT calculations, where the site B site is set to be more populated with 1.4 electrons per
spin, as compared to the A site, where nA = 0.6. As seen, the correlated spectral functions
display site differentiation as compared to the non-CDW state where the spectral functions
of sites A and B coincide. In spite of the small changes between the correlated A and B
DOS in the CDW ordered state as a result of strong dynamical, particle-hole scattering
processes induced via U and U′, an energy gap opening associated with the occurrence of
CDW [71–74] spans near EF, resulting in the splitting of the Kondo–quasiparticle resonance
into two narrow peaks for all spectral functions. Notably, a similar effect also takes place at
high energies where the Hubbard bands also split into two branches. Also remarkable in
Figure 3 is the stability of the self-energy real and imaginary parts against CDW, suggesting
that the CDW state emerges as a result of one-particle nesting [17,71,72] due to the bipartite
lattice structure of the (2 × 2) CDW order.

In this study, we further examine the impact of additional electron–electron interaction effects
induced via dynamical many-particle correlation effects on the pseudogapped [21,22,31–33] state of
the T B system. In contrast to the approach taken in Refs. [17,47], where different U values
were considered for transition-metal dichalcogenide systems, Figure 4 presents the results
obtained for U/W from 0.8 up to 1.07. Given that U′ scatters electrons with opposite and
equal spins, which significantly enhances electron–electron correlation effects, in Figure 4,
we commence by presenting our results for the total DOS, ρtotal(ω) = 1

2 ∑a,γ,σ ρa,γ,σ(ω),
for U = 2.25 eV. As can be observed, while the splitting of the LHB is robust against the
combined effect of intra- and inter-band Coulomb repulsion, a reverse trend emerges at
low energies with the concomitant suppression of the CDW bandgap splitting. Moreover,
upon increasing U, the spectral weight transfer from quasiparticle excitations to incoherent
Hubbard bands is evident in the correlated spectral function of the CDW T B model
of 2H-TaSe2. It is noteworthy that the pseudogapped state obtained for U = 2.5 eV
diminishes, resulting in metallicity at low energies in proximity to EF, as evidenced by
our findings for U = 2.75 eV. Finally, to illustrate the role played by local dynamical
correlations, we present in the inset of Fig. reffig4 a comparison between the DFT+DMFT
total spectral function displayed in the main panel of Figure 4 and EDC data taken from
Refs. [20,32]. This comparison demonstrates good qualitative agreement between the two
sets of data. In particular, the shoulder features near EF and the ω-dependence of the
correlated spectra at slightly higher binding energies are accurately reproduced using the
DMFT approximation for the T B model of 2H-TaSe2.
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Figure 3. Comparison between site-resolved (A,B) CDW and non-CDW (A = B) DOS of 2H-TaSe2,
showing the electronic reconstruction induced via the (2 × 2) CDW order. Particularly interesting
features seem to be the CDW gap that emerges at EF, which splits the Kondo–quasiparticle resonances
into two branches. Also noteworthy are the CDW-like gaps in the Hubbard bands and the small
differences in the self-energy real and imaginary parts of the insets.
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between the DMTT results and EDC data taken at 34 K [20] and 107 K: [32] The EDC data were
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Ultimately, to provide new fundamental insights into the correlated phenomenon that
may emerge in strained 2H-TaSe2 crystals, where U/W ≫ 1 [2], in Figure 5, we demon-
strate the ω dependence of the correlated spectra as we approach the CDW–Mott localized
state [17]. Figure 5 illustrates the occurrence of gradual alterations in the total spectral
functions, which suggests the existence of a second-order metal-to-insulator transition
from a CDW metal to a CDW–Mott localized state. These responses are characteristic
of strongly correlated systems in which the changes to the spectral functions are linked
to collective electronic (charge and spin) fluctuations in the reconstructed spectral func-
tion [75]. As observed for U = 3.5 eV, which is in close proximity to the critical value for
the continuous CDW–Mott transition, the narrow low-energy peak that was present at
U = 3.25 eV has been almost entirely suppressed, and only the Hubbard bands are clearly
discernible at high energies above and below EF. A comparable quantum-phase transition,
with the coexistence of Mott localized and metallic electronic states, has been documented
in the context of the three-orbital problem of ruthenate oxides [76] and in a theoretical
investigation of the T = 0 phase transition in two dimensions, from a Fermi liquid metal to
a paramagnetic Mott insulator with a spinon Fermi surface [77]. Furthermore, the demon-
stration of a continuous Mott transition in MoTe2/WSe2 Moiré superlattices is also relevant
in this context. This transition is induced by varying an out-of-plane electric field, which
modifies the Moiré potential depth and, thus, the U/W ratio [78], and it is observed to
occur as a result of the metal–insulator transition.
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Figure 5. Illustration of the continuous metal-insulator transition induced via strong electron–electron
interactions in the CDW phase of 2H-TaSe2. Notice the suppression of the nearly vanished metallic
total DOS for U = 3.25 eV to a CDW–Mott localized state at U = 3.5 eV.

3. Conclusions

In conclusion, this study has investigated the electronic structure reconstruction of
an extended two-band Hubbard model, which is applicable to 2H-TaSe2. In accordance
with earlier studies, this study found that intra- and inter-band many-body effects strongly
renormalize electronic structure of 2H-TaSe2 within the normal and CDW ordered states.
Due to sizable dynamical two-band correlations, we demonstrated the emergence of pseu-
dogapped electronic state consistent with experimental observations [20,32]. Moreover,
in the high correlation-to-bandwidth (U/W) limit, we predict a gap-closing [79] scenario
where a continuous metal–insulator transition from a CDW-gapped insulating state [73,74]
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followed by a CDW–Mott [17] insulating state is demonstrated. Taken together, the results
in this work constitute a step forward in understanding the manifestation of band-selective
pseudogaped and CDW–Mott phases that might, respectively, be the precursors to super-
conductivity in S-doped 2H-TaSe2 [23] and to the dimensionality-driven insulator–metal
transition reported for 1T-TaSe2 [80].
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