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Abstract: Over the past three decades, luminescence thermometry has gained significant attention
among researchers and practitioners. The method has progressed in terms of utilizing temperature-
sensitive luminescent materials, obtaining temperature read-outs from luminescence, developing
applications, and improving performance. This paper reviews and critically analyzes routes for im-
proving luminescence thermometry performance, in particular the sensitivity, accuracy, and precision
of the method. These include the use of highly temperature-sensitive probes, temperature read-outs
from luminescence with improved sensitivity, multiparameter temperature-reading methods, the
applications of principal component analysis and artificial neural networks, and sensor fusion.

Keywords: luminescence thermometry; phosphor thermometry; luminescence; artificial neural
networks; sensor fusion

1. Introduction

Luminescence thermometry has evolved into a convenient optical method for remote
temperature measurements from cryogenic temperatures to 2000 K. Nowadays, it is widely
used in a variety of fields. In some of them, such as nanotechnology, biomedicine, and
optoelectronics, luminescence thermometry overcomes the limitations of traditional ther-
mometers and provides for better spatial resolution of measurements and thermal imaging.
When employing luminescent nanoparticles, this method even allows for local temperature
measurements at the nanoscale. Luminescence thermometry exploits temperature-induced
changes in the spectral positions of emission and excitation bands, emission band intensities,
the shape of emission bands, excited state lifetimes, and emission rise times to determine
the temperature of luminescence probes attached to objects of interest. The ample choice of
luminescent materials and luminescence features makes luminescence thermometry easily
adoptable for a significant number of applications. Many review articles on luminescence
thermometry have been published over the years, with recent ones given in refs. [1–15].
However, above all, these articles primarily focus on reviewing and discussing advance-
ments in the development of materials for luminescence thermometry probes, temperature
read-outs from luminescence, and the various applications of luminescence thermometry,
rarely delving into a comprehensive discussion of measurement performance.

Here, we review and critically analyze methods for enhancing luminescence thermom-
etry performance, keeping in mind that the method’s successful use in the future depends
on improvements in measurement accuracy and precision. We discuss the approach for the
enhancement of measurement sensitivity utilizing luminescence probes that have a strong
dependence of their luminescence features on temperature changes. Then, we focus on
temperature read-outs from luminescence with the highest measurement sensitivities, such
as the multilevel cascade ratiometric method, the single band ratiometric method, and the
luminescence intensity squared method. Lastly, we examine and evaluate sophisticated
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statistical techniques and machine-learning algorithms that can enhance the precision and
accuracy of luminescent thermometry. These include multiparameter linear regression,
principal component analysis, artificial neural networks, and sensor fusion.

2. Sensitivity, Accuracy, and Precision of Luminescence Thermometry

It is a common practice in the literature to present calculated absolute and relative
sensitivity of luminescence thermometry methods. The main goal is to enable a comparison
of thermometry performances when using luminescence probes made from diverse materi-
als. In luminescence thermometry, temperature (measurand, X) is not directly determined.
Instead, some indications (∆), for example, excited state lifetime, emission intensity, and
emission intensity ratio are measured and then converted to the temperature value. The
absolute (Sa) and relative (SR) sensitivities of luminescence thermometry are strictly related
to the properties of the material that makes the probe; more precisely, they are only related
to the extent to which their luminescence properties change with temperature and not to the
characteristics of the measurement instrumentation and conditions. They are, respectively,
defined as the absolute or relative rate of change in indicator value with the change in
measurand value

Sa =

∣∣∣∣d∆
dX

∣∣∣∣ and SR =

∣∣∣∣ 1
∆
× d∆

dX

∣∣∣∣ (1)

However, the absolute and relative sensitivity values are far from sufficient to describe
the performance of the luminescence thermometry. The characteristics of measurement
instrumentation and measurement conditions significantly influence measurements [16].
Furthermore, for some novel methods of temperature readings from luminescence, such
as multiparametric readings and artificial neural networks, it is not possible to reliably
derive sensitivity values. Because of this, it would be better to discuss the performance
of luminescence thermometry using standard metrology terms like uncertainty in mea-
surement, accuracy, precision, and resolution. From repeated measurement, the estimated
value of the measurand (X) differs from the true value (Xt) [17], see Figure 1. The absolute
difference in these values represents the accuracy of the measurement. The true value of the
quantity being measured, Xt, lies in the interval X ± δX, where X represents value of the
measurement and δX its corresponding measurement error. In its simplest consideration,
measurement error is a sum of random and systematic (bias) errors: δX = δrX+ δbX
(where r stands for “random” and b for “bias”) [18]. In any measurement, random errors
are inevitable and arise from variations in experimental settings, noise, and fluctuations in
the quantity being measured. The uncertainty in measurement is the standard deviation
(σ) of repeated measurements. Precision refers to uncertainty in measurement since it is
defined as the inverse of the measurement variance (p = 1/σ2). It is important to distinguish
between temperature resolution and uncertainty. Temperature resolution is the smallest
detectable change in temperature, while standard deviation measures repeatability. For
reliable measurements, it is common to set the resolution at twice the standard deviation
(2σ), which corresponds to a 95% confidence level. Conventionally, we express the precision
limits in terms of a noise floor, which is the noise level below that which one cannot detect
signals under the same measurement conditions. Luminescence thermometry frequently
calculates it as a product of the measurement standard deviation and the square root of the
measurement integration time, expressing it in K/Hz1/2.

Other precision limits may be important, depending on the application and material
used for the luminescence probe. For instance, when working with nanoparticles, it is
crucial to consider the intrinsic thermal fluctuations that can be expressed as

σth = T·

√
kB

V·cv
, (2)

where V is the nanoparticle’s volume, cv is the nanoparticle’s constant volume heat capacity,
and kB is the Boltzmann constant. These fluctuations limit the measurement precision to
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1/σ2
th, i.e., it is not possible to improve measurement precision beyond this value. For

smaller particles and higher temperatures, σth becomes larger and the precision limit
becomes smaller.
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3. Materials for Luminescence Thermometry Probes with High Sensitivity to
Temperature Changes

There is a wide range of luminescent materials available for luminescence thermometry
probes. The most popular options are inorganic materials containing activator ions, semi-
conductor quantum dots, organic dyes, metal–organic frameworks, luminescent polymers,
carbon dots, and nanodiamonds [1]. They can take practically any shape or form, including
bulk solids and nanoparticles [9]. The thermometric abilities of methods utilizing these
materials are highly reliant on the temperature sensitivity of particular luminescent charac-
teristics. Enhanced sensitivity may be achieved using two or more emissions of different
origins. This can be realized by using (i) materials doped with two trivalent lanthanide ions
(Ln3+) [19–21], (ii) materials doped with one Ln3+ and transition metal ion (TM) [22–29],
(iii) materials containing both divalent lanthanide ions (Ln2+) and Ln3+ [30,31], (iv) semi-
conductors doped with TM [32,33], and (v) by using defect emissions from host material
and Ln3+ dopant [34–38]. For example, the ratio of emission intensities from the traps and
Sm3+ ions in the TiO2 nanoparticles exhibits sensitivity to temperature fluctuations as high
as 10.54%·K−1 [35].

However, the sensitivity enhancement in all mentioned approaches comes with some
drawbacks. The brightness of double-doped materials may be lower than that of single-
doped ones, resulting in a higher measurement uncertainty of emission intensities. Defect
emissions are generally of low intensities, again resulting in increased measurement uncer-
tainties. It is difficult to maintain exactly the same concentration of dopants and defects
in materials used for probes, which compromises the reproducibility of the measurement
methods. Transition metal dopants tend to migrate out of semiconductor nanoparticles,
making them useless after a certain time.

4. Temperature Read-Outs from Luminescence with Improved Sensitivity

Luminescence thermometry commonly employs spectral-shape-based techniques
specifically measuring the luminescence intensity ratio (LIR) between two emission bands
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(ratiometric temperature readout) [1]. This method is important because it is self-referencing,
which means that hindrances caused by changes in measurement conditions are avoided
by relying on measurements of the ratios of absolute emissions’ intensities. Luminescence
thermometry probes used with the LIR method typically employ lanthanide-ion- [8] and
transition-metal-ion-activated phosphors [2]. These probes utilize the ratio of emission in-
tensities from two adjacent and thermally coupled excited states as a temperature indicator
(see Figure 2a).
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thermometry and (b) multilevel cascade LIR thermometry; (c) typical gains in the relative sensitivity
of multilevel cascade LIR over conventional LIR for various trivalent lanthanide ions; (d) temperature
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between these states, ∆EH′H .

In such instances, the method is generally referred to as Boltzmann-type Luminescence
Intensity Ratio (LIR) or Boltzmann thermometry because thermally coupled excited states
are populated by the Boltzmann distribution. It is necessary, however, that a thermal
equilibrium exists between emitting states which occurs when the thermal exchange rate
between the two emissive states is much faster than any competing radiative or nonradia-
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tive depopulation rate [39–41]. The ratio of emission intensities from these states may be
expressed using a straightforward equation [42]:

LIR(T) =
IH
IL

= B × exp
(
−∆EHL

kT

)
. (3)

The intensity of the emission from the higher-energy excited state is denoted as IH,
while the intensity of the emission from the lower-energy excited state is denoted as IL. The
energy difference between the thermalized excited states is represented by ∆EHL, and the
Boltzmann constant is denoted as k (k = 0.695 cm−1·K−1). Further, B = νH AH gH/νL ALgL,
where A is the radiative transition probability, ν is the emission barycenter frequency, and g
is the level degeneracy. In this method, the relative sensitivity of LIR decreases constantly as
temperature increases. The relative sensitivity is determined only by the energy difference
between the excited states that provided emissions for LIR. A larger energy difference
corresponds to a higher relative sensitivity:

SR

[
%K−1

]
=

∣∣∣∣ 1
LIR

× dLIR
dT

∣∣∣∣·100% =
∆EHL

kT2 ·100%. (4)

In terms of relative sensitivity, this method has a limitation when used with trivalent
lanthanide ions since the sensitivity is proportional to the energy difference between
thermally coupled states, and the largest energy difference of about 1750 cm−1 is in the
Eu3+ (5D1 and 5D0 excited levels). This provides for 2.8% K−1 relative sensitivity at 300 K.
Table 1 lists typical values of relative sensitivities at 300 K for other trivalent lanthanide
ions, excited levels that provide emissions for LIR, and the typical energy difference
between these levels. Furthermore, the value of relative sensitivity rapidly decreases
with an increase in temperature, negatively affecting the measurement precision at high
temperatures. Transition-metal-activated phosphors can also facilitate the realization of the
LIR method. In cases of Mn4+ and Cr3+, the LIR is derived from the emission intensity ratio
of the 4T2 → 4A2 and 2E → 4A2 transitions (relative sensitivity at 300 K in the 1.2–2.6% K−1

range) [43–46], while in cases of Mn5+, emissions from 1E and 3T2 are exploited (relative
sensitivity at 300 K around 2.0% K−1) [47,48].

Table 1. Typical room temperature relative sensitivities of LIR thermometers that utilize trivalent
lanthanide ions involve excited states and energy gaps between them, a third excited state used in the
multilevel cascade LIR, and a sensitivity gain of the multilevel cascade LIR over the conventional LIR.

Ion Eu3+ Dy3+ Sm3+ Nd3+ Er3+ Pr3+ Gd3+

Excited levels 5D1, 5D0
4I15/2, 4F9/2

4F3/2, 4G5/2
4F5/2, 4F3/2

2H11/2, 4S3/2
3P1 + 1I6, 3P0

6P5/2, 6P7/2
Emission color Green/Orange blue Green/Orange NIR Green Blue UV
∆EHL [cm−1] 1750 900 1250 1000 780 600 500

Relative sensitivity
[%K−1] 2.80 1.44 2.00 1.60 1.25 0.96 0.80

Third excited level 5D2
4G11/2

4G7/2
4F7/2

4F7/2
3P2

6P3/2
Sensitivity gain [%] 160 141 76 102 224 192 127

4.1. Multilevel Cascade LIR Method

A way to increase the LIR method’s sensitivity is to use emissions from excited states
that have a large energy difference between them (see Figure 2b). Tian et al. [49] have
shown that when there is a thermal equilibrium between the first (L) and second excited
state (H) and between the second (H) and third excited state (H′), the populations of the first
and third excited states will follow Boltzmann’s distribution in a cascade thermalization
scheme with a larger energy difference of ∆EH′L > ∆EHL. This method has been effectively
validated using Boltzmann thermometers utilizing Dy3+ [50,51], Er3+ [52], and Gd3+ [53],
demonstrating its enhanced levels of relative sensitivity in each instance. The method
can be applied to a wide range of trivalent lanthanide ions with a typical gain in relative
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sensitivity displayed in Figure 2c. The sensitivity gain is given by the ratio of sensitivities
when using the H′ level and H level.

However, the method’s improved sensitivity over conventional LIR does not neces-
sarily result in better measurement precision. Emissions from the third excited state (IH′ )
generally have a lower intensity than those from the second excited level:

IH′

IH
=

νH′ AH′ gH′

νH AH gH
× exp

(
−∆EH′L − ∆EHL

kT

)
=

νH′ AH′ gH′

νH AH gH
× exp

(
−∆EH′H

kT

)
. (5)

This is because high-energy excited states require high temperatures to gain population.
The higher energy difference to the second excited state (∆EH′H), the higher temperature is
needed to facilitate emission (see Figure 2d). This induces two significant consequences.
First, the method only works at temperatures sufficient enough to facilitate emissions
and, therefore, has a smaller operational range than the conventional LIR. Secondly, the
measurement uncertainty of emission intensity from a high-energy excited level is greater
than that of the second excited level. Consequently, the improvement in temperature
measurement precision may not occur despite the larger measurement sensitivity. Based on
the literature data and our analysis, we can conclude that this method may only improve
luminescence thermometry performance at high temperatures.

Ćirić et al. [54] extended this approach by introducing the multi-cascade LIR, Figure 3a,
that exploits emissions from several Dy3+ high-energy excited states. The use of emission
from excited energy states located at approximately 5000 cm−1 above the first excited
state allowed for a fivefold larger relative sensitivity than in the conventional LIR (see
Figure 3b). However, the method’s applicability was limited to temperatures greater than
650 K. The further application of this method saw a significant improvement in the relative
sensitivity of luminescence thermometers based on Er3+ upconversion emissions [52], while
combining this method with multiparametric linear regression led to a thirty-fold increase
in the relative sensitivity of Dy3+ thermometers [55].
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4.2. Dual-Excited Single Band Ratiometric (SBR) Method

A dual-excited single-band ratiometric thermometry (SBR) method [56] compares
the strengths of two emissions from the same state after being excited from the ground
state (G) and the first excited state (G′); see Figure 4a. In other words, the temperature
readout is performed by first exciting from the ground level and observing a dominant
emission, and then exciting from the excited level thermalized with the ground level and
observing the same emission as in the first step. As in other types of LIR techniques, a
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thermal equilibrium must exist between G and G′ states, which are separated by the energy
difference of ∆EGG′ . Then, the expressions describing this intensity ratio, LIRSBR, and its
relative sensitivity have the same forms as for the conventional and multicascade LIRs:

LIRSBR(T) =
IG′

IG
= BGG′ × exp

(
−∆EGG′

kT

)
, (6)

SR−SBR

[
%K−1

]
=

∆EGG′

kT2 ·100%. (7)
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Figure 4. Illustration of the energy states, excitations, and emissions involved in (a) single band
ratiometric (SBR) thermometry and (b) luminescence intensity squared thermometry (LIR2).

Relative sensitivity values of the method linearly depend on the energy difference
between states from which excitation occurs, ∆EGG′ . This energy gap can be substantially
larger than energy gaps in the conventional LIR, providing for better relative sensitivity with
similar uncertainty in emission intensity determination. For example, at the temperature
of 300 K, the SBR method has 3.57%K−1 relative sensitivity when using excitations from
6H9/2 and 6H5/2 Sm3+ states having a 2230 cm−1 energy difference between them. With
Pr3+ 3H5 and 3H4 states (energy difference ≃ 2160 cm−1), Tb3+ 7F5 and 7F6 states (energy
difference ≃ 2060 cm−1), and Nd3+ 4I11/2 and 4I9/2 states (energy difference ≃1860 cm−1),
SBRs relative sensitivities at 300 K are 3.48%K−1, 3.29%K−1, and 2.97%K−1, respectively.
These are much larger values when compared with those for the conventional LIR given in
Table 1. Further combinations of energy states that are appropriate for SBR can be achieved
with these or other trivalent lanthanide ions due to their abundance of energy levels [57,58].

In addition to enhanced sensitivity, the SBR technique offers two additional advan-
tages compared with the conventional LIR. The BGG′ and ∆EGG′ can be extracted directly
from the photoluminescence emission spectrum without the need for any fitting. BGG′ is
determined by dividing the total emissions for transitions that end at the G and G states,
while ∆EGG′ is determined by subtracting the energies of the barycenters of these emis-
sions [56]. Furthermore, out of all the available ways for measuring temperature using
luminescence thermometry, the SBR method requires the simplest sensor setup [59]. The
main disadvantages of the SBR include the requirement for measurement correction owing
to temperature-induced changes in bandwidth, as demonstrated by Zhou et al. [60], and
the need for constant excitation change during the measurement.

4.3. Luminescence Intensity Squared Method

The luminescence intensity ratio squared (LIR2) approach, as shown in Figure 4b,
combines the traditional luminescence intensity ratio (LIR) method with the dual-excitation
single-emission band ratiometric (SBR) approach. In the first step, the ion is excited from
the ground state G and the emission from the L level is observed. In the second step the
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excitation is performed from the G′ level, and the emission from the H level is observed.
The ratio of those two emissions gives LIR2. It leverages by using two thermalizations,
which in turn provide for a high sensitivity, equal to the sum of the conventional LIR and
SBR sensitivities [61]:

SR−LIR2 = SR × SR−SBR, (8)

since
∆ELIR2 = ∆EHL + ∆EGG′ and LIR2 = LIR × LIRSBR (9)

As mentioned earlier in the text, a large energy difference between thermalized states
is required to achieve high sensitivity. In this case, two pairs of energy states with a smaller
energy difference than the total energy contributing to the sensitivity value should fulfill
the thermalization conditions. The method maintains uncertainty in the emission intensity
determination of both methods. With a higher sensitivity and the same uncertainty, the
LIR2 should have better precision than the LIR and SBR.

One can also construct the LIR2 with two ions by applying SBR to one and LIR to the
other. The typical example is given by Ćirić et al. [62] using Y3Al5O12: Er3+/Yb3+ emission.
The SBR excitation scheme was applied to Yb3+ (on Stark components of Yb3+ 2F7/2 ground
state) while the LIR scheme was utilized with Er3+ excited states. Researchers looked at
LIR, SBR, and LIR2 methods on the same material and found that LIR2 is better than LIR
and SBR in terms of sensitivity, temperature resolution, and measurement range in both
visible (see Figure 5a) and near-infrared (see Figure 5b) spectral regions.

Figure 5. Relative sensitivities of LIR, SBR, and LIR2 methods based on Y3Al5O12:Er3+/Yb3+ emis-
sions in (a) visible and (b) near-infrared spectral regions. From ref. [62] with permission.

4.4. Time-Resolved Single-Band Ratiometric Luminescence Thermometry

The time-resolved single-band ratiometric luminescence thermometry (TSBR) takes
the ratio of emission intensities measured at the different time delays after excitation. It
requires a probe that consists of two materials that emit over the same spectral region
but have drastically different emission decay times. Qiu et al. [63] introduced the method
using nanomaterials, which included 3.5 nm large PbS quantum dots and 12 nm large
NaYbF4:0.5%Tm@NaYF4:10%Yb@NaYF4:50%Nd nanophosphors. In their study, quantum
dots were emitted at 814 nm with a very short decay time, while nanophosphor was emitted
at 804 nm with a long lifetime. The method provided a relative sensitivity of up to 5.6%
K−1 and a precision of 0.5 K at 45 ◦C. In contrast to other spectral-shape-based techniques,
this method requires emission measurements at only one spectral region.



Condens. Matter 2024, 9, 46 9 of 16

5. Advanced Data Processing for Improved Precision and Accuracy of Luminescence
Thermometry

Luminescence thermometry typically utilizes a small portion of the luminescence data
to measure temperature. This is because traditional temperature measurements are based
entirely on temperature-induced variations in the characteristics of specific emission lines
or their emission kinetics. The latest techniques to enhance the precision and accuracy
of luminescence thermometry involve simultaneously utilizing multiple luminescence
properties of materials. These approaches presuppose that concurrently observing numer-
ous parameters will better accumulate temperature-induced alterations in luminescence
characteristics, augmenting measurement sensitivity. If there are no artifacts present in
the data, then all the thermal readings should converge. Nevertheless, incorporating addi-
tional spectral features increases the uncertainty in temperature estimation and may cancel
the advantages.

We can divide the strategies in question into three categories. All of them use multiple
temperature indicators based on different spectral features or even complete emission
spectra. The first group includes multimodal [64–68] and multiparameter methods [69–73].
In multimodal methods, different temperature indicators based on different luminescence
features of the same material are not used for temperature measurements at the same time.
Instead, each one is seen as a sensor for a different temperature region or as a concurrent
sensor. Multiparameter methods, on the other hand, combine individual temperature
indicators into a single indicator, typically using linear multiparameter regression. In the
second group are methods for reducing the amount of data, like principal component
analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) [74–76]. The third
group includes approaches that utilize artificial neural networks [77,78]. An additional
approach includes the use of a support vector machine [79].

5.1. Multiparameter Methods Based on Multiple Linear Regression

Multiple linear regression (MLR) is a statistical technique that uses multiple explana-
tory variables to predict the outcome of a response variable. Every value of the independent
variable is linked to a value of the dependent variable. The linear relationship between the
thermometric parameters ∆ (independent variables) and temperature (dependent variable)
can be represented using the equation of multiple linear regression:

T = β0 +
n

∑
i=1

βi·∆i + ε, (10)

where β0 is the constant term (T-intercept), β1, . . ., βn are the slope coefficients for each of n
explanatory variables, and ε is the model’s error term (also known as the residuals).

To utilize MLR, it is necessary to have a linear relation between the dependent and
independent variables, with each of them being continuous functions. Additionally, the
independent variables must not be correlated with one another. While not strictly necessary,
it is beneficial for the values of independent variables to be within the same range, as fitting
algorithms infer that larger values carry greater relevance. For this purpose, one can apply
feature scaling. Apart from putting values of independent variables in the same range,
feature scaling provides for the easier interpretation of results.

Alrebdi et al. [48] proposed a novel approach to scale and linearize explanatory vari-
ables by representing the temperature dependence on temperature indicator variables using
equations of state. The authors conducted a comparison of the accuracy and precision of
three single-parameter thermometry methods that rely on Ca6BaP4O17:Mn5+ near-infrared
emission. The emission spectrum of this phosphor shows a narrow emission band from
the 1E → 3A2 intra-configurational transition around 1140 nm, followed by vibrational
sidebands [47]. The thermometry methods involved measuring the luminescence intensity
ratios between emissions from the 1E and 3T2 states—LIR1, between Stokes and anti-Stokes
emission sidebands—LIR2, and the 1E energy—E1E. They also evaluated a multiparam-
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eter thermometry approach that incorporates all three indicators. The results showed
(see Figure 6) that the multiparametric method provides better accuracy and precision
than the LIR2 and E1E single-parameter methods and approximately equal results as the
LIR1 method.
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Given that most luminescence temperature indicators are not linearly proportional
to temperature, the method requires either the linearization of these relationships or ap-
plications over a very narrow temperature range where linear relations can be assumed.
Therefore, it can be beneficial to extend the approach using multiple nonlinear regression.
However, no one has demonstrated this approach yet.

5.2. Principal Component Analysis for Luminescence Thermometry

Gathering all changes in luminescence spectra caused by temperature variations
can produce the maximum sensitivity of luminescence thermometry. However, to make a
practical temperature sensor, it is necessary to have one indicator (a few for multiparametric
methods) that is a monotonic function of temperature. The application of data reduction
methods in luminescence thermometry is based on the idea of reducing the entire emission
spectrum from the sample to a single value for temperature determination. Principle
component analysis (PCA) is an unsupervised machine-learning technique that transforms
the original dataset into parameters known as principal components (PCs). These PCs
maintain all the various present in the original dataset, but the first principal component
encompasses the largest number of these variances. Therefore, we can use the first principal
component as a temperature indicator. Furthermore, PCA provides information about
spectral regions where large changes in luminescence occur due to temperature changes.
We can further exploit this information to eliminate low-sensitive spectral regions from
measurements, thereby reducing measurement time and uncertainty.

Jelić et al. [80] applied PCA to emission spectra of GdVO4:Sm3+ measured at different
temperatures. They demonstrated that scores on the first three PCs derived from spectra
measured at similar temperatures tend to cluster together. However, they did not use PCs
as temperature indicators. Šević et al. [75] employed PCA to differentiate the Sr2CeO4:Eu3+

emission spectrum measured at different temperatures. The authors were able to predict
the temperature within a 95% confidence level.

Rajić et al. [76] recently used PCA to reduce the emission spectra of Pr3+-doped YF3
that were recorded at different temperatures to PCs. They discovered that the first PC
accounts for 99.3% of the temperature-induced variance in the emission spectra. Using this
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PC as an indicator of temperature, they designed the luminescence thermometry method,
which has an average accuracy of 0.7 K and a measurement uncertainty of 0.5 K.

5.3. The Use of Artificial Neural Networks in Luminescence Thermometry

Artificial neural networks (ANNs) are the most widely used supervised machine-
learning methods and have significantly transformed data processing [81]. While the
application of ANNs in luminescence thermometry is still in its early stages, the growing
accessibility of processing power and user-friendly libraries has made it more convenient
for researchers to investigate the potential advantages of this technology. Specifically, it is
crucial to investigate and harness the capabilities of ANNs to enhance the accuracy and
precision in luminescent thermometry.

Liu et al. [82] have described a luminescence thermometry method that uses ANN
recognition from rhodamine B emission to determine the sample temperature. The authors
used ANNs with two types of data: one based on the integrated emission intensity and emis-
sion peak intensity, and the other on a selection of 80 values between 550 nm and 660 nm of
normalized spectra, thus representing the spectral shape. The second approach had better
measurement accuracy because normalized spectra were not affected by excitation laser
light fluctuation, and because this set contained a larger number of temperature-dependent
spectral features. Simple feedforward ANNs containing two hidden nodes have been used
by Munro et al. [83] to recognize temperature from emissions of CdSe/ZnS quantum dots.
The authors tested five sets of input data containing different spectral features and found
that the ANN based on the normalized emission intensity provides the greatest accuracy
(RMS uncertainty of 0.29 K). Lewis et al. [73] used a dense fully connected neural network to
measure the temperature in a microfluidic device filled with CdTe quantum dots. The input
was normalized emission spectra and emission decays. The method provided a tempera-
ture accuracy of 0.4 K for cryogenic temperatures and 0.1 K around room temperature. Cui
et al. [78] employed a one-dimensional Convolutional Neural Network (CNN) structure to
develop a method to determine the temperature based on the emission of Y3Al5O12:Cr3+.
A Convolutional Neural Network (CNN) is a type of artificial neural network that has a
significantly lower number of network parameters to compute. This characteristic makes
the network more manageable to optimize and reduces the likelihood of overfitting [84].
The average measurement error of the method in the range of 35–315 ◦C was 0.20 ◦C,
much smaller than the 1.31 ◦C obtained with classical ratiometric thermometry and the
1.69 ◦C obtained with a multiple linear regression method. Long short-term memory neural
networks (LSTM), a type of recurrent neural network [85], can be used for obtaining the
high-frequency 2D surface temperature field information from Mg4FGeO6:Mn4+-coating
luminescence with very high accuracy, as shown by Cai et al. [86].

5.4. Sensor Fusion Luminescence Thermometry

Sensor fusion is the procedure of merging sensor data or data obtained from different
sources in a manner that reduces the uncertainty in the resulting information compared
with using these sources separately. Ćirić et al. demonstrated that this modern sensor
science method has great potential to increase the precision of luminescence thermome-
try [87]. In luminescence thermometry, the sensor fusion can utilize separate luminescence
thermometry sensors or several temperature indicators from one sensor (similar to multipa-
rameter methods). Figure 7a schematically shows the application of this basic sensor fusion
method to luminescence thermometry. The “fused” temperature (TF) from N sensors can
be calculated as follows [87]:

TF =
1

1
σ2

1
+ 1

σ2
2
+ · · ·+ 1

σ2
N

(
T1

σ2
1
+

T2

σ2
2
+ · · ·+ TN

σ2
N

)
, (11)

where Ti (i = 1, 2, . . ., N) are mean temperatures obtained from N temperature sensors
and σi

2 are their respective variances. The fused result is a linear combination of the N
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measurements weighted by their respective noise variances. The variance of the “fused”
temperature measurement

σ2
F =

1
1

σ2
1
+ 1

σ2
2
+ · · ·+ 1

σ2
N

(12)

is smaller than the variance of individual sensors. For example, in the case of N sensors
having the same variance σ2, the variance of the “fused” measurement will be σ2

F = σ2/N.
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Figure 7. (a) Flowchart of a simple sensor fusion luminescence thermometry (SFLT); (b) simulation
of temperature readings at 100 ◦C nominal temperature, using sensors with standard deviations of
2 ◦C (blue line), 1.75 ◦C (green line), 1.5 ◦C (red line), and the fused reading from three sensors using
Equation (10) (black line) that has a reduced standard deviation of 0.9795 ◦C.

Figure 7b illustrates a numerical simulation of three temperature readings at a nominal
temperature of 100 ◦C, using sensors with standard deviations of 2 ◦C (blue line), 1.75 ◦C
(green line), and 1.5 ◦C (blue line). The figure clearly shows that the fused temperature
obtained from these three sensors (black line) has a much smaller standard deviation
(σF = 0.99 ◦C).

6. Conclusions

The predominant focus of previous research on enhancing luminescence thermometry
performance has been on the advancement of luminescent probes that exhibit exceptional
sensitivity to variations in temperature. The reports seldom examined and discussed
the potential impact of the increased temperature sensitivity of luminescent temperature
indicators on measurement accuracy and precision. In reported cases, the enhancement
of sensitivity often led to an increase in measurement uncertainties for luminescence
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temperature indicators, thereby reversing the positive effects of increased sensitivity on
accuracy and precision. Luminescence probes that rely on two luminescent centers may face
challenges in the reproducibility of their preparation process, particularly in maintaining
consistent dopant concentrations. This may be a serious problem for probes exhibiting
emissions from defects in their structure. Advanced methods based on ratios of emission
intensities show better measurement sensitivities compared with the traditional intensity
ratio method. Multilevel cascade LIR may be an excellent way to overcome the sensitivity
limitation of the conventional LIR at high temperatures, where emissions from high-energy
states gain significant intensities. SBR provides slightly higher sensitivity than conven-
tional LIR, with the same uncertainty in determining emission intensity but requires two
consecutive emission measurements after excitations with different energies. According
to our assessment, LIR2 has the highest capacity to enhance the accuracy and precision
of ratiometric luminescence thermometry. This is because it combines the sensitivities of
conventional LIR and SBR, without affecting the thermalization process or introducing ad-
ditional uncertainty in determining emission intensity. PCA and artificial neural networks
are the most promising ways to enhance measurement performance when it comes to
determining temperature from luminescence with the help of modern statistical techniques
and machine-learning algorithms. The reason for this is that they can effectively harness a
significant number of temperature-induced fluctuations in luminescence for temperature
determination, which surpasses the capabilities of a system relying on a single luminescent
temperature indicator. Finally, sensor fusion in luminescence thermometry has been proven
to significantly reduce uncertainty in estimating temperature from multiple independent
sensors or indications.
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acknowledge funding of the Ministry of Science, Technological Development, and Innovation of the
Republic of Serbia under contract 451-03-66/2024-03/200017.

Data Availability Statement: The data will be available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bednarkiewicz, A.; Drabik, J.; Trejgis, K.; Jaque, D.; Ximendes, E.; Marciniak, L. Luminescence based temperature bio-imaging:

Status, challenges, and perspectives. Appl. Phys. Rev. 2021, 8, 011317. [CrossRef]
2. Marciniak, L.; Kniec, K.; Elżbieciak-Piecka, K.; Trejgis, K.; Stefanska, J.; Dramićanin, M. Luminescence thermometry with
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6. Stefańska, J.; Bednarkiewicz, A.; Marciniak, L. Advancements in excited state absorption-based luminescence thermometry.

J. Mater. Chem. C 2022, 10, 5744–5782. [CrossRef]
7. Zhou, J.; del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Advances and challenges for fluorescence nanothermometry. Nat. Methods

2020, 17, 967–980. [CrossRef]
8. Kumar, P.; Patel, R.; Shrivastava, N.; Patel, M.; Rondeau-Gagné, S.; Selopal, G.S. Aspects of luminescence nanoprobes for

thermometry: Progress and outlook. Appl. Mater. Today 2023, 35, 101931. [CrossRef]

https://doi.org/10.1063/5.0030295
https://doi.org/10.1016/j.ccr.2022.214671
https://doi.org/10.1002/adma.202302749
https://doi.org/10.1002/adom.201801239
https://doi.org/10.1039/D2CS00069E
https://www.ncbi.nlm.nih.gov/pubmed/35587578
https://doi.org/10.1039/D1TC06070H
https://doi.org/10.1038/s41592-020-0957-y
https://doi.org/10.1016/j.apmt.2023.101931


Condens. Matter 2024, 9, 46 14 of 16

9. Suta, M. Performance of Boltzmann and crossover single-emitter luminescent thermometers and their recommended operation
modes. Opt. Mater. X 2022, 16, 100195. [CrossRef]

10. Harrington, B.; Ye, Z.; Signor, L.; Pickel, A.D. Luminescence Thermometry Beyond the Biological Realm. ACS Nanosci. Au 2024, 4,
30–61. [CrossRef]

11. Jahanbazi, F.; Mao, Y. Recent advances on metal oxide-based luminescence thermometry. J. Mater. Chem. C 2021, 9, 16410–16439.
[CrossRef]

12. Martinez, L.P.; Mina Villarreal, M.C.; Zaza, C.; Barella, M.; Acuna, G.P.; Stefani, F.D.; Violi, I.L.; Gargiulo, J. Thermometries for
Single Nanoparticles Heated with Light. ACS Sens. 2024, 9, 1049–1064. [CrossRef] [PubMed]

13. Chennappa, T.; Kamath, S.D. Review—Structural and Optical Interpretations on Phosphor-Based Optical Thermometry. ECS J.
Solid State Sci. Technol. 2024, 13, 077002. [CrossRef]

14. Suo, H.; Zhao, X.; Zhang, Z.; Wang, Y.; Sun, J.; Jin, M.; Guo, C. Rational Design of Ratiometric Luminescence Thermometry Based
on Thermally Coupled Levels for Bioapplications. Laser Photon. Rev. 2021, 15, 2000319. [CrossRef]

15. Rodríguez-Sevilla, P.; Marin, R.; Ximendes, E.; del Rosal, B.; Benayas, A.; Jaque, D. Luminescence Thermometry for Brain Activity
Monitoring: A Perspective. Front. Chem. 2022, 10, 941861. [CrossRef]

16. van Swieten, T.P.; Meijerink, A.; Rabouw, F.T. Impact of Noise and Background on Measurement Uncertainties in Luminescence
Thermometry. ACS Photonics 2022, 9, 1366–1374. [CrossRef] [PubMed]

17. Benedict, R. Fundamentals of Temperature, 3rd ed.; John Wiley & Sons. Inc.: New York, NY, USA, 1984.
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