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Abstract: An approach to fabricating Halbach array undulators using “combs” machined from
single magnets is introduced. This technique is especially relevant to the fabrication of short period
micro-undulators with period lengths considerably less than the few-centimeter-scale typical of
current undulators. Manual, magnet-by-magnet assembly of micro-undulators would require the
manipulation and alignment of thousands of magnets smaller than a grain of rice: comb fabrication
dramatically increases the size of the basic unit cell of assembly with no increase in undulator period
by creating many periods from a single piece, in a single machining modality. Further, as these comb
teeth are intrinsically indexed to each other, tolerances are dictated by a single manufacturing step
rather than accumulating errors by assembling many tiny magnets relative to each other. Different
Halbach geometries, including M′ = 2, M′ = 4, isosceles triangle, and hybrid, are examined both
from a theoretical perspective and with 3D magnetostatic simulations.

Keywords: undulators; magnet design; permanent magnets; microfabrication; nonconventional
machining

1. Introduction

An idealized Halbach array of permanent magnets, originally described by Klaus Halbach in
1980 [1,2] for use in multipole magnets and undulators, consists of regions of permanent magnet with
smoothly rotating residual fields. The benefit of this configuration is the establishment of a “strong”
and “weak” side to the array, enhancing the magnetic field on the strong side and attenuating it on
the weak side. This leads to more efficient use of the available magnetic flux, giving stronger fields
than other magnetization configurations. Practical realizations of Halbach arrays consist of discrete
magnets, each with a unique, constant magnetization vector, arranged to approximate the idealized
case. Halbach arrays have been used extensively in beamline magnets including the construction of
permanent magnet wigglers and undulators [3–6] and multipole magnets including dipoles [7] and
quadrupoles [8]. In addition to the pure permanent magnet (PPM) arrays, hybrid arrays consisting
of both hard and soft ferromagnetic materials are also used [9–11]. The most common practical
implementation of these hybrid arrays to the realization of undulators involves magnets with
alternating polarities with their magnetization vectors oriented in the longitudinal direction,
interspersed with high-saturation soft ferromagnets. Such undulators are capable of achieving gap
fields significantly higher than PPM undulators, for reasons that will be discussed below.

There is growing interest in the development and use of short period undulators
(or micro-undulators) [11–16], facilitated by microelectromechanical systems (MEMS) and other
modern, nonconventional machining techniques. Decreasing the undulator period length decreases
free-electron laser (FEL) or light source length while also producing harder radiation from lower
energy electrons, which may be produced by a shorter accelerator. Comb fabrication is one approach
for facilitating fabrication of micro-undulators, which has been demonstrated before for simple
up–down (M′ = 2 in the terminology in [1]) style undulators [14]. However, here we are interested in
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higher-order, M′, Halbach arrays, as they offer superior magnetic field performance. If the minimum
feature size of the manufacturing process is at least 4 times smaller than the required period, either
M′ = 4 or hybrid arrays can be used. Otherwise, isosceles triangle based arrays can provide the same
period length as an M′ = 2 for a given feature size but with improved field strength [17].

2. Methods

Comb fabrication relies on the cutting of multiple “teeth” out of a single piece of material, all of
which will have the same magnetization vector. Thus, this approach gives a straightforward path in
both mechanical fabrication and magnetization of the machined combs. These combs are designed in
such a way that they may be slotted together to form the complete Halbach array of a single undulator
jaw. One additional constraint to the design of these combs is that they must be manufacturable
using only through-bulk cutting, as opposed to a depth-controllable process such as milling. This is
due to the limited selection of machining processes conducive both to machining rare earth magnets,
which are brittle and hard, and capable of operating at such small length scales. Two nonconventional
machining processes in particular are well suited to this task, laser machining and wire electrical
discharge machining (EDM), and both are through-bulk processes. A total of four geometry types will
be considered: up–down (M′ = 2), isosceles triangle, M′ = 4, and hybrid arrays. The idealized cross
sections of each of these geometries in the two-dimensional limit, as well as example combs for each,
are shown in Figure 1.

The M′ = 2 array is the simplest case and comb fabrication has been previously
demonstrated [14]. An array based on isosceles triangles, with the same volume of magnetic material
per period and same minimum feature size, produces integrated fields approximately 20% higher than
the M′ = 2 case [17]. The M′ = 4 case offers a higher field than either of these but requires four feature
lengths per period, making it unsuitable for undulators with especially short periods. An expression
in [3] gives the peak field strength for PPM, rectangle magnet Halbach arrays:

Bpeak = 2Br
sin(π/M′)

π/M′
(

1− e−2πh/λu
)

e−πg/λu , (1)

where Bpeak is the maximum magnetic field in the gap, Br is the residual magnetization of the
permanent magnets, M′ is the number of magnets per period, h is the height of the magnets, g
is the gap size, and λu is the undulator period. This suggests that, all else held equal, an M′ = 4
array will have 0.90 times the peak field of an idealized (M′ → ∞) Halbach array, whereas an M′ = 2
array will have 0.64 times the ideal case. This result, combined with the findings in [17], indicates that
the isosceles case will have 0.76 times the field of the ideal case. The performance of the hybrid case
depends on additional factors, outlined below.
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Figure 1. Examples of the simulated undulator configurations. The left column shows an idealized, 2D
cross section omitting connecting parts. The center column shows the constituent parts of the lower
jaw in a preassembly state. The right column shows the assembled state of the lower jaw array. By row:
(a) M′ = 2 array, (b) isosceles triangle array, (c) M′ = 4 array, and (d) hybrid array. Green and yellow
correspond to vertical magnetization vectors, blue and red correspond to longitudinal magnetization
vectors, and gray corresponds to a high-saturation, soft ferromagnetic material.
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Consider a magnetic circuit that is simply a “loop” of constant cross sectional area permanent
magnet with an air gap. Further, assume that the B–H curve can be approximated as linear with
intercepts at Br, the residual magnetization, and Hc, the coercivity:

B = Br(1 + H/Hc). (2)

Typical values for Br and Hc for high quality neodymium magnets are 1.2 T and 106 amp/meter,
respectively [18]. Assuming negligible fringing fields, there is constant magnetic flux, Φ, in both the
magnet and gap:

Φ = AmBm = AgBg, (3)

where A is the cross sectional area (normal to the flux), B is the magnitude of the magnetic flux density,
and the subscripts m and g refer to the magnet and gap, respectively. As there is no exciting current,
the net magnetomotive force, F , is zero:

F = 0 = Hgg + Hmlm, (4)

where H is the magnitude of the magnetic field H and g and lm are the lengths of the flux path in the
gap and magnet respectively. Using Equations (2)–(4) along with Bg = µ0Hg, we find the field in the
gap to be

Bg =
AmBr Hclmµ0

AmBrg + Ag Hclmµ0
. (5)

As it was assumed that the PM loop was of constant area, Ag = Am, so Bg is maximized as g→ 0 and
Bg → Br. This result is a reasonably good approximation for the PPM undulator cases as confirmed by
simulation.

Now, consider a magnet that is coupled to a gap by an infinite permeability yoke; the yoke will
perfectly confine the flux allowing Ag 6= Am. This approximates the case of the hybrid undulator
where lm is the thickness of the longitudinally magnetized PMs and Am is their area normal to this.
Am can become large without affecting the period of the undulator so consider Equation (5) in the
limit Am → ∞:

Bg =
Hclmµ0

g
. (6)

This result suggests that the field can become arbitrarily large as lm/g → ∞. However, this
approximation is only reasonable until the yoke material saturates, violating the “infinite permeability”
assertion. As high-saturation materials like vanadium permendur [18] offer saturation fields over 2.3 T,
compared to the Br of the best available permanent magnets of ~1.2 T, hybrid Halbach undulators can
provide peak fields about twice as high as a PPM array.

An important caveat for these hybrid comb designs is that, to prevent leakage between the two
soft ferromagnetic yoke pieces, the sections interspersed with the magnets do not cover the whole area
of the magnet, Am. In the particular case simulated, the yoke piece is only exposed to an effective area
Am,eff ≈ Am/2 (See Figure 1d). This suggests magnets of approximately twice the area are required to
get the same performance as would be possible if Am = Am,eff; if the non-magnetic side-connecting
pieces were brazed to the yoke material before machining, this might be achievable.

3. Results

The performance of Halbach comb arrays are simulated in Radia [18] over a range of gap sizes,
g, and with several cases of the hybrid geometry shown with varying magnet areas (in terms of λ2

u).
The magnets are taken to be a neodymium (NdFeB alloy) with Br = 1.2 T. The soft ferromagnetic yoke
material is simulated as a vanadium permendur alloy with a saturation of 2.3 T and peak relative
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permeability of 7000. In all the cases shown, the magnet height, h, is held constant relative to λu for all
PPM cases; this means that M′ = 2 has square magnets, whereas M′ = 4 magnets are rectangular. This
keeps the volume of magnetic material per period constant while M′ is varied for the most meaningful
comparison. Additionally, the transverse dimension of the magnet is taken to be large relative to λu.

To compare between the strengths of the different configurations, it is typical to characterize
undulators and wigglers in terms of a unitless parameter termed the K-value, sometimes also termed
the strength parameter. K is defined [19] as

dx
ds

∣∣∣∣
max

=
1
2

∫ λu/2

0

e
γmec

By(s) ds ≡ K
γ

. (7)

where (dx/ds)max is the maximum deflection angle of the electron beam in the undulator, e is the
electron charge, me is the electron mass, c is the speed of light, and By(s) is the vertical field along the
undulator. To compare the strengths of undulators independent of λu the mean absolute field, 〈|By|〉,
can be used instead:

〈|By|〉 ≡
1

λu

∫ λu

0
|By(s)| ds

K =
eλu

4mec
〈|By|〉.

(8)

〈|By|〉 will be derived from the simulated fields.
Referring to Figure 2, the M′ = 2 case, although the simplest to fabricate, also gives the worst

performance. For typical gap sizes on the order of λu/4, M′ = 2 arrays offer a 〈|By|〉 value of only
0.42 T, whereas the isosceles case, despite having the same minimum feature size, has 〈|By|〉 = 0.52 T
(24% enhancement) and the M′ = 4 array has 〈|By|〉 = 0.58 T (38% enhancement). The hybrid cases, on
the other hand, shine at particularly low g values where they can offer 〈|By|〉 values over 80% higher
than M′ = 2 cases.

Figure 2. Mean, absolute fields, 〈|By|〉, for different Halbach geometries as a function of gap size,
normalized to λu, based on Radia simulations.
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Both the isosceles and M′ = 4 cases appear to be converging to the residual magnet field,
〈|By|〉 → Br = 1.2 T in the g → 0 limit as predicted by Equation (5), suggesting that with four
magnets per period, the flux in a loop is reasonably well approximated as normal to the loop cross
section. The M′ = 2 case, however, is not converging to Br, since with only two magnets per period,
this approximation is significantly worse. Finally, looking at the hybrid cases, it appears that the
approximation from Equation (6) that Am → ∞ is reasonably well satisfied at values of Am ≥ (4λu)2

and that there are negligible returns to increasing the cross sectional area of the magnet any further.
Despite being in the large Am limit, 〈|By|〉 in the g→ 0 limit does not appear to be the saturation field
of the yoke material. This is due to significant flux leakage between the yokes and fringing fields.
Further geometry optimization may reduce this effect.

In addition to considering the field strength, the deviation of the field compared to non-comb
(no non-tooth connecting pieces) Halbach arrays should be examined. For the PPM geometries,
determining this effect is especially straightforward since simply taking a linear superposition of all the
magnet fields is a reasonably good approximation: it is stated in [20] that “[rare earth magnets behave]
magnetically very nearly like a vacuum with an impressed current. This makes it straightforward to
predict analytically the field that will result from almost any configuration of blocks”. As adjacent
connecting pieces can be selected to have opposing polarization, far-field errors are reduced. Further,
any application particularly sensitive to such error fields can employ thicker teeth to increase the
separation between the connecting magnets and the beam axis. Consider a concrete example of a
M′ = 4 undulator with g = λu/4 and h = λu/2, giving a peak field, Bpeak, of 0.78 T. Within a square
region on axis, with side length equal to λu/8, averaged over a period, the field from an array with
connecting pieces has a mean absolute error (MAE) of 0.0029 T (0.37% of Bpeak), when compared to the
same configuration without connecting pieces. Any integrated effects can be mitigated by alternating
the polarities of the connecting pieces between adjacent combs.

As mentioned before, the connecting pieces are especially impactful for the hybrid case, reducing
the effective magnet area by approximately half compared to the actual magnet area and also limiting
the maximum achievable gap field due to flux leakage and fringing. Despite these challenges, the
hybrid arrays can offer higher 〈|By|〉 values than any PPM array.

4. Conclusions and Future Work

A technique for fabricating Halbach arrays for micro-undulators using comb elements has been
discussed. This approach obviates the need for magnet-by-magnet fabrication and improves the
accuracy achievable by relying on the intrinsic indexing of the comb teeth relative to each other.
Example combs for a variety of Halbach configurations, including M′ = 2, M′ = 4, isosceles triangle,
and hybrid, are illustrated, all of which rely only on through-bulk, nonconventional machining
processes. These combs are simulated and compared over a wide range of gap sizes using the
magnetostatics code Radia. Finally, the impact of the connecting pieces on the field quality has been
discussed. Further work will include determining optimal wire EDM parameters for samarium cobalt
machining (previous studies for neodymium magnets have been conducted [21,22]), fabrication of
proof-of-principle comb Halbach arrays, and field characterization. This work may prove to be a key
component of the current UCLA effort to realize an ultra-compact X-ray free-electron laser [23].
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