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1. Introduction

This communication focuses on the technological developments aiming to show the
viability of novel welding techniques [1,2], and related applications, in order to benefit from
the superior high-gradient performance of accelerating structures made of hard-copper
alloys. The technological activity of testing high-gradient RF sections is related to the
investigation of breakdown mechanisms, which limit the high gradient performance of
these structures. In this content, our activity consists of the design, construction and high-
power experimental tests of standing-wave (SW) 11.424 GHz (X-band) accelerating cavities
with different materials and methods.

The goal is to assess the maximum sustainable gradients with extremely low probabil-
ity of RF breakdown in normal-conducting high-gradient RF cavities. The most common
bonding techniques, used worldwide, are high-temperature brazing and diffusion bonding.
Brazing and diffusion bonding are performed inside a high-temperature furnace. On the
other hand, experimental results with hard copper cavities, conducted at SLAC, CERN
and KEK [3,4] have shown that hard materials sustain higher accelerating gradients for the
same breakdown rate. Therefore, it would be better to avoid high-temperature processing
of the cavities to benefit from superior high-gradient performance of hard copper alloys.

In this framework, we conduct experiments that involve the Electron Beam Welding
(EBW) and Tungsten Inert Gas (TIG) processes, which allow us to build practical, multi-cell
structures made with hard copper alloys in order to increase their RF performance against
soft ones. For this purpose, open structures made of two halves have been investigated
and fabricated. Details on the fabrication procedure of hard copper X-band structure by
using the TIG method are given in our previous paper [1].

In this paper, we present RF characterization and low-power RF tests of a two-halves
split hard-copper structure [5,6] that will be consequently TIG welded and employed for
high-gradient tests and for the study of the RF breakdown physics. To achieve this aim,
the structure geometry that we propose (shown in Figure 1a, cavity design) allows getting
a high longitudinal shunt impedance Rsh of the accelerating mode, increases the mode
separation frequencies, and improves the operating vacuum level.

In addition, intense beam currents and multibunch operation are essential features,
for example, for increasing the luminosity of a linear collider, but beam current wakefields
and coupled-bunch mode instabilities, which mostly arise from the parasitic modes of the
accelerating structures, can limit the accelerator performance. Hence, our main interest
is also to detune the cavity in order to reduce the beam instability using a novel simpler
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technique and dedicated absorbers of higher-order modes (HOMs). The two cavity halves
are aligned and clamped together by means of male-female matching surface. The clamping
is obtained with stainless screws, and the cavity will be TIG welded at COMEB [7] on
the outer surface. Preliminary low-power RF measurements are in agreement with the
simulated ones. The estimation of mode separation is described later in this paper. The
activity of fabricating a section with four quadrants is also in progress.
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Figure 1. Picture of the two halves structure under test. (a) Sketch of one quarter of two half
structures for simulation studies using ANSYS HFSS software (b) clamped structure for low-power
tests; (c) two halves of the machining; (d) simulated structure frequency spectrum (e) measured
frequency spectrum.
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2. Low-Level RF Measurements

Figure 1b,c show the two halves of the X-band assembled structure under RF low-level
test. It consists of three cells: the middle one is the high-gradient cell, while the first and
third ones are end-cells. The peak on-axis electric field in the middle cell must be two times
higher than that of the end-cells.

Figure 1a reports a sketch of a quarter of a two-half structure for the simulation studies
performed with ANSYS HFSS software [8]. The simulated frequency spectrum is reported
in Figure 1d, and Figure le shows the measured frequency spectrum obtained using two
antennas. The numerical estimations of mode frequencies and the longitudinal field profile
of the 7-mode are in good agreement with the experimental ones.

In Table 1, we report frequencies and quality factors of the resonant modes, obtained
from simulations, for the split open structure in comparison with the same cavity designed
with the conventional “closed” approach.

Table 1. Comparison between mode frequencies and quality factors for the closed structure and
two-half structure.

Frequency [MHz] Frequency [MHz]  Quality Factor (Q)  Quality Factor (Q)

Mode (Two Halves) (Closed Structure) (Two Halves) (Closed Structure)
0 10,749 10,760 10,520 10,615
/2 10,979 10,984 10,213 10,306
7T 11,418 11,420 10,512 10,610

The frequency separation between the 7-77/2 and 71/2-0 modes is about 440 MHz
and 230 MHz, respectively, in the case of the two halves structure, while it is equal to
about 435 MHz and 225 MHZz for the closed one. The two-halves structure cell-to-cell
coupling coefficient is estimated to be 6.1% , while the one for the other structure is 6%. It is
important to notice that the value of the frequency separation of each mode is proportional
to the cavity form factor Rsh/Q [9], with Rsh the shunt impedance of the mode, which
depends on the cell-to-cell coupling coefficient. In addition, from a comparison between
the two halves structure and the closed one, we also observe that the frequency separation
is wider in the case of the two-halves structure, since the capacitive effect is stronger with
respect to that of the closed cavity. In particular, the 0-mode of the open cavity is the most
affected with a deviation 11 MHz greater with respect to the homologous separation in
the closed one. By increasing the number of splittings, it is possible to further increase the
mode frequency separation accordingly.

As additional information, the frequency separation for this structure is shown to be
25% larger than the one achieved in other standard brazed structures [10] with a rough
hard edge geometry but without splitting [10]. The measured quality factor of the 7 mode
of the two-halves structure, obtained by using two antennas, is about Q ~ 6900, which
is 30% lower than the numerical predictions due to the relatively poor electrical contact
during low-power measurements. Our next step is to repeat the RF characterizations after
having welded the two halves and also by using the input power mode launcher.

We have also scheduled the construction of another structure made of four quadrants
in order to confirm the expected wider amount of mode frequency separation. Moreover,
for reasons related to both the feasibility of the hard copper structure and a high shunt
impedance, we believe that we need to find a compromise between the amount of detuning
effects and the number of structural subdivisions. This approach can be extended to the
cavity resonators used in circular accelerators, in order to eliminate or strongly reduce the
longitudinal coupled-bunch instability associated with the accelerating mode.

3. Possible Applications of Split Open Structures

The next generation of accelerators is highly demanding in terms of maximizing
accelerating gradients, minimizing overall machine length and cost, improving the beam
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quality, reducing beam loading effects, and so on. In the case of circular accelerators, one
important mechanism that produces beam instability and power losses consists in the
possibility of the charged particles to excite high-order resonant fields in RF accelerating
cavities when passing through them. This is possible only for those accelerating structures
with resonant modes in frequency ranges that overlap the beam Fourier spectrum. If the
beam loading on a large electron/positrons storage ring is strong, the accelerating mode of
a normal conducting cavity gives rise to coupled-bunch instability.

Additionally, in recent years, we have seen a revolution in high-brightness electron
beams because of the maturation of RF photo-injector performance. In order to improve
the electron beam brightness, larger mode separation is also needed. Furthermore, in
pre-buncher and chopper cavities of linear accelerators operating at high currents, an RF
detuning is required to reduce the interaction with higher-order modes, which affect the
beam quality. These problems can be cured by using the split open structure approach,
which also provides the possibility of improving the vacuum level of a factor of at least ten
with respect to the usual solution by inserting an additional vacuum chamber connected to
the beam pipe. For a fixed geometry of the structure (which means a fixed form factor ratio
Rsh/Q ) and for a given beam current and cavity peak voltage, the frequency detuning
effect can be determined, for example, as shown in [9]. Intense investigations on the
absorbers for damping higher order modes, are also in progress.

4. Conclusions

In very high brightness accumulation rings or linacs, a longitudinal coupled bunch
instability can also arise from the cavity acceleration mode. To solve this problem, an
increase in the RF cavity bandwidth for the detuning frequency is requested. The optimized
cavity design made with quadrants allows us to increase the frequency separation of
longitudinal modes and provides a high longitudinal shunt impedance of the operating
mode. In addition, by using TIG technology to make a hard copper structure, we are able to
improve the vacuum level by one or two orders of magnitude. As a final comment, studies
are also underway for HOM damping.
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