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Abstract: Field electron emission, or electron tunneling through a potential energy (PE) barrier under
the influence of a strong electrostatic (ES) or radio frequency (RF) field, is of broad interest to the
accelerator physics community. For example, it is the source of undesirable dark currents in resonant
cavities, providing a limit to high-field operation. Field electron emission can also be applied to
quasi-statically model electron emission induced by the electric field in a laser pulse. The classical
approach to field electron emission is the Fowler–Nordheim (FN) framework, which incorporates
a simplified PE profile and various assumptions. Here, we build a more realistic model using the
PE and charge densities derived from a density-functional theory (DFT) calculation. We examine
the correction factors associated with each model assumption. Compared to the FN framework, our
results can be extended up to 80 GV/m, a limit that has been reached in laser-induced strong field
emission scenarios.
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1. Introduction

Field electron emission from metals is due to electron tunneling from a metallic surface
under a strong ES or RF field. This is to be differentiated from laser-induced field emission,
which is an electron emission induced by the electric field in a laser pulse. Field electron
emission induces surface breakdown in RF cavities with surface fields of 300 to 400 MV/m,
which, after geometric enhancement, yields local surface fields up to 10 GV/m [1]. Surface
breakdown is the source of undesirable dark currents from high-gradient accelerating
structures, which dissipate power from the accelerating RF field. Dark current also gives
rise to significant pollution of the experimental environment downstream of the electron
source. Modeling such dark currents, however, requires an accurate understanding of the
physical and chemical defects of the emitting surface. Oftentimes, these defects amount to
an effective enhancement of the field. We may then accurately model these emissions via
enhanced fields applied to one-dimensional, flat, chemically pure surfaces. This is a major
focus of the present paper.

Furthermore, peak surface-enhanced electric fields typically exceed 10 GV/m in laser-
induced field emission experiments. Peak transient fields as large as 80 GV/m have
been achieved on gold-coated nanoblades with an ultrafast, 800 nm laser via plasmonic
enhancement [2,3]. For these parameters, the Keldysh parameter is valued at γ ≈ 0.23 [4],
identifying the tunneling process as dominant compared to the multiphoton emission
process. Additionally, the transverse motion induced by these fields is negligible for such a
nanostructure—see Appendix A. It is therefore appropriate to model laser-induced field
emission for this case as a quasi-static one-dimensional field emitter, indicating a need to
explore ES field emission at this extreme.

The focus of this paper is field electron emission, so the word “field” will refer to the
surface-enhanced ES field at a metallic emitter in the following discussion. By convention,
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this field is directed into the emitter such that electrons in a vacuum are extracted from
the surface. Note that this paper attempts to model field electron emission for fields up to
80 GV/m. Only the lower limit (usually less than 10 GV/m) is directly applicable to field
electron emission experiments (with ES or RF fields), while the upper limit may be used
quasi-statically to model laser-induced field emission.

The conventional model of field electron emission is the Fowler–Nordheim (FN)
framework. It is a one-dimensional quantum mechanical model that arises from solving
the time-independent Schrödinger equation (TISE). The FN framework typically employs
two simplified PEs. One is the exact triangular (ET) PE of the form U(z) = φ− eFz outside
the surface, where φ is the work function, e the elementary charge, F the ES field, and z the
distance from the surface. It is set to a constant within the metal to reflect the effectively
free electron dynamics. Although the ET PE is an unrealistic model of a metallic surface,
it admits analytical solutions under the FN framework [5]. The other model of interest is
the Schottky–Nordheim (SN) PE given by U(z) = φ− eFz− e2

16πε0z , where the last term
corresponds to the image-charge PE [6]. The image-charge PE oversimplifies the electron
exchange and correlation effects, but it has been widely used in the field electron emission
literature. In this study, we build more realistic one-dimensional PE profiles based on
DFT calculations. We carefully analyze the output of these calculations to build physically
meaningful PE profiles as a function of the field.

Instead of solving the TISE exactly, the conventional FN framework uses the Wentzel–
Kramers–Brillouin (WKB) approximation to find the electron transmission coefficient
(the probability that an incident electron would transmit through a PE barrier). The
transmission coefficient as a function of the electron normal energy is given by
D(En) = e−G(En), where the Gamow coefficient is G(En) =

√
8me
}
∫ √

U(z)− Endz, with
definite integration performed between the two classical turning points zlim provided by
U(zlim) = En. The variable me is the electron mass, U(z) is the electron PE as a function of
longitudinal position, and En is the normal energy (total energy minus the surface-parallel
kinetic energy) of the electronic state under consideration. It has been noted, however, that
the WKB approximation is only strictly true at low fields and for smooth PE profiles [7].
High-precision numerical techniques have therefore been developed to calculate the trans-
mission coefficient. For the ET PE, there are exact solutions in terms of Airy functions
and their derivatives [8]. No closed-form solution has been found for the SN PE, not to
mention the PE we derive from DFT calculations. Mayer has used the transfer-matrix
(TM) method to numerically solve the transmission coefficients from ET and SN PE. The
TM method discretizes the PE and takes it to be a piecewise constant, allowing us to
solve for the wavefunction by applying boundary conditions within each interval [9]. In
this study, we compare the TM method with the Runge–Kutta method for obtaining the
transmission coefficient.

In the FN framework, the decay width, describing the exponential dependence of the
transmission coefficient on normal energy, is defined as d−1 = − ∂G

∂En
. A first-order Taylor

expansion of G around the Fermi level leads to a simple formula for the emission current
density J = zsd2

FDF, where zs is the Sommerfeld’s free electron supply constant, and the
subscript F indicates evaluation at the Fermi level [5]. In this study, we substitute the
first-order Taylor expansion by an integral in the energy space and examine the correction
factor to the linear approximation. The emission current calculated following our numerical
procedure is more accurate, especially when used quasi-statically to model laser-induced
field emission.

2. Materials and Methods
2.1. DFT Calculation

There are ongoing experimental and computational efforts to study laser field emission
from Au-coated nanoblades, which are one-dimensional structures with a sharp edge
used for plasmonic field enhancement [3,10]. Inspired by such efforts, we chose to study
a face-centered cubic Au lattice with (100) surface orientation. We used the package
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JDFTx to implement all DFT calculations [11]. As shown in Figure 1, each Au (100) slab
consisted of 15 layers of Au atoms, with each layer extending infinitely on a (100) lattice
plane with periodic boundary conditions. The innermost 9 layers were fixed, while the
outermost 3 layers on either side were optimized along the direction perpendicular to the
surface to minimize the Gibbs free energy. JDFTx uses periodic boundary conditions in all
directions, so an infinite array of Au (100) slabs was modeled. The periodic slab-to-slab
spacing was equivalent to 26 layers such that the interaction between neighboring slabs was
negligible [12]. The lattice constant of Au was fixed to 771 pm [13]. We considered both the
ultrasoft GBRV pseudopotential (PP) [14] and the norm-conserving SG15 PP [15]. Although
a norm-conserving PP generally provides more accurate results at the cost of computational
efficiency, our calculation using the SG15 PP failed to converge. We therefore chose to
continue with the GBRV PP. For electron exchange-correlation (XC) functionals, previous
studies of similar systems have used the generalized gradient approximation (GGA) of
the form Perdew–Wang 1991 (PW91) and Perdew–Burke–Ernzerhof (PBE) [12,16–18]. It
turned out that the PBE XC functional resulted in a more reasonable Kohn–Sham (KS)
PE profile (whose creation is described in Section 2.2) for our system, whereas the PW91
profile had a jump discontinuity and shot above the vacuum level before converging back
(Figure 2). We therefore chose the PBE XC functional for all the following calculations. Our
DFT calculation also used truncated Coulomb potentials [19], total energy minimization
with auxiliary Hamiltonian [20], and smooth electrostatic potentials with atom-potential
subtraction [21]. We performed a convergence test on the 12 × 12 × 1, 16 × 16 × 1,
and 20 × 20 × 1 k-point grids, and we chose 20 × 20 × 1 for best convergence. Since
the wavefunctions were expanded with a planewave basis, we performed an additional
convergence test on the planewave energy cutoff, with the optimal value at 50 Hartrees
(the atomic unit of energy, 1 a.u. = 1 Hartree ≈ 27.2114 eV).
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plotted along the normal direction through the surface, from the center of the slab to the center of the
vacuum separating neighboring slabs. Periodic oscillations below z ≈ 30 Bohr radii (the atomic unit
of length, 1 a.u. = 1 Bohr radius ≈ 52.92 pm) correspond to each layer of atoms inside the slab. Note
that the PBE profile can be optimized by increasing the size of k-point grid and planewave energy
cutoff and applying a Gaussian filter.

2.2. DFT Results Post-Processing

JDFTx yielded the KS PE on a three-dimensional grid in real space. To construct a
one-dimensional model, we extracted the PE along the longitudinal line x = a/2, y = 0,
which avoided all nuclei [22]. To decrease the high-frequency noise in the KS PE outside the
slab, we employed a Gaussian filter with a standard deviation of one grid-point separation.
To obtain the KS PE at nonzero field, one solution was to implement a new DFT calculation
with such a field. However, the KS PE failed to converge to the vacuum level for fields
greater than 1 GV/m, a problem also previously encountered in the literature [22]. Instead,
we used the KS PE from the zero-field calculation and added a linear PE in vacuum under
the dipole approximation. The location where the field begins is known as the electrical
surface, which can be calculated from the electrical centroid rule [23,24]. It states that
the electrical surface coincides with the centroid of the induced charge densities or the
excess charge densities induced by an applied field. As shown in Figure 3, an applied
field induced an excess of electrons on the rightmost surface of the slab, as shown by
the maximum-induced electron density (the opposite of induced charge density). Note
that the centroid, or the electrical surface, did not coincide with the geometric surface of
the slab. The centroid was calculated for fields 100 MV/m, 300 MV/m, 700 MV/m, and
1 GV/m, using the charge densities from corresponding DFT calculations and from the
zero-field DFT calculation. As the fluctuations in the centroid were small, we assumed
that the electrical surface did not change significantly for fields greater than 1 GV/m. We
therefore took the average of the centroid locations to be the electrical surface.
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Figure 3. Longitudinal profiles of the induced electron density ρinduced at fields of 100 MV/m,
300 MV/m, 700 MV/m, and 1 GV/m. The center of the slab is at 0 Bohr radii, and the solid green dot
represents the position of the outermost atom, which is fixed for all the fields presented. The dashed
orange lines show the centroid locations of the induced electron density, which are 30.40 Bohr radii
(F = 100 MV/m), 30.49 Bohr radii (F = 300 MV/m), 30.34 Bohr radii (F = 700 MV/m), and 30.40 Bohr
radii (F = 1 GV/m).
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The zero-field KS PE is presented along with the ET and SN PEs (Figure 4). The
periodic oscillations in the KS PE, up to z ≈ 30 Bohr radii, were due to the nuclei inside the
slab. Regions beyond z ≈ 30 Bohr radii showed a gradual transition to vacuum. The ET
and SN PEs inside the slab were set to the average of the KS PE at −8.88 eV. The Fermi level
was placed at 0 eV, so the vacuum level of the PE was equal to the work function of Au (100)
at 5.22 eV [13]. The depth of the PE well was therefore 14.10 eV. The jump discontinuity
in the ET PE and the image plane of the SN PE both coincided with the electrical surface.
Note also that the KS PE had a “bump” around z ≈ 34 Bohr radii, where we expected
the curve to be smooth. It was therefore reasonable to generate a piecewise-defined PE
to remove this feature. The first piece we chose to be the same as the KS PE up to some
point before the observed bump, while the second piece should have been smooth and
monotonic while ultimately approaching the vacuum level. A simple model for the second
piece was the image-charge PE. The problem at hand was to determine the optimal location
that connected these two pieces. We wanted the new PE to be continuous and differentiable,
resulting in two boundary conditions that completely specify the location of this junction.
We termed this piecewise-defined PE the image-charge corrected (IC) PE. Finally, under
an applied field, these four PEs had different barrier heights: the ET PE was the highest,
followed by the KS, IC, and the SN PEs. Generally, the higher the PE barrier, the smaller
the emission currents tended to be, as anticipated by the WKB approximation.
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2.3. Transmission Coefficient

The WKB approximation assumed the PE barrier to be slowly changing, high and wide
on the scale dictated by the electron momentum. This broke down near the metal-vacuum
interface, where the PE changed sharply, especially for the ET PE. The assumption no
longer holds for a large field, which may reduce the height and width of the PE barrier
significantly. To obtain more accurate results and to extend the FN framework to fields
above 10 GV/m, we needed to replace the WKB approximation with a more quantitatively
accurate method.

To obtain the transmission coefficient, we wanted to solve the one-dimensional TISE
for any discretized PE to obtain the full wavefunction. While the TM method is tailored to
this problem, there are many numerical techniques to solve general initial value problems
for ordinary differential equations. We first performed cubic spline interpolation to obtain
a continuous PE. Then, we discretized it on increasingly finer grids to test the convergence
of such methods. It turned out that the TM method and the explicit Runge–Kutta method
of order 8 (DOP853) [25] had the best accuracy. We examined the ratio of transmission
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coefficients from the two methods from 500 MV/m to 80 GV/m (Figure 5). The discrepancy
was larger at smaller fields, presumably because of numerical errors inherent in extremely
small transmission coefficients. The larger discrepancy for the ET PE might have been
caused by its jump discontinuity. Even then, with a sufficiently small step size, the results of
the two methods deviated by less than 1% overall. This indicated that both the TM method
and DOP853 produced accurate, replicable results for this problem. For computational
efficiency, we used the TM method for the following computations.
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2.4. Emission Current Densities

Once we had the transmission coefficient as a function of electron normal energy, we
computed the emission current densities by integrating over the energy-space diagram,
assuming a free electron distribution [5]. The general result at zero emitter temperature took
the form J = −zs

∫ 0
−EF

EnD(En)dEn, where EF represented the Fermi energy (Appendix B).

According to the free electron assumption, we had EF = }2

2me

(
3π2n

)2/3, with n the number
density of free electrons in bulk Au. The integral above was then performed numerically.

2.5. Summary of Numerical Techniques

To summarize, we first set up a DFT calculation with an Au (100) lattice and selected
the appropriate PP and XC functional for this system. The size of the k-point grid and
planewave energy cutoff were both determined with convergence tests. This DFT calcu-
lation returned a 3D KS PE, so we needed to convert it to 1D for more straightforward
solutions. Next, we calculated the KS PE as a function of the field by determining the
location of the electrical surface. An IC correction was performed to build a smooth PE
profile. To find the transmission coefficient accurately, we chose the TM method. Then, we
integrated the transmission coefficient over energy space to obtain the emission current
density as a function of the applied field. This procedure is illustrated in Figure 6.
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3. Results
3.1. Transmission Coefficient and Pre-Factor Behavior

Using the TM method, we calculate the transmission coefficient as a function of the
field for all 4 PE profiles, as shown in Figure 7. The reference field, or the field at which
the PE profile is reduced to below the Fermi level, is also presented. For the SN PE profile,

this reference field is given by FR = 4πε0φ2

e3 ≈ 18.92 GV/m. The reference field does not
exist for our KS and IC PE, as their respective surface barriers are never reduced to below
the Fermi level. Note that FR is close to the inflection points of these S-shaped curves of
the transmission coefficient. The region beyond FR is the electron “flyover” regime, where
the normal energy of an incident electron is above the PE barrier. Because of quantum
mechanical reflection, the transmission coefficient is always smaller than 1. This effect
cannot be observed using the WKB approximation, which completely breaks down for
fields beyond FR. We also observe that, for all PE profiles, the transmission coefficient slowly
approaches unity as the field increases. Quantitatively, the SN transmission coefficient is
the greatest, followed by IC, KS, and ET. This quantitative relation reflects that of the PE
barrier heights: the SN PE is the lowest, followed by IC, KS, and ET.
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Forbes argued for the reintroduction of a pre-factor to the WKB transmission coeffi-
cient [7]—in the case of a high PE barrier (small fields), the Landau and Lifschitz formula
(their Equation (50.12)) provides the relation D = Pe f f e−G [26]. Pe f f is an effective pre-
factor to the WKB result. For the purpose of comparison with Mayer [27], we present this
pre-factor from 1 GV/m up to 80 GV/m and then note the range of applicability of this
formula.

Figure 8 presents this pre-factor obtained from the TM method. In the low-field limit,
the pre-factor for the ET PE is close to 2, a result consistent with the existing literature [27,28].
The pre-factor for SN is numerically unstable for fields up to 3 GV/m, but for higher fields,
it shows a V-shaped curve with the cusp at the reference field FR. This cusp is the result
of taking the WKB transmission coefficient to be 1 in the electron “flyover” regime. The
V-shaped curve for SN is qualitatively consistent with that of Mayer. Although he presented
the pre-factor with increasing electron normal energy, the effect is similar to increasing the
field—both methods reduce the height of the PE barrier that an electron sees. Both the
KS and IC PEs have comparable pre-factors, which are close to 1 for fields smaller than
10 GV/m but decrease for fields greater than FR. As pointed out by Forbes, the pre-factor
is close to unity for “ideally smooth” PE profiles [7]. The low-field behavior of KS and
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IC pre-factors is therefore likely due to the “ideally smooth” shape of their PE profiles, in
contrast to the jump discontinuity in the ET profile or the steep slope of the SN profile. Due
to the “bump” in the KS PE profile, its pre-factor deviates from unity faster than the IC
pre-factor. For fields greater than FR, all the pre-factors quickly depart from their low-field
behaviors, indicating the breakdown of the Landau and Lifschitz formula at high fields.
In summary, our results confirm the necessity of the pre-factor for the ET and SN PEs
at fields below FR, while indicating departure from the Landau and Lifschitz formula at
higher fields.
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3.2. Correction Factor to the First-Order Taylor Expansion

We present an additional correction factor c to the emission current densities, which
are traditionally calculated by expanding the Gamow coefficient G to the first order
within the integral over the energy space. Our emission current density takes the form
J = czsd2

FDF. Numerical calculations of dF are presented in Appendix C. For both the first-
order Taylor expansion and numerical integration, we use the TM transmission coefficients
for consistency.

This correction factor c is close to unity for fields below 10 GV/m but rapidly decreases
around FR (Figure 9). This confirms the general validity of the first-order Taylor expansion
for field electron emission, but modifications are necessary in the high-field limit attainable
in laser-induced field emission.

3.3. Fowler–Nordheim Plot

Finally, we present the emission current density as a function of the field, using the
well-known Fowler–Nordheim plot (Figure 10). For an ET PE, the analytical solution on
this plot is a straight line with a negative slope. Our results show this behavior for all four
PEs, for fields below FR. The slopes of all curves are comparable in this region, so our new
PEs (KS and IC) would not account for the experimentally deduced field enhancement
factor that tends to increase these slopes [29]. For fields greater than 1/FR, all four curves
are concave down, indicating that the emission current densities are smaller than expected.
This is most likely due to the overprediction by the first-order Taylor expansion in the FN
framework (Figure 9). Again, the results for fields above FR are not easily applicable to
ES field emission, but they may be useful as a quasi-static approximation to laser-induced
field emission.
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The difference in emission current densities among the four PEs is most pronounced
at low fields. The SN PE has the greatest predicted emission current densities, followed by
the IC, KS, and ET PEs. This hierarchy is also the order of PE barrier heights from lowest to
greatest, as would be expected.

4. Discussion

This study is part of the continuing efforts to build accurate numerical models for
field electron emission. We used a generalized FN framework for greater fields of up to
80 GV/m by avoiding the WKB approximation and the first-order Taylor expansion of the
Gamow coefficient. The correction factors due to these two effects are presented. Except
for the effective pre-factor to the ET PE, both correction factors are less than 1 for all PEs
in the high field limit. We also obtained the KS and IC PEs from a DFT calculation, and
these two PEs produce similar results despite the numerical artifact in the KS PE. The
current framework can be employed to study different metal surfaces, including those
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with defects and adsorbates, as they can be partly modeled by DFT [30,31]. This study
also has implications for laser field emission, which in the high field limit can be studied
quasi-statically using instantaneous tunneling currents.

Our numerical method, though, has several limitations. First, the source of the artifact
in the one-dimensional KS PE is unclear. It can be examined by optimizing the lattice
parameter or using a larger lattice in DFT, both of which are more computationally expen-
sive. Second, the generation of the KS PE at fields above 1 GV/m assumes the electrical
surface to be fixed. Although this seems true for fields up to 1 GV/m, this claim needs
further examination in the high field limit. Finally, metallic surfaces cannot withstand
a static field as large as 80 GV/m, which will necessarily lead to breakdown. Therefore,
our results in the high-field limit should be regarded as applicable to transient, ultrafast
perturbations only.

Our DFT-based field emission model can be further improved. We have not con-
sidered the band structure of a real metallic surface and instead used the free electron
model. Neither have we incorporated thermionic effects on the Fermi–Dirac distribution
of electrons [28]. Incorporating these two effects would lead to a more complete one-
dimensional model of field electron emission. We are well-situated for generalization to a
three-dimensional model since the KS PEs are given on a three-dimensional grid. Such a
calculation may be helpful in determining the effects of transverse momentum on emis-
sion, which could have implications on emitted beam quality in electron sources, such
as nanoblades and nanotips. To evaluate this system, one possible solution is to use the
three-dimensional TM method to calculate the transmission coefficient [27]. From there, we
can then additionally incorporate surface effects, such as defects and adsorbates, into our
field electron emission model.
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Appendix A

Peak transient fields as large as 80 GV/m have been achieved on gold-coated nanoblades
with an ultrafast 800 nm laser via plasmonic enhancement [2,3]. For these values, the

Keldysh parameter is γ =
√

φ
2Up
≈ 0.23 [4], where φ is the work function and Up the

ponderomotive energy. This identifies the tunneling process as dominant when compared
to the multiphoton emission process. The transverse motion induced by the laser driver,
however, is of moderate concern. Assuming a vacuum planewave driver, the transverse
oscillation magnitude induced by the magnetic component of the field is β0 ≈

Upλ

4πmc2 ≈
0.0125 a.u. � 1 a.u. [32], where 1 a.u. ≈ 52.92 pm is the atomic unit of length, the Bohr
radius. The variable λ is the laser wavelength, m the electron mass, and c the speed of
light in vacuum. This puts us squarely within the “tunnel oasis”, permitting the use of a
quasi-static tunneling model.

Even so, considering that the fields are achieved with plasmonic enhancement, the
ratio of the magnetic field strength at a flat metal–vacuum boundary compared to that for a
planewave in a vacuum is 1+ε

ε2 for ε, the real component of the relative permittivity [33]. At

https://github.com/yimingli57/field_electron_emission.git
https://github.com/yimingli57/field_electron_emission.git
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800 nm the permittivity’s magnitude is approximately |ε| ≈ 25 [34], and thus, the magnetic
field would have even less an effect than would be assumed by the above equation for β0.

On the other hand, there are transverse electric fields (transverse to the surface normal,
along the propagation direction) in surface plasmons as well. The transverse field strength
compared to the longitudinal field strength is

∣∣∣ Ex
E0

∣∣∣ = 1√
|ε|

. The transverse ponderomotive

amplitude due to this field is ap,⊥ = e|Ex |
mω2 = eE0λ2

4π2
√
|ε|mc2

. With the same values as above,

we get a transverse oscillation magnitude of ap,⊥ ≈ 10 a.u. It should be noted that the
motion here is along the ridge of the nanoblade under consideration, which is smooth
and thus transversely uniform. While this motion is large on the atomic scale, it is negli-
gible on the next length scale—the apex radius of curvature, with a minimal estimate of
20 nm ≈ 378 a.u. [3]. Thus, the tunneling process may again be treated in one dimension
and quasi-statically without the consideration of magnetic or transverse electric effects.

Appendix B

According to the free electron assumption, the electrons are evenly distributed in total
energy and normal energy below the Fermi level. The emission current density takes the
form J = zs

s
D dKpdE, where Kp is the surface-parallel kinetic energy and E the electron

total energy [5]. In our calculation, the transmission coefficient is only a function of electron
normal energy En, so we use the change of variables to convert the integral. The complete
integral can be written as follows:

J = zs

∫ 0

−EF

∫ EF+E

0
D
(
E− Kp

)
dKpdE

By conservation of energy, En = E− Kp, so we can change the inner integral from Kp
to En:

J = zs

∫ 0

−EF

∫ E

−EF

D(En)dEndE

Now, we reverse the order of integration:

J = zs

∫ 0

−EF

∫ 0

En
D(En)dEdEn

The inner integral over E no longer explicitly depends on E, so it can be performed
directly. The final result is as follows:

J = −zs

∫ 0

−EF

EnD(En)dEn

Appendix C

Without the WKB approximation, the inverse of the decay width is defined as
d−1

F = ∂
∂En

ln (D(En))|F, evaluated at the Fermi level En = EF. D(En) is calculated nu-
merically using the TM method. This expression is then differentiated numerically using
the central-difference method. The initial step size is 0.1 eV, and it is halved after each itera-
tion until the result from the current iteration converges to within 0.01% of the result from
the previous iteration. The results of numerical differentiation are presented in Figure A1.
Note that the decay width for the SN PE blows up, another suggestion of the breakdown of
the traditional FN framework for fields greater than FR.
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