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Abstract: Ensuring that the world’s population meets its food needs, despite water restric-
tions, can be significantly improved by increasing irrigation efficiency and productivity.
Achieving this goal necessitates technological advancements in control systems. Therefore,
the implementation of effective control systems across the entire irrigation water distri-
bution chain is crucial and requires technological modernization. This paper presents a
control scheme that combines the benefits of model predictive control (MPC) and active
disturbance rejection by using generalized proportional integral (GPI) observers. The pro-
posed control scheme was applied to a three-canal irrigation system. The simulation results
confirm that the proposed controller is robust to disturbances and ensures accurate tracking
for all reference levels. The controller’s performance is highlighted by the improvement
in response time and considerable reduction in overshoot compared with the optimized
proportional integral (PI) controllers. Additionally, the use of GPI observers allows for the
precise estimation of nonlinear disturbances and phase variables, enhancing the robustness
of the system. The efficiency of the observer is due to its ability to adequately estimate
global additive disturbances, including unknown parameters and external disturbances in
the input–output dynamics.

Keywords: open-flow canals; active disturbance rejection control; irrigation systems; robust
model predictive control

1. Introduction
Irrigation consumes large amounts of water. It is estimated that irrigation represents

80% of the world’s total freshwater consumption, and that only 30% of this water is delivered
to plants [1]. This low efficiency in water distribution can be attributed to several factors.
Significant losses occur owing to evaporation, infiltration, and surface runoff during water
transport through the canals. Additionally, improper maintenance of irrigation infrastruc-
ture, such as cracked or unlined canals, exacerbates seepage losses [2]. Inefficiencies are
also linked to outdated or poorly managed water allocation practices that fail to match crop
water needs with the delivery schedules. Furthermore, over irrigation, often caused by a
lack of precise control systems, leads to water wastage and uneven distribution across fields.
These factors collectively contribute to the substantial gap between the volume of water
extracted and the amount effectively utilized by plants.

Current irrigation systems face several challenges, including water scarcity, inefficient
water distribution, and the need for sustainable agricultural practices. These challenges
are exacerbated by climate change and increasing global food demands. The necessity for
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improved control of irrigation systems is critical for enhancing water use efficiency and
ensuring reliable water delivery to crops. Despite advancements in control technologies,
there remain gaps in the literature regarding the integration of robust control strategies that
can handle the nonlinearities and uncertainties inherent in irrigation systems [3–5].

Automatic control techniques are widely used in irrigation canals, most of which are
based on local gate control using classical approaches such as PI controllers [6]. These
decentralized approaches provide reasonable performances in many cases. However,
because the coupling effect between different local controllers is not considered, there is
often significant loss in the performance of the control system [7]. Studies such as [8–13]
have used new techniques for the optimal tuning of the parameters of these controllers.

A global controller, or centralized control, is an excellent alternative for addressing
the problem of dynamic coupling in multivariate systems. Model-based predictive control
(MPC) approaches are a family of control algorithms whose common properties are state
and output predictions using an internal model and performing optimization with current
and forecasted future data [14,15]. These controllers have shown excellent results in open
channels [16–21]. However, the inclusion of disturbance models is a typical prerequisite
in any standard industrial MPC implementation because the sources of disturbances are
known [16]. The difficulty in tuning these disturbance models lies in the unknown nature
of the disturbances.

Some studies, such as [18], add a feedforward control component to a predictive
control scheme for irrigation systems. This approach aims to counteract the effects of
known disturbances by adjusting the control actions in advance, thereby enhancing system
performance. However, the use of such a stage requires accurate measurement of the
external disturbances, which can be quite challenging in real-world applications owing to
the dynamic and unpredictable nature of environmental factors, such as weather conditions,
soil moisture variability, and water flow inconsistencies.

Disturbance observers are often employed to adress this issue because they provide
an effective estimate of disturbances without the need for direct measurement [22,23].
Disturbance observers monitor the system output and estimate the impact of disturbances
based on deviations from the expected behavior. This estimation is then used to compensate
for disturbances in real-time, thereby improving the control accuracy. Moreover, the use of
disturbance observers has an added benefit: not only can they handle external disturbances,
but they can also account for uncertainties in the plant model parameters or unmodeled
dynamics. By treating these uncertainties as part of the disturbance, the control scheme can
significantly improve the robustness and adaptability of the system to varying operating
conditions, ensuring a more reliable and efficient irrigation process.

This paper proposes an active disturbance rejection approach combined with model-
based predictive control to improve the performance of the irrigation channels. The
proposed control scheme combines the benefits of MPC and active disturbance rejection
using generalized proportional integral (GPI) observers and is applied to a three-canal
irrigation system. The simulation results confirm that the proposed controller is robust to
disturbances and ensures the accurate tracking of all reference levels. The controller’s per-
formance is highlighted by the improvement in response time and considerable reduction
in overshoot compared with traditional proportional integral (PI) controllers. Additionally,
the use of GPI observers allows for the precise estimation of nonlinear disturbances and
phase variables, enhancing the robustness of the system. The contributions of this study
include the development of a robust control scheme, application to a practical system, and
demonstration of improved performance metrics.

The document is organized as follows: Section 2 presents the Saint-Venant equations
and dynamic model of the experimental channel. Section 3 discusses the design of
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the predictive controller and the disturbance observer for the experimental channel.
Section 4 presents a comparison of the results of the proposed robust controller with
those of a classical controller. Finally, Section 5 presents conclusions based on the
experimental results.

2. Modeling of Hydraulic Channels
2.1. The Saint-Venant Equations

In addition to issues related to inefficient water management and unsatisfactory service
to farmers, the hydraulic limitations of irrigation canals also significantly contribute to water
loss and low efficiency. Factors such as canal design, wall roughness, inadequate slopes,
and flow conditions directly impact infiltration and evaporation losses, as well as conduit
discharge capacity [24]. These hydraulic characteristics, which are often interdependent
with control and management strategies, must be considered when seeking solutions to
improve the performance of irrigation systems. Therefore, the integration of models that
include hydraulic aspects is essential to achieve more robust and effective control.

The one-dimensional equations governing unsteady open channel flow are widely
known as the Saint-Venant equations. These equations were derived based on several key
assumptions [24,25]:

• The flow is considered one-dimensional, implying that the velocity is uniform across any
cross-section, and that the free-surface profile in the transverse direction is horizontal.

• The curvature of the streamlines was assumed to be minimal, and the vertical acceler-
ation of the fluid was negligible. Consequently, the pressure distribution throughout
the flow is hydrostatic.

• The flow resistance and turbulent losses are consistent with those of a steady uniform
flow, regardless of depth variations, as long as the flow depth and velocity remain
the same.

• The slope of the channel bed is small enough to allow the following approximations:

cos θ ≈ 1, sin θ ≈ tan θ.

• The density of the water is constant throughout the flow.

The Saint-Venant equations have traditionally been considered a complete tool for
modeling irrigation system sections [24]. These processes are modeled by employing
hyperbolic equations for the conservation of mass and momentum that represent the
process of one-dimensional flow in a free sheet:

∂Aw(x, t)
∂t

+
∂Q
∂x

= ql (1)

∂Q
∂t

+
∂(Q2/Aw)

∂x
+ gAw

∂Z
∂x

= −gAwS f + kqlV(x, t) (2)

where Aw(x, t) is the wetted area [m2]; S f is the friction slope; ql(x) is the lateral discharge;
Q(x, t) is the discharge [m3/s] across section Aw(x, t); Z(x, t) is the water depth [m];
V(x, t) is the average velocity [m/s]; I is the bed slope; and g is the gravitational accelera-
tion [m/s2] [26]. The initial and boundary conditions of the system are as follows.

Z(x, 0) = Z0(x), Q(x, 0) = Q0(x) (3)

Z(0, t) = Zi(t), Q(0, t) = Qi(t), (4)

Z(X f , t) = Z f (t), Q(X f , t) = Q f (t)
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2.2. Simplified Linear Model for a Stretch of Channel

In some studies a method was proposed that linearizing the Saint-Venant equations
around a state of equilibrium transforms them into the Laplace domain [1,27,28]. For a
channel section in which there are no lateral retreats, the equations that relate the y levels
at the origin and the end of the section with the q flows are[

y(0, s)
y(1, s)

]
=

[
p11(s) p12(s)
p21(s) p22(s)

][
q(0, s)
q(1, s)

]
(5)

where the transfer functions in the Laplace domain pij(s) are the integrator, delay, and
zero (IDZ) models. The parameters that define the IDZ models are obtained analytically
from the physical parameters of the section, such as the Manning coefficient, geometry, and
slope, and they capture most of the flow dynamics [29].

The IDZ models corresponding to the end of tranche level y(L, s) are

p21(s) =
(

1
Ads

+ bd

)
e−τds (6)

p22(s) =
(

1
Ads

+ b̄d

)
(7)

where Ad is the equivalent area, bd and b̄d are static gains, and τd is the delay. These values
are functions of the physical parameters of the section; their exact expressions can be found
in [29]. In distribution channels, it is recommended to use gate openings or closures as
control variables rather than for manipulating flow rates. Therefore, Equation (5) must
be transformed into another equivalent system of equations in which the inputs are the
variations in the gates at the origin c1 and the end of section c2. The flow that circulates
through a semi-submerged gate is defined as

Q = CdLcC
√

2Y1 − Y2 (8)

Lc is the gate width, C is the opening, Cd is the discharge coefficient, Y1 and Y2 are the
upstream and downstream levels of the gate, respectively, and g is the gravitational ac-
celeration. Linearizing this expression to consider small deviations in the flow around an
equilibrium point, the following expression is obtained,

q = K1Y1 + K2Y2 + KcC (9)

where Kc = Q/Lc, K1 = Q/2(Y1 − Y2) and K2 = −K1. By substituting into Equation (5)
the flow in Equation (9), we introduce the general expressions of the IDZ models and obtain
the equation for the end-of-span level. In this context, the “end-of-span level” refers to the
water level at the downstream boundary of a canal section or span, which is crucial for
maintaining the desired hydraulic conditions and ensuring water delivery accuracy.

2.3. PAC-UPC Experimental Channel

The control algorithm testing laboratory of the Polytechnic University of Catalonia
(PAC-UPC for its acronym in Spanish) is a laboratory-scale model of an irrigation canal, sit-
uated at the Polytechnic University of Catalonia. Specifically designed for conducting both
fundamental and applied research in the domain of irrigation canal control, this channel
integrates various subfields, such as instrumentation, modeling, and water measurement
of irrigation canals.

Originally conceived to replicate the significant transport delays encountered in real ir-
rigation control scenarios, the design features a long, zero-slope, rectangular cross-sectional
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canal. However, owing to spatial limitations within the laboratory, a serpentine configura-
tion was adopted to maximize the length of the canal within the confined area.

This study utilizes the PAC-UPC channel, which measures 220 m in length and 0.44 m
in width, maintains a zero slope, and exhibits a transport delay of 100 s, as illustrated in
Figure 1. This delay represents the time taken for water to traverse from the start to the end
of the canal. The PAC-UPC includes three motorized gates and several extraction points,
and is arranged into three pools, each demarcated by one of the gates, with gravity intakes
positioned at the downstream end of each pool [16].

Figure 1. PAC-UPC three-pool configuration.

The equations that relate the final levels of the section with their corresponding origin
and end gates for the three study pools of the PAC-UPC are

h1(s) = G11(s)u1(s) + G12(s)u2(s) (10)

h2(s) = G22(s)u2(s) + G23(s)u3(s)

h3(s) = G33(s)u3(s)

By employing parametric identification with step-type inputs, like in ref. [28], the
following dynamic model for the three pools of the UPC-PAC channel were obtained.

G11(s) =
0.5(s + 0.007)

s
e−24s G12(s) =

−0.5(s + 0.011)
s

e−4s

G22(s) =
0.6(s + 0.02)

s
e−45s G23(s) =

−0.4(s + 0.004)
s

e−4s

G33(s) =
0.45

375s + 1
e−25s

As observed, all models conform to the integrator-delay-zero (IDZ) type, with the
exception of the G33(s) model, which is a first-order model featuring a time delay. This
variation in modeling approaches stems from the presence of a spillway at the conclusion
of the third segment of the canal, rather than a semi-submerged gate.

3. Robust Controller Design
The development of a model that integrates robust strategies for irrigation systems is a

complex yet feasible task that uses advanced control and modeling approaches. Tools such
as model-based predictive control (MPC) allow for the incorporation of uncertainties into a
model through disturbance observers and active rejection techniques. Furthermore, the re-
liability of these models can be assessed both quantitatively and qualitatively. Quantitative
methods include performance metrics, such as the mean squared error (MSE), settling time,
and overshoot reduction. On the other hand, qualitative assessments can be conducted
through comparative studies with traditional controllers, sensitivity analysis to critical
parameter changes, and experimental validation under dynamic conditions.
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This section presents a control approach that combines model-based predictive con-
trol and a disturbance observer for active rejection of disturbances in an experimental
irrigation channel.

3.1. Predictive Control Overview

Model-based predictive control (MPC) is a sophisticated control technique that is
widely recognized and adopted in various industrial and academic settings. The appeal of
this method lies in its ability to handle multivariable systems with constraints, thereby pro-
viding a future-oriented control strategy that adjusts actions based on predicted outcomes.

MPC operates by forecasting future outputs over a prediction horizon N, with these
outputs anticipated at each time step t using a process model. The predicted outputs
y(t + k | t) for k = 1 · · · N are dependent on the known values at time t and projected
future control signals u(t + k | t) for k = 1 · · · N − 1. These future control signals are
computed and implemented in the system.

The calculation of the control sequence u(t + k | t) for k = 1 · · · N − 1 involves an
optimization process aimed at minimizing the deviation of the process from a predefined
reference path w(t + k). Optimization typically minimizes a quadratic cost function based
on the discrepancy between the predicted output and the reference trajectory.

The immediate control signal executed during the process is u(t | t). Signals from other
times such as y(t) are disregarded because by the next time step, y(t + 1), the outcome
is already known, and thus, the control strategy updates using this new information.
Accordingly, the control signal for the subsequent time step, u(t + 1 | t + 1), is calculated
using freshly updated data.

To operationalize this strategy, MPC uses a foundational structure as depicted in
Figure 2. This structure utilizes a predictive model to forecast the future behavior of the
plant based on past and current values, along with optimal predictions derived from control
actions. The optimizer, considering the defined cost function and any imposed constraints,
computes these control actions.

Figure 2. Model-based predictive control (MPC).

One type of predictive control widely accepted in the industry and academia is
generalized predictive control (GPC) [30]. The formulation of GPC using the transfer
function structure is as follows:

A(z−1)y(t) = B(z−1)z−du(t − 1) + C(z−1)
e(t)
∆

(11)

Here, ∆ = 1 − z−1, e(t) is zero-mean white noise, A, B, and C are polynomials in the
delay operator z−1, and d is the dead time of the system and u(t) and y(t) are the input
and output variables, respectively. Polynomial C can be used for the optimal rejection of
disturbances, although its usefulness is greater in improving the robustness.

The GPC algorithm involves applying an optimization problem that minimizes the
following cost function:
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J =
N2

∑
j=N1

δ(j)[ŷ(t + j | t)− w(t + j)]2

+
Nu

∑
j=1

λ(j)[∆u(t + j − 1)]2 (12)

where δ(j) and λ(i) are weighting sequences that are generally constant. ŷ(t + j | t) is
the optimal prediction of the output j steps forward, obtained with known data at time t.
N1, N2, and Nu are the minimum prediction horizon, maximum prediction horizon, and
control horizon, respectively, and finally w(t + j) is the future reference trajectory. The
optimal prediction ŷ(t + j | t) is obtained by means of a recursive algorithm derived from
the solution of a Diophantine equation [31]. The solution of this algorithm indicates that
the future values of the output can be expressed as

y(t + j) = Fjy(t) + EjB(z−1)∆u(t + j − d − 1)

+Eje(t + j) (13)

Polynomials Ej and Fj are derived from the Diophantine equation. The noise terms of
Equation (13) will be investigated in the future. Therefore, the best prediction is given by

ŷ(t + j | t) = Gj(z−1)∆u(t + j − d − 1)

+Fj(z−1)y(t) (14)

where Gj(z−1) = Ej(z−1)B(z−1).
The solution to the GPC problem involves obtaining the sequence of control signals

u(t), u(t + 1), · · ·, u(t + N) that optimizes the cost function. Since the process has a dead
time of d sampling periods, the system output will only be influenced by the control signal
u(t) after d + 1 sampling periods. Therefore, the horizons of the GPC problem can be
redefined as N1 = d + 1, N2 = d + N, and Nu = N. Considering the following set of
predictions of j steps, it is noted that

ŷ(t + d + 1) = Gd+1∆u(t) + Fd+1y(t)

ŷ(t + d + 2) = Gd+2∆u(t + 1) + Fd+2y(t)
...

ŷ(t + d + N) = Gd+N∆u(t + N − 1) + Fd+Ny(t) (15)

which can be written as

y = Gu + F(z−1)y(t) + G′(z−1)∆u(t − 1) (16)

with
y = [ŷ(t + d + 1 | t) · · · ŷ(t + d + N | t)]T (17)

u = [∆u(t)∆u(t + 1) · · ·∆u(t + N − 1)]T (18)

G =


g0 0 · · · 0
g1 g0 · · · 0
...

...
...

...
gN−1 gN−2 · · · g0

 (19)
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G(z−1) =


(Gd+1(z−1)− g0)z

(Gd+2(z−1)− g0 − g1(z−1))z2

...
(Gd+N(z−1 − · · · − gN−1(z−(N−1))zN)

 (20)

F(z−1) =


Fd+1(z−1)

Fd+2(z−1)
...

Fd+N(z−1)

 (21)

The last two terms in the equation depend only on the past; therefore, these terms
can be grouped in vector f of the free response. By rearranging the previous equation, the
following expression is obtained,

y = Gu + f (22)

Under null initial conditions, the free response also becomes zero. By applying a unit
step to the input of the system at time t, we have ∆u(t) = 1, ∆u(t + 1) = 0, · · · , ∆u(t +
N − 1) = 0. The output sequence [ŷ(t + 1), ŷ(t + 2), · · · , ŷ(t + N)]T is the same as the first
column of the matrix G.

Therefore, the first column of the matrix G can be calculated as the response of the
system to the unit step in the manipulated variable. The free response can be calculated
recursively as follows:

fj+1 = z(1 − Ã(z−1))fj + B(z−1)∆u(t − d + j) (23)

where f0 = y(t) and ∆u(t + j) = 0.
Finally, the cost function is expressed in a matrix scheme, as follows:

J = (Gu + f − w)T(Gu + f − w) + λuTu (24)

where w = [w(t + d + 1) · · ·w(t + d + N)]T .

3.2. Disturbance Observer

Consider the following n-dimensional dynamical system:

y(n) = K(t, y)u + ψ(t) (25)

where K(t, y) is known, uniformly bounded, and far from zero, and the function ψ(t) can
be unknown and is uniformly bounded in an absolute manner, along with all of its time
derivatives up to a finite order m. To follow a smooth known trajectory y∗(t), t ∈ [0, ∞)

by means of a feedback control law u, the following observer-based linearizing controller
is proposed,

u =
1

K(t, y)

[
y∗(t)(n) −

n−1

∑
i=0

ki

(
yi − y∗(t)(i)

)
− ψ̂(t)

]
(26)
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where yi, i = 0, 1, . . . , n − 1, and ψ̂ = z1 are the variables generated by the following
extended Luenberger observer, also known as the GPI observer:

ẏ0 = y1 + λm+n−1(y − y0)

ẏj = yj+1 + λm+n−j−1(y − y0),

j = 1, . . . , n − 2

ẏn−1 = K(t, y)u + z1 + λm(y − y0)

żi = zi+1 + λm−1(y − y0), i = 2, . . . , m − 1

żm = λ0(y − y0) (27)

The controller coefficients k j are selected in such a way that the following polynomial
in the complex variable s is Hurwitz:

pcl(s) = sn + kn−1sn−1 + . . . + k1s + k0 = 0 (28)

Similarly, the coefficients λ0, . . . , λm+n−1 of the observer are selected such that the
following polynomial in the complex variable s is also Hurwitz.

pobs(s) = sn + λn−1sn−1 + . . . + λ1s + λ0 = 0 (29)

3.3. Integration of GPC and GPI Observer

The implementation of the generalized predictive control (GPC) integrated with the
generalized proportional integral (GPI) observer follows the steps outlined below.

1. Formulate the Transfer Function Model of the System:

• Develop the mathematical model of the irrigation canal system.
• Represent the system dynamics using transfer functions.

2. Derive the Polynomials A, B, and C:

• Identify the system parameters and use them to derive the polynomials.
• Ensure that these polynomials accurately capture the system’s behavior.

3. Set Up the Cost Function for the GPC Algorith:

• Define the prediction horizon N and control horizon.
• Construct the cost function, which is typically a quadratic function that balances

tracking performance and control effort.

4. Solve the Diophantine Equation to Obtain Ej and Fj:

• Use the system model and cost function to derive the Diophantine equation.
• Solve for polynomials Ej and Fj, which are used to predict future outputs.

5. Implement the GPC Algorithm to Optimize the Control Signals:

• The derived polynomials and cost functions were used to compute the optimal
control inputs at each time step.

• Ensure the control signals minimize the cost function while maintaining system
stability and performance.

6. Design the GPI Observer:

• Formulate the observer model to estimate the system states and disturbances.
• Tune the observer gains to ensure accurate and fast disturbance estimation.

7. Use the Disturbance Estimates from the GPI Observer to Adjust the Control Inputs in
the GPC Algorithm:

• Integrate the disturbance estimates into the GPC framework.
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• The control inputs are adjusted dynamically based on the observer’s output to
improve disturbance rejection.

3.4. Robust GPC with GPI Observer Design

This study aimed to regulate the water level at the downstream end of each canal pool
by adjusting the discharge (both upstream and downstream) in response to both known
and unknown disturbances. These disturbances include deviations such as the discharge
extracted from the canal at the downstream end of the pools.

The parameters for the predictive controller were selected based on an analysis de-
scribed in [16]. The weight parameter δ in Equation (13) was calculated as the reciprocals
of the squares of the maximum permissible values:

δi =
1

MVPe2 (30)

where MVPe is the expected maximum allowed value of the water level error signal and
δi is the i-th element of the δ weight matrix. Similarly, the parameters for weight λ of the
cost function were established as the reciprocals of the squares of the maximum allowable
deviations of the control variable. The formula used for the calculations is as follows:

λi =
1

MVPu2 (31)

The final tuned values of these parameters were δi = 1111 and λi = 4444 for all the
sections. When designing the disturbance observer, the planar outputs of the multivariate
system described in Equation (10) were used to formulate the dynamic system shown in
Equation (25). Utilizing these balanced outputs, a GPI observer was developed for each
controlled variable, with its characteristic equation provided by

pobs(s) = s3 + λ2s2 + λ1s + λ0 = 0 (32)

For Sections 1 and 2 of the canal the following characteristic polynomial was used for
the observation error:

pobs(s) = (s + 0.8)3 (33)

where the gains of both observers were given by λ0 = 0.512, λ1 = 1.92 y λ2 = 2.4.
Owing to its slow dynamics, in Section 3, the following characteristic polynomial for

the observation error was determined.

pobs(s) = (s + 1)3 (34)

whereby the observer’s gains were given by λ0 = 1, λ1 = 3 and λ2 = 3.

4. Numerical Validation Discussion
This section presents the simulation results of the GPC scheme with the proposed

disturbance observer, applied to the linear model of the PAC-UPC experimental canal
described in Section 2.3. The prediction horizons were set to 15 samples for segment 1 and 2
and 40 samples for segment 3. A sampling period of 10 s was used for the measurements
and control, with gate adjustments performed at the same interval.

Figures 3–5 present the simulation outcomes of the control tests conducted on the
UPC-PAC channel. In these charts, the red line illustrates the performance of the tuned PI
controller, whereas the blue line depicts the results of the proposed control scheme. The PI
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controllers were designed by optimizing the integral time squared error (ITSE) for each
section, that is, by minimizing the following objective function:

J(t) =
∫ ∞

0
te(t)2dt (35)

In Figure 3, a reference change is implemented for the level described in Section 1.
It is observed that the GPC controller with disturbance rejection rapidly attains the set
reference compared with the optimized PI controller. While the PI controller experiences an
overshoot greater than 25% and takes approximately 12 min to adjust to the 10 cm reference
change, the robust controller achieves the target in approximately 3 min. However, the cost
of ensuring accurate tracking of the reference involves a slight fluctuation in the other two
controlled variables: a maximum deviation of 2 cm for y2 and approximately 4 mm for y3.

Figure 3. Controller validation for reference tracking for segment 1.

Figure 4. Controller validation for reference tracking for segment 2.
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Figure 5. Controller validation for reference tracking for segment 3.

In Figure 4, a reference change of 10 cm is displayed for the level in the second segment.
Once again, the proposed controller demonstrates rapid reference tracking in comparison
to the tuned PI controller. The MPC control with observer stabilizes within 5 min, while the
PI controller requires approximately 13.5 min and exhibits significant overshoot. Analyzing
the behavior of the level in span 1, the observer-based control swiftly rejects external
disturbances, whereas the PI controller shows prolonged oscillations. For the variable y3, a
maximum fluctuation of 5 mm is observed, which is considered negligible.

In Figure 5, a reference change of 5 cm is shown for the level in the third segment.
Furthemore, predictive control utilizing active disturbance rejection significantly outper-
forms the classic tuned controller. The PI controller requires 20.5 min to stabilize, whereas
the robust control accomplishes this in only 7 min. Additionally, it should be noted that
the levels in the other two sections are immediately regulated in response to disturbances
arising from the reference change in Section 3.

The experimental test flume used in this study lacks a gradient and has a serpentine
shape, which may influence the hydraulic conditions, including the flow patterns and
hydraulic losses. These characteristics were considered in the design and analysis of the
experiments. The absence of gradient simplifies the system dynamics, allowing a focus on
the controller’s ability to handle disturbances and uncertainties, whereas the serpentine
shape introduces realistic flow complexities that are common in irrigation systems with
varying geometries. Although these features may not fully replicate all hydraulic conditions
in real-world irrigation canals, they provide a controlled environment for evaluating the
proposed control strategy under consistent and reproducible conditions.

5. Conclusions
This study introduces a novel control scheme that seamlessly merges the advantages

of model predictive control with the precision of active disturbance rejection, utilizing GPI
observers. This innovative control framework finds practical application in a three-canal
irrigation system, serving as a testament to its real-world viability.

The simulation results, derived from a comprehensive analysis, unequivocally validate
the robustness of the proposed controller when faced with disturbances, while also affirm-
ing its exceptional ability to accurately track the desired setpoints across various levels.
This level of performance is underpinned by the efficacy of the observers, which plays a



Inventions 2025, 10, 11 13 of 14

pivotal role in the control system. The key findings from this research indicate a significant
improvement in response time and considerable reduction in overshoot compared with
traditional PI controllers, highlighting the effectiveness of the proposed scheme.

Future work should focus on extending this control strategy to larger and more
complex irrigation networks, incorporating real-time data analytics and machine learning
techniques to enhance the adaptability and efficiency of the control system. Additionally,
exploring the integration of IoT devices and sensors can provide more precise and timely
data, further improving control accuracy and resource management.

The broader implications of this study in the field of irrigation and water resource
management are substantial. Implementing such advanced control strategies can lead to
more sustainable agricultural practices by optimizing water usage and reducing waste.
This contributes not only to better crop yields but also to the conservation of vital water
resources, which is crucial in the face of global climate change and increasing water scarcity.

By addressing both the technical and practical aspects of irrigation control, this research
paves the way for future innovations in smart irrigation systems, ultimately contributing to
the advancement of precision agriculture and efficient water management practices.
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