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Abstract: As microelectronic devices are important in many applications, their heat management
needs to be improved, in order to prolong their lifetime, and to reduce the risk of damage.
In nanomaterials, heat transport shows different behaviors than what can be observed at macroscopic
sizes. Studying heat transport through nanofilms is a necessary tool for nanodevice thermal
management. This work proposes a thermodynamic model incorporating both ballistic, introduced
by non-local effects, and diffusive phonon transport. Extended thermodynamics principles are
used in order to develop a constitutive equation for the ballistic behavior of heat conduction at
small-length scales. Being an irreversible process, the present two-temperature model contains a
one-way transition of ballistic to diffusive phonons as time proceeds. The model is compared to the
classical Fourier and Cattaneo laws. These laws were not able to present the non-locality that our
model shows, which is present in cases when the length scale of the material is of the same order of
magnitude or smaller than the phonon mean free path, i.e., when the Knudsen number Kn ≤ O(1).
Moreover, for small Kn numbers, our model predicted behaviors close to that of the classical laws,
with a weak temperature jump at both sides of the nanofilm. However, as Kn increases, the behavior
changes completely, the ballistic component becomes more important, and the temperature jump at
both sides of the nanofilms becomes more pronounced. For comparison, a model using Fourier’s
and Cattaneo’s laws with an effective thermal conductivity has shown, with reasonable qualitative
comparison for small Knudsen numbers and large times.

Keywords: nanofilm; heat conduction; Extended Non-Equilibrium Thermodynamics; diffusive and
ballistic internal energies; higher order heat fluxes; temperature distribution

1. Introduction

An increasing attention towards nanotechnology has yielded new developments concerning
transport phenomena in nanomaterials. It is well known that heat transfer at micro- and nanoscales
shows different behaviors from that at macroscales [1,2]. Thermal management is important, due to
the miniaturization of electronic devices, which necessitates more attention, to prevent overheating [3].
Local hotspots can reduce remarkably the lifetimes of such electronic devices, and even cause
damage to those devices [4,5]. Other studies that investigate thermal management of devices at
the nanoscale include the cooling of microfluidic electronic systems [6], enhancing the thermal
conductance of 2D materials [7], and improving the efficiency of thermoelectric devices [8], to mention
a few. Modelling can provide useful information [9], in order to attain the aforementioned objectives,
whether they be sought after or refrained from. Quite some modelling work has been performed in
analyzing thermal management in nanofilms or devices at the nanoscale. Works on phonon transport
in silicon nanofilms [10,11] make use of numerical methods for predicting thermal conductance.
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More specific numerical methods are also employed, such as non-equilibrium molecular dynamics [12],
the often-used phonon Boltzmann equation [13], and also phonon hydrodynamics [14]. These studies
do not make the distinction between the different types of phonon carriers. Indeed, as the characteristic
size of the system becomes of the order of magnitude of the phonon mean free path, ballistic features
begin to play a role. To account for the ballistic effects, some studies proposed ballistic-diffusive
phonon transport via Monte Carlo simulations [15,16]. Other works regarded the ballistic-type
of phonon transport as an introduction of a non-local effect, obtaining via the phonon Boltzmann
equation the Guyer–Krumhansl equation [17–19]. Whilst these works appeared to provide quite correct
predictions (and as will be mentioned later, our model will give comparable results), these works either
demand a high computing cost [15,16], or they lack the distinction between the diffusive and ballistic
components [17–19]. Although they do not make an explicit distinction between the ballistic and
diffusive components, this does not necessarily mean that the model is incorrect (it can indeed predict
correctly); such a distinction can provide more information on the behavior of the phonons. The model
that we propose in this work contains both non-local effects, and makes distinctions between the
diffusive and ballistic components. Furthermore, it will be developed from thermodynamic principles
(and not from numerical nor kinetic bases), which makes it easily connectable to other physical
phenomena, such as mass transport, electric current, and so on [1]. In a greater framework, this work
would fit easily without great adaptations nor high computing efforts.

Whether heat transport is of diffusive of a ballistic nature depends mainly on the size of the
system. A typical way to make a rough quantitative distinction between these two heat transport
mechanisms is the so-called Knudsen number Kn ≡ `/L, where ` denotes the mean free path of the
carriers in question (phonons in case of heat transfer) and L a characteristic dimension of the system
under study. For large Knudsen numbers (typically larger than one), the heat transport is referred
to as ballistic, i.e., dominated by phonon collisions with the walls. If the Knudsen number is much
smaller than one, heat transport is simply diffusive, i.e., dominated by phonon–phonon collisions
inside the system, and described by Fourier’s law. For small-length systems (of the order of magnitude
of the mean free path of the carrier or smaller), as well as for high-frequency processes (of which the
inverse is of the order of magnitude of the relaxation time of the carrier or smaller), Fourier’s law is
no longer valid. These observations justify the need to propose a constitutive law that generalizes
Fourier’s law, emanating from extended well-known established thermodynamic laws. Although
there are various ways by which this can be achieved [20–22], we prefer to present a solution that is
easily connectable with existing balance equations, and recognizable with more simplified constitutive
equations. The classical Fourier law:

q = −λ∇T, (1)

relating the heat flux vector q to the temperature gradient∇T, with λ denoting the thermal conductivity,
is not applicable at short time periods and small spatial scales. In order to account for high frequencies,
Fourier’s law has been generalized by Cattaneo [23] under the form:

τ∂tq + q = −λ∇T, (2)

with τ designating the relaxation time of the heat flux and ∂t the partial time derivative. Nonetheless,
Cattaneo’s relation cannot be used for nanosystems. For this, we propose an extended, generalized
constitutional equation for heat conduction, which is valid for nanosystems, systems with high
frequencies, and systems with large relaxation times. For this, we use Extended Non-Equilibrium
Thermodynamics [1,24], proposing a procedure that can be easily generalized to other transport
phenomena, such as electrical conduction and matter diffusion, but we limit ourselves here to
heat transport. Applied to heat transport, the theory has as main characteristic to upgrade the
heat flux, and higher-order heat fluxes to the rank of independent variables as the internal energy
(temperature). The obtained result will then be of use for describing ballistic heat transport, when
we propose a two-temperature model, in order to describe heat transport through a thin slab. At the
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end, a comparison is made with Fourier’s and Cattaneo’s laws, adapted with a developed effective
thermal conductivity.

2. Methods: Constitutional Equation for Ballistic Heat Transport

For rigid material, we can define an entropy function
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where 𝑸(2) (a tensor of rank two) is the flux of 𝒒, 𝑸(3) the flux of 𝑸(2), and so on. Up to the 𝑁𝑡ℎ-

order flux, the generalized Gibbs equation can then be written as: 

𝜕𝑡𝓈(𝑢, 𝒒, 𝑸
(1), … , 𝑸(𝑛)) = 𝑇−1𝜕𝑡𝑢 − 𝛾1𝒒 ∙ 𝜕𝑡𝒒 − 𝛾2𝑸

(2)⨂𝜕𝑡𝑸
(2) −⋯− 𝛾𝑛𝑸

(𝑛)⨂𝜕𝑡𝑸
(𝑛), (4) 

wherein the symbol ⨂ denotes the inner product of the corresponding tensors, and 𝑛 = 2,3, …𝑁. 

Moreover, the time evolution of the entropy is governed by a general balance equation, which can be 

written as: 

𝜂𝑠 = 𝜕𝑡𝓈 + ∇ ∙ 𝑱
𝑠 ≥ 0, (5) 

wherein 𝑱𝑠 stands for the entropy flux and 𝜂𝑠 for the rate of entropy production per unit volume, 

which is positive definite to fulfil the second law of thermodynamics. In order to deduce an 

expression for 𝜂𝑠, we use (4) for 𝜕𝑡𝓈, and we need a constitutive relation for 𝑱𝑠 in terms of the set of 

variables established earlier. It is natural to expect that 𝑱𝑠  is not simply given by the classical 

expression 𝑇−1𝒒 [25], but that it will depend on all the higher order fluxes up to order 𝑛, namely: 

𝐽𝑠 = 𝑇−1𝒒 + 𝛽1𝑸
(2) ∙ 𝒒 + ⋯+ 𝛽𝑛−1𝑸

(𝑛)⨂𝑸(𝑛−1), (6) 

with 𝛽𝑛 designating the phenomenological coefficients. We substitute in (5) the expressions of 𝜕𝑡𝓈 

and 𝑱𝑠 by (4) and (6), respectively. We then replace derivative ∂tu by the energy conservation law, 

𝜕𝑡𝑢 = −∇ ∙ 𝒒, which leads to the expression for the entropy production: 

𝜂𝑠 = −(−∇𝑇−1 + 𝛾1𝜕𝑡𝒒 − 𝛽1∇ ∙ 𝑸
(2)) ∙ 𝒒…−∑𝑸(𝑛)

𝑁

𝑛=2

⨂(𝛾𝑛𝜕𝑡𝑸
(𝑛) − 𝛽𝑛∇ ∙ 𝑸

(𝑛+1) − 𝛽𝑛−1∇𝑸
(𝑛−1)) ≥ 0 (7) 

The above is a bilinear expression in fluxes and forces (the quantities between parentheses), 

which suggests the following hierarchy of linear flux–force relations: 

∇𝑇−1 − 𝛾1𝜕𝑡𝒒 + 𝛽1∇ ∙ 𝑸
(2) = 𝜈1𝒒 (8) 

𝛽𝑛−1∇𝑸
(𝑛−1) − 𝛾𝑛𝜕𝑡𝑸

(𝑛) + 𝛽𝑛∇ ∙ 𝑸
(𝑛+1) = 𝜈𝑛𝑸

(𝑛)  (𝑛 = 2,3, …𝑁) (9) 

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that 

takes into account all the 𝑁𝑡ℎ order fluxes. For the sake of clarity, we will make the development up 

to the fourth order, and generalize afterwards. The fourth order flux equation (𝑛 = 4 in Equation (9)) 

is given by: 

𝛽3∇𝑸
(3) − 𝛾4𝜕𝑡𝑸

(4) + 𝛽4∇ ∙ 𝑸
(5) = 𝜈4𝑸

(4) 
(10) 

Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with 𝑛 = 3, and 

omitting any flux, 𝑛 > 4. This gives: 

and u are measured per unit volume, γ1 is a phenomenological coefficient assumed to be
independent of q, and a dot stands for the scalar product. The coefficient γ1 will be identified later on,
where it will be shown to be related to the relaxation time τ and the thermal conductivity λ. It should
be noted that (3) does not take into account any terms that allow for coping with non-local effects,
which are dominant at small length scales. To take them into account, it is suggested to introduce a
hierarchy of fluxes Q(1), Q(2),..., Q(n) with Q(1) being identical to the heat flux vector q, where Q(2)

(a tensor of rank two) is the flux of q, Q(3) the flux of Q(2), and so on. Up to the Nth-order flux, the
generalized Gibbs equation can then be written as:

∂t
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equation in a rigid conductor (i.e., 𝑑𝑡 ≡ 𝜕𝑡) at rest writes as: 

𝜕𝑡𝓈(𝑢, 𝒒) = 𝑇
−1𝜕𝑡𝑢 − 𝛾1𝒒. 𝜕𝑡𝒒, (3) 

wherein 𝓈 and 𝑢 are measured per unit volume, 𝛾1 is a phenomenological coefficient assumed to 

be independent of 𝒒, and a dot stands for the scalar product. The coefficient 𝛾1 will be identified 

later on, where it will be shown to be related to the relaxation time 𝜏 and the thermal conductivity 

𝜆. It should be noted that (3) does not take into account any terms that allow for coping with non-

local effects, which are dominant at small length scales. To take them into account, it is suggested to 

introduce a hierarchy of fluxes 𝑸(1), 𝑸(2),..., 𝑸(𝑛) with 𝑸(1) being identical to the heat flux vector 𝒒, 

where 𝑸(2) (a tensor of rank two) is the flux of 𝒒, 𝑸(3) the flux of 𝑸(2), and so on. Up to the 𝑁𝑡ℎ-

order flux, the generalized Gibbs equation can then be written as: 

𝜕𝑡𝓈(𝑢, 𝒒, 𝑸
(1), … , 𝑸(𝑛)) = 𝑇−1𝜕𝑡𝑢 − 𝛾1𝒒 ∙ 𝜕𝑡𝒒 − 𝛾2𝑸

(2)⨂𝜕𝑡𝑸
(2) −⋯− 𝛾𝑛𝑸

(𝑛)⨂𝜕𝑡𝑸
(𝑛), (4) 

wherein the symbol ⨂ denotes the inner product of the corresponding tensors, and 𝑛 = 2,3, …𝑁. 

Moreover, the time evolution of the entropy is governed by a general balance equation, which can be 

written as: 

𝜂𝑠 = 𝜕𝑡𝓈 + ∇ ∙ 𝑱
𝑠 ≥ 0, (5) 

wherein 𝑱𝑠 stands for the entropy flux and 𝜂𝑠 for the rate of entropy production per unit volume, 

which is positive definite to fulfil the second law of thermodynamics. In order to deduce an 

expression for 𝜂𝑠, we use (4) for 𝜕𝑡𝓈, and we need a constitutive relation for 𝑱𝑠 in terms of the set of 

variables established earlier. It is natural to expect that 𝑱𝑠  is not simply given by the classical 

expression 𝑇−1𝒒 [25], but that it will depend on all the higher order fluxes up to order 𝑛, namely: 

𝐽𝑠 = 𝑇−1𝒒 + 𝛽1𝑸
(2) ∙ 𝒒 + ⋯+ 𝛽𝑛−1𝑸

(𝑛)⨂𝑸(𝑛−1), (6) 

with 𝛽𝑛 designating the phenomenological coefficients. We substitute in (5) the expressions of 𝜕𝑡𝓈 

and 𝑱𝑠 by (4) and (6), respectively. We then replace derivative ∂tu by the energy conservation law, 

𝜕𝑡𝑢 = −∇ ∙ 𝒒, which leads to the expression for the entropy production: 

𝜂𝑠 = −(−∇𝑇−1 + 𝛾1𝜕𝑡𝒒 − 𝛽1∇ ∙ 𝑸
(2)) ∙ 𝒒…−∑𝑸(𝑛)

𝑁

𝑛=2

⨂(𝛾𝑛𝜕𝑡𝑸
(𝑛) − 𝛽𝑛∇ ∙ 𝑸

(𝑛+1) − 𝛽𝑛−1∇𝑸
(𝑛−1)) ≥ 0 (7) 

The above is a bilinear expression in fluxes and forces (the quantities between parentheses), 

which suggests the following hierarchy of linear flux–force relations: 

∇𝑇−1 − 𝛾1𝜕𝑡𝒒 + 𝛽1∇ ∙ 𝑸
(2) = 𝜈1𝒒 (8) 

𝛽𝑛−1∇𝑸
(𝑛−1) − 𝛾𝑛𝜕𝑡𝑸

(𝑛) + 𝛽𝑛∇ ∙ 𝑸
(𝑛+1) = 𝜈𝑛𝑸

(𝑛)  (𝑛 = 2,3, …𝑁) (9) 

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that 

takes into account all the 𝑁𝑡ℎ order fluxes. For the sake of clarity, we will make the development up 

to the fourth order, and generalize afterwards. The fourth order flux equation (𝑛 = 4 in Equation (9)) 

is given by: 

𝛽3∇𝑸
(3) − 𝛾4𝜕𝑡𝑸

(4) + 𝛽4∇ ∙ 𝑸
(5) = 𝜈4𝑸

(4) 
(10) 

Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with 𝑛 = 3, and 

omitting any flux, 𝑛 > 4. This gives: 

(
u, q, Q(1), . . . , Q(n)

)
= T−1∂tu− γ1q·∂tq− γ2Q(2)⊗ ∂tQ(2) − . . .− γnQ(n)⊗ ∂tQ(n), (4)

wherein the symbol
⊗

denotes the inner product of the corresponding tensors, and n = 2, 3, . . . N.
Moreover, the time evolution of the entropy is governed by a general balance equation, which can be
written as:

ηs = ∂t
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wherein the symbol ⨂ denotes the inner product of the corresponding tensors, and 𝑛 = 2,3, …𝑁. 

Moreover, the time evolution of the entropy is governed by a general balance equation, which can be 

written as: 

𝜂𝑠 = 𝜕𝑡𝓈 + ∇ ∙ 𝑱
𝑠 ≥ 0, (5) 

wherein 𝑱𝑠 stands for the entropy flux and 𝜂𝑠 for the rate of entropy production per unit volume, 

which is positive definite to fulfil the second law of thermodynamics. In order to deduce an 

expression for 𝜂𝑠, we use (4) for 𝜕𝑡𝓈, and we need a constitutive relation for 𝑱𝑠 in terms of the set of 

variables established earlier. It is natural to expect that 𝑱𝑠  is not simply given by the classical 

expression 𝑇−1𝒒 [25], but that it will depend on all the higher order fluxes up to order 𝑛, namely: 

𝐽𝑠 = 𝑇−1𝒒 + 𝛽1𝑸
(2) ∙ 𝒒 + ⋯+ 𝛽𝑛−1𝑸

(𝑛)⨂𝑸(𝑛−1), (6) 

with 𝛽𝑛 designating the phenomenological coefficients. We substitute in (5) the expressions of 𝜕𝑡𝓈 

and 𝑱𝑠 by (4) and (6), respectively. We then replace derivative ∂tu by the energy conservation law, 

𝜕𝑡𝑢 = −∇ ∙ 𝒒, which leads to the expression for the entropy production: 

𝜂𝑠 = −(−∇𝑇−1 + 𝛾1𝜕𝑡𝒒 − 𝛽1∇ ∙ 𝑸
(2)) ∙ 𝒒…−∑𝑸(𝑛)

𝑁

𝑛=2

⨂(𝛾𝑛𝜕𝑡𝑸
(𝑛) − 𝛽𝑛∇ ∙ 𝑸

(𝑛+1) − 𝛽𝑛−1∇𝑸
(𝑛−1)) ≥ 0 (7) 

The above is a bilinear expression in fluxes and forces (the quantities between parentheses), 

which suggests the following hierarchy of linear flux–force relations: 

∇𝑇−1 − 𝛾1𝜕𝑡𝒒 + 𝛽1∇ ∙ 𝑸
(2) = 𝜈1𝒒 (8) 

𝛽𝑛−1∇𝑸
(𝑛−1) − 𝛾𝑛𝜕𝑡𝑸

(𝑛) + 𝛽𝑛∇ ∙ 𝑸
(𝑛+1) = 𝜈𝑛𝑸

(𝑛)  (𝑛 = 2,3, …𝑁) (9) 

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that 

takes into account all the 𝑁𝑡ℎ order fluxes. For the sake of clarity, we will make the development up 

to the fourth order, and generalize afterwards. The fourth order flux equation (𝑛 = 4 in Equation (9)) 

is given by: 

𝛽3∇𝑸
(3) − 𝛾4𝜕𝑡𝑸

(4) + 𝛽4∇ ∙ 𝑸
(5) = 𝜈4𝑸

(4) 
(10) 

Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with 𝑛 = 3, and 

omitting any flux, 𝑛 > 4. This gives: 

+∇·Js ≥ 0, (5)

wherein Js stands for the entropy flux and ηs for the rate of entropy production per unit volume, which
is positive definite to fulfil the second law of thermodynamics. In order to deduce an expression for ηs,
we use (4) for ∂t
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𝜂𝑠 = −(−∇𝑇−1 + 𝛾1𝜕𝑡𝒒 − 𝛽1∇ ∙ 𝑸
(2)) ∙ 𝒒…−∑𝑸(𝑛)

𝑁

𝑛=2

⨂(𝛾𝑛𝜕𝑡𝑸
(𝑛) − 𝛽𝑛∇ ∙ 𝑸

(𝑛+1) − 𝛽𝑛−1∇𝑸
(𝑛−1)) ≥ 0 (7) 

The above is a bilinear expression in fluxes and forces (the quantities between parentheses), 

which suggests the following hierarchy of linear flux–force relations: 

∇𝑇−1 − 𝛾1𝜕𝑡𝒒 + 𝛽1∇ ∙ 𝑸
(2) = 𝜈1𝒒 (8) 

𝛽𝑛−1∇𝑸
(𝑛−1) − 𝛾𝑛𝜕𝑡𝑸

(𝑛) + 𝛽𝑛∇ ∙ 𝑸
(𝑛+1) = 𝜈𝑛𝑸

(𝑛)  (𝑛 = 2,3, …𝑁) (9) 

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that 

takes into account all the 𝑁𝑡ℎ order fluxes. For the sake of clarity, we will make the development up 

to the fourth order, and generalize afterwards. The fourth order flux equation (𝑛 = 4 in Equation (9)) 

is given by: 

𝛽3∇𝑸
(3) − 𝛾4𝜕𝑡𝑸

(4) + 𝛽4∇ ∙ 𝑸
(5) = 𝜈4𝑸

(4) 
(10) 

Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with 𝑛 = 3, and 

omitting any flux, 𝑛 > 4. This gives: 

, and we need a constitutive relation for Js in terms of the set of variables established
earlier. It is natural to expect that Js is not simply given by the classical expression T−1q [25], but that
it will depend on all the higher order fluxes up to order n, namely:

Js = T−1q + β1Q(2)·q + . . . + βn−1Q(n)⊗Q(n−1), (6)

with βn designating the phenomenological coefficients. We substitute in (5) the expressions of ∂t
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(1), … , 𝑸(𝑛)) = 𝑇−1𝜕𝑡𝑢 − 𝛾1𝒒 ∙ 𝜕𝑡𝒒 − 𝛾2𝑸

(2)⨂𝜕𝑡𝑸
(2) −⋯− 𝛾𝑛𝑸

(𝑛)⨂𝜕𝑡𝑸
(𝑛), (4) 

wherein the symbol ⨂ denotes the inner product of the corresponding tensors, and 𝑛 = 2,3, …𝑁. 

Moreover, the time evolution of the entropy is governed by a general balance equation, which can be 

written as: 

𝜂𝑠 = 𝜕𝑡𝓈 + ∇ ∙ 𝑱
𝑠 ≥ 0, (5) 

wherein 𝑱𝑠 stands for the entropy flux and 𝜂𝑠 for the rate of entropy production per unit volume, 

which is positive definite to fulfil the second law of thermodynamics. In order to deduce an 

expression for 𝜂𝑠, we use (4) for 𝜕𝑡𝓈, and we need a constitutive relation for 𝑱𝑠 in terms of the set of 

variables established earlier. It is natural to expect that 𝑱𝑠  is not simply given by the classical 

expression 𝑇−1𝒒 [25], but that it will depend on all the higher order fluxes up to order 𝑛, namely: 

𝐽𝑠 = 𝑇−1𝒒 + 𝛽1𝑸
(2) ∙ 𝒒 + ⋯+ 𝛽𝑛−1𝑸

(𝑛)⨂𝑸(𝑛−1), (6) 

with 𝛽𝑛 designating the phenomenological coefficients. We substitute in (5) the expressions of 𝜕𝑡𝓈 

and 𝑱𝑠 by (4) and (6), respectively. We then replace derivative ∂tu by the energy conservation law, 

𝜕𝑡𝑢 = −∇ ∙ 𝒒, which leads to the expression for the entropy production: 

𝜂𝑠 = −(−∇𝑇−1 + 𝛾1𝜕𝑡𝒒 − 𝛽1∇ ∙ 𝑸
(2)) ∙ 𝒒…−∑𝑸(𝑛)

𝑁

𝑛=2

⨂(𝛾𝑛𝜕𝑡𝑸
(𝑛) − 𝛽𝑛∇ ∙ 𝑸

(𝑛+1) − 𝛽𝑛−1∇𝑸
(𝑛−1)) ≥ 0 (7) 

The above is a bilinear expression in fluxes and forces (the quantities between parentheses), 

which suggests the following hierarchy of linear flux–force relations: 

∇𝑇−1 − 𝛾1𝜕𝑡𝒒 + 𝛽1∇ ∙ 𝑸
(2) = 𝜈1𝒒 (8) 

𝛽𝑛−1∇𝑸
(𝑛−1) − 𝛾𝑛𝜕𝑡𝑸

(𝑛) + 𝛽𝑛∇ ∙ 𝑸
(𝑛+1) = 𝜈𝑛𝑸

(𝑛)  (𝑛 = 2,3, …𝑁) (9) 

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that 

takes into account all the 𝑁𝑡ℎ order fluxes. For the sake of clarity, we will make the development up 

to the fourth order, and generalize afterwards. The fourth order flux equation (𝑛 = 4 in Equation (9)) 

is given by: 

𝛽3∇𝑸
(3) − 𝛾4𝜕𝑡𝑸

(4) + 𝛽4∇ ∙ 𝑸
(5) = 𝜈4𝑸

(4) 
(10) 

Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with 𝑛 = 3, and 

omitting any flux, 𝑛 > 4. This gives: 

and Js by (4) and (6), respectively. We then replace derivative ∂tu by the energy conservation law,
∂tu = −∇·q, which leads to the expression for the entropy production:

ηs = −
(
−∇T−1 + γ1∂tq− β1∇·Q(2)

)
·q . . .−

N

∑
n=2

Q(n)⊗(
γn∂tQ(n) − βn∇·Q(n+1) − βn−1∇Q(n−1)

)
≥ 0 (7)

The above is a bilinear expression in fluxes and forces (the quantities between parentheses), which
suggests the following hierarchy of linear flux–force relations:

∇T−1 − γ1∂tq + β1∇·Q(2) = ν1q (8)

βn−1∇Q(n−1) − γn∂tQ(n) + βn∇·Q(n+1) = νnQ(n) (n = 2, 3, . . . N) (9)

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that
takes into account all the Nth order fluxes. For the sake of clarity, we will make the development up to
the fourth order, and generalize afterwards. The fourth order flux equation (n = 4 in Equation (9)) is
given by:

β3∇Q(3) − γ4∂tQ(4) + β4∇·Q(5) = ν4Q(4) (10)
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Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with n = 3, and
omitting any flux, n > 4. This gives:

β2∇Q(2) − γ3∂tQ(3) +
β3

ν4

(
β3∇·∇Q(3) − γ4∇·∂tQ(4)

)
= ν3Q(3) (11)

Applying again operator divergence on (11), substituting it on its turn in (9) but with n = 2 and
repeating the same operation until arriving at Equation (9) with n = 1 (the latter of which is equivalent
to Equation (8)), the final result is:

∇T−1 − γ1∂tq + β1
ν2

(
β1∇·∇q− γ2∇·∂tQ(2) + β2

ν3

(
β2∇·∇·∇Q(2) − γ3∇·∇·∂tQ(3)

+ β3
ν4

(
β3∇·∇·∇·∇Q(3) − γ4∇·∇·∇·∂tQ(4)

)))
= ν1q

(12)

This relation may be viewed as a generalization of Fourier’s and/or Cattaneo’s relation, up to the
fourth-order flux Q(4). However, the use of higher order fluxes is not very convenient from a practical
point of view, since their physical meaning, being not directly measurable, is not clear. This calls for
proposing a more suitable representation, wherein all the high-order fluxes have been expressed solely
in the heat flux.

Therefore, the purpose is to express Equation (12) exclusively in terms of the more physical
quantities, the temperature T and the classical heat flux q. The higher-order fluxes Q(n) are eliminated
by making use of the very definition of the high-order flux, namely:

∂tQ(n) = −∇·Q(n+1) (n = 1, 2, 3, . . . N) (13)

In virtue of (13) and after some rearrangements, Equation (12) can be rewritten as:

γ1
ν1

∂tq + q = − 1
ν1T2∇T + 1

ν1

β1
ν2

β1∇2q + 1
ν1

β1
ν2

γ2∂t∂tq− 1
ν1

β1
ν2

β2
ν3

β2∂t∇2q

− 1
ν1

β1
ν2

β2
ν3

γ3∂t∂t∂tq + 1
ν1

β1
ν2

β2
ν3

β3
ν4

β3∂t∂t∇2q

+ 1
ν1

β1
ν2

β2
ν3

β3
ν4

γ4∂t∂t∂t∂tq

(14)

By extending the exercise to higher-order fluxes with n = N (where theoretically, N → ∞ ,
but practically often not necessary), we obtain the following general equation governing heat
conduction in rigid bodies:

γ1
ν1

∂tq + q = − 1
ν1T2∇T + 1

ν1
∑N

n=1

((
∏n

i=1
βi

νi+1

)
(−1)n+1βn

∂n−1

∂tn−1∇2q +
(

∏n
i=1

βi
νi+1

)
(−1)n+1γn+1

∂n+1

∂tn+1 q
)

(n = 1, 2, 3, . . . , N), with N ∈ N+
(15)

Setting γ1 = β1 = 0, Equation (8) reduces to Fourier’s law, from which it follows that ν1 =
1

λT2 . Comparing the unities in (8) indicates that the dimension of the ratio γ1/ν1 is that of time (t),
so that [γ1] = [t][ν1]. Defining the time unit as the heat flux (q) and relaxation time τ1, one has
γ1 = τ1ν1 = τ1

λT2 . As the heat flux q is expressed in W/m2, the unity of Q(2) is W/(m·s), according

to (13):
[
Q(n+1)

]
= [L]

[t]

[
Q(n)

]
, where [L] is a unity in length. As a direct consequence of the property

that Q(2) is the flux of q, one has in (8) that β1
γ1

= −1 or β1 = −γ1 = −τ1ν1. For further application,
we neglect higher orders of the relaxation times, i.e., τ2 = τ3 = . . . = τn = 0, which means that the
phenomenological coefficients βn and γn, with n ≥ 2, and νn, and n ≥ 3 (note that although β2 and γ2

are related to τ2, ν2 is rather related to τ1), can be omitted. Equation (15) becomes:

τ∂tq + q = −λ∇T + `2∇2q (16)
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We can see clearly differences between (16) and the conventional constitutional laws for heat
transport (1) and (2), but also some similarities. For systems where its characteristic size is much
larger than the mean free path `, Equation (16) reduces to Cattaneo’s equation. This corresponds also
to neglecting any higher order of heat fluxes (reducing the whole deduction in this section to only
Equations (3) and (5), with Js = T−1q). If, furthermore, the changes in the heat flux occur in a time
span that is much larger than the relaxation time, we obtain Fourier’s law. Other well-known methods
that are used, as those mentioned in the Introduction, comprise the phonon–Boltzmann equation,
the Monte Carlo simulations, and Molecular Dynamics. The Monte Carlo simulations and Molecular
Dynamics methods do not require higher-order variables, but they demand high computing times,
and are not flexible for modelling various scales at a time, although efforts have been performed in
performing multi-scale molecular dynamics [26]. Solving the phonon–Boltzmann equation also asks
for a high computational time. These are issues that are not a problem for the model presented in
this work. However, the definition of the ballistic and diffusive temperatures is not well-defined,
which limits direct interpretation. This can be circumvented by noticing that the ballistic and diffusive
temperatures are actually defined through their respective internal energies. Assuming that the total
internal energy is a measure for the real temperature, the evaluation of the total temperature becomes,
therefore, correct. Assuming also that the ballistic and diffusive internal energies sum up linearly to
obtain the total internal energy, allows for an interpretation of the contribution of the ballistic and
diffusive phonon regimes via the internal energies. The present development could, of course be
extended by introducing non-linear heat fluxes. However, such an extension, albeit theoretically not
an issue, would be numerically cumbersome to perform, also inducing also boundary conditions that
may not be well defined. Non-linear contributions of the heat flux (at first and higher orders) could
be important when the length scale becomes much smaller than the mean free path of the phonons.
Nevertheless, for most materials, a linear heat flux consideration still gives satisfactory results [1,27],
making it very reasonable and consistent to use linear heat fluxes for predicting material properties in
several applications.

3. Temperature Distribution in Nanoscaled Materials

We have discussed that, depending on the size, the type of heat transfer can be either ballistic or
diffusive. In order to appreciate the contribution of both the ballistic and diffusive parts of the heat
flux, we propose a two-temperature model.

3.1. Two-Temperature Model

In order to find the temperature distribution, we need to assume the coexistence of two kinds
of heat carriers: diffusive phonons which undergo multiple collisions within the core of the system,
and ballistic phonons originating at the boundaries and experiencing collisions with the walls.
This representation is called the ballistic-diffusion model. As such, the internal energy and the
heat flux are decomposed into a ballistic and a diffusive component, which gives u = ub + ud and
q = qb + qd, where the indexes b and d refer to ballistic and diffusive contributions, respectively.
The space of state variables is constituted by the quantities ud, ub, qd and qb. Let us introduce the
diffusive and ballistic temperatures Td and Tb, defined respectively by Td = ud/cd and Tb = ub/cb,
where cd and cb stand for the heat capacity per unit volume, and are positive quantities to guarantee
the stability of the equilibrium state. Stating that cd = cb = c, leading to the total temperature being
defined by T = u/c, or equivalently, T = Td + Tb. Although the quantities Td and Tb bear some
analogy with the classical definition of the temperature, it should however, be realized that, strictly
speaking, these quantities do not represent temperatures in the usual sense, but must be considered as
a measure of the internal energies.
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After having defined the state variables, we specify their behavior in the course of time and space.
The evolutions of the internal energies ud and ub, are governed by the classical energy balance laws:

∂ud
∂t

= −∇·qd + rd (17)

∂ub
∂t

= −∇·qb + rb (18)

while the total internal energy u = ud + ub satisfies the first law of thermodynamics:

∂u
∂t

= −∇·q + r (19)

The quantities rd, rb, and r designate source terms, which may be either positive or negative.
In virtue of (19), one has to satisfy rd + rb = r. In the absence of energy sources (r = 0), one simply has
that rd = −rb. Based on kinetic theory considerations [25], it is shown that:

rb = −ub/τb (20)

where the minus sign indicates that ballistic carriers can be converted into diffusive ones, but that the
inverse is not possible. Moreover, τb is the relaxation time of the ballistic energy flux qb. Now, the
evolution equation for the fluxes are to be developed. Concerning the diffusive phonons, it is assumed
that they satisfy Cattaneo’s equation, to cope with their high frequency properties. As a consequence,
we are allowed to write:

τd
∂qd
∂t

+ qd = −λd∇Td (21)

wherein the relaxation time τd and the thermal conductivity coefficient λd are positive quantities to
meet the requirements of the stability of equilibrium and the positivity of the entropy production,
respectively [23,28]. However, expression (21) is not able to describe the ballistic regime, which
is mainly influenced by non-local effects, as most of the ballistic carriers cross the system without
experiencing collisions, except with the boundaries. As shown before [17,18,28], this situation is
satisfactorily described by Equation (16):

τb
∂qb
∂t

+ qb = −λb∇Tb + `2
b∇

2qb (22)

where it is reminded that `b is identified by the mean free path of the phonons, with the subscript
indicating that (only in the present section) a distinction is made between ballistic and diffusive
contributions for the mean free path to account for the same distinction for the heat flux. Note that the
terms involving the space derivatives of the heat flux vector account for the non-local effects, and they
are important when the spatial scale of variation of the heat flux is comparable to the mean free path
of the heat carriers. Expressions (17), (18), (21), and (22) provide the basic set of eight scalar evolution
equations for the eight unknowns ud, ub, qd, and qb. Eliminating the fluxes, using the aforementioned
definitions and balance equations, we obtain two equations for the diffusive and ballistic contributions
of the phonons in terms of internal energies.

Thin films are defined here as films, of which the thickness L may be of the same order of
magnitude, or even smaller than the mean free path ` of the phonons. Heat capacity and thermal
conductivity are assumed to be constant, and to take the same values for the diffusive and ballistic
phonons (λ = 1

3 cvd,b`d,b), while internal energy sources are absent (r = 0). Initially, the system is at
uniform energy u0, or using an equivalent terminology, at the “quasi-temperature” T0, related to u0

by u0 = cT0. Often, for thin films in real applications, the other dimensions are much larger, so that
we can neglect their effect and consider only a one-dimensional model, with coordinate z. At t = 0,
the lower surface z = 0 is suddenly brought to the “quasi- temperature” Tl = T0 + ∆T, while the
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upper surface z = L is kept at “quasi-temperature” T0, equal to the so-defined reference temperature.
For further purpose, we introduce the Knudsen numbers Kni = `i/L (i = d, b), which can be given the
more general form:

Kn2
i =

3λτi
cL2 (i = d, b) (23)

It is convenient to use dimensionless quantities for numerical simulations, using the following
scalings (the asterisks denoting the dimensionless parameters):

t∗ = t/τb

z∗ = z/L

θd = ud−ud(z=L)
c∆T

θb = ub−ub(z=L)
c∆T

θ = u−cT(z=L)
c∆T


(24)

with θd, θb, and θ (= θd + θb) designating the non-dimensional energies (or temperatures) associated
with the diffusive, ballistic, and total energies, respectively. Note that ud(z = L) and ub(z = L)
are chosen, such that they are taken as reference values (the sum of which corresponds to the
aforementioned u0), which are in the dimensionless form equal to zero, i.e., θd(z = L) = θb(z = L) = 0
(as seen later). The new evolution equations for the dimensionless temperature distributions now take
the form:

Kn2
d

Kn2
b

(
∂2θd
∂t∗2 −

∂θb
∂t∗

)
−

Kn2
b

3
∂2θd
∂z∗2 +

∂θd
∂t∗
− θb = 0 (25)

∂2θb
∂t∗2 + 2

∂θb
∂t∗
−

4Kn2
b

3
∂2θb
∂z∗2 − Kn2

b
∂3θb

∂t∗∂z∗2 + θb = 0 (26)

3.2. Boundary and Initial Conditions

The purpose is to solve for θd(z∗, t∗) and θb(z∗, t∗). At t = 0, the sample is at uniform temperature
T0, which implies that the total energy is given by u(z, 0) = ud(z, 0) + ub(z, 0) = cT0. However, it is
reasonable to suppose that at short times, the ballistic phonons are dominant, so that the initial energy
will be essentially of ballistic nature, leading to ub(z, 0) = cT0, or in dimensionless notation:

θb(z∗, 0) = 0
θd(z∗, 0) = 0

}
. (27)

Throughout the sample, at time t = 0, the heat flux q is also zero; as a consequence of the energy
balance (17), (18), it is checked that initially, ∂θ(z∗ ,t∗)

∂t∗ = 0. This result remains, in particular, satisfied
under the assumptions:

∂θd(z∗ ,t∗)
∂t∗

∣∣∣
t∗=0

= 0

∂θb(z∗ ,t∗)
∂t∗

∣∣∣
t∗=0

= 0

. (28)

The formulation of the boundary conditions is a more delicate problem. Their importance has to
be underlined, because in nanomaterials, their influence is felt throughout the whole system. To satisfy
the conditions θ(0, t∗) = 1 and θ(1, t∗) = 0, the simplest tentative would be to suppose that, at z∗ = 0,
θb(0, t∗) = 1, together with θd(0, t∗) = 0, while at z∗ = 1, the temperatures of both the ballistic
and diffusive constituents would be zero. However, such expressions are too simple, and do not,
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in particular, cope with temperature jumps, due to thermal boundary resistance. This is the reason for
why we have considered the following boundary conditions for the ballistic carriers:

θb(0, t∗) = a
θb(1, t∗) = 0

}
. (29)

The quantity a, which represents the temperature jump of the ballistic phonons at the face z∗ = 0
at t∗ = 0, is taken as being equal to 1

2 . This value may be understood statistically. Since the temperature
boundary condition at z∗ = 0 actually represents an internal energy boundary condition, it can be said
that the ballistic phonons that are generated at the heated face are formed by half of the carriers at the
initial internal energy θb = 0, and the other half at the value θb = 1, corresponding to the energy at the
face where the temperature is suddenly increased. A discussion on this result can be found in [25],
where it was mentioned that, by solving Boltzmann’s equation, θb(0, t∗) = 1

2 at the heated boundary
z∗ = 0. A posteriori, it is shown later on that this value leads to results, which match satisfactorily
well with other different approaches. Concerning the diffusive carriers, we assume that both of the
interfaces are black phonon emitters and absorbers, implying that the boundaries are made of incident
diffusive carriers only. Combining Cattaneo’s equation [23] and Marshak’s boundary condition [29,30]
for black body thermal radiation, one obtains for z∗ = 1, 0:

Kn2
d

Kn2
b

∂θd
∂t∗

+ θd =
2
3

Knd
∂θd
∂z∗

(30)

Kn2
d

Kn2
b

∂θd
∂t∗

+ θd = −2
3

Knd
∂θd
∂z∗

(z∗ = 1) (31)

where the factor (Knd/Knb)
2 stems from the non-equality of the relaxation times.

3.3. Comparison with Fourier and Cattaneo Laws

The solutions are compared with those stemming from the combination of the dimensionless
Fourier and Cattaneo laws (1)–(2) with the energy balance (19), with r = 0:

∂θ f

∂t∗
−

Kn2
d

3
∂2θ f

∂z∗2 = 0 (32)

∂2θc

∂t∗2 +
∂θc

∂t∗
−

Kn2
d

3
∂2θc

∂z∗2 = 0 (33)

with θ f and θc being the dimensionless Fourier and Cattaneo temperatures. Since no ballistic-diffusion
transitions are considered in these latter laws, the boundary conditions (29)–(31) are not used. Instead,
the classical (for the example considered in this paper) boundary conditions are used: θ f (0, t∗) =

θc(0, t∗) = 1 and θ f (1, t∗) = θc(1, t∗) = 0. The same initial conditions as for the two-temperature
model are used.

3.4. Numerical Method

The model is solved by using a semi-implicit difference method for the spatial discretization and
the forward Euler method for the temporal discretization for each time step t∗. At the beginning of the
simulation, the initial conditions are imposed. At a certain time t∗, the equations for the temperatures
are written in matrix form, A ∗V = B, where A is a matrix of dimension (n− 2)× (n− 2) (n being the
number of nodes in the discretized spatial domain, and two nodes being dedicated to the boundary
conditions; the bulk equations are thus discretized on (n− 2) nodes), containing the coefficients of the
temperatures at time t∗ + 1, V, a vector of dimension (n− 2) containing the unknown temperature
values at the spatial nodes at time t∗ + 1, and B being a vector of dimension (n− 2), containing the
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known temperature values at time t∗. Due to the spatial gradients in the bulk equations, the values
at nodes 2 and n− 1 depend on the boundary values at nodes 1 and n, respectively. The vector V
is calculated as V = A−1B. The boundary condition for the ballistic temperature at the hot side is
imposed and held at that value at each time step. The boundary condition for the ballistic temperature
at the cold side as well as the boundary conditions of the diffusive temperature at both sides at time
t∗ + 1 are then obtained through the bulk values at time t∗ + 1. This procedure is repeated until
the relative errors of the bulk and boundary values of both the ballistic and diffusive temperatures
between the previous and present loops become smaller than 10−4. The obtained values at time
t∗ + 1 are stocked in the output matrix, and used as the known values for the next time step t∗ + 2.
This procedure is outlined in a schematic form in Figure 1.
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in this study.

4. Results

4.1. Temperature Distribution of the Two-Temperature Model

The model described in the previous section has been solved using Mathematica. In Figure 2,
the non-dimensional temperature profiles are shown for Kn = 0.1, 1 and 10, where Knd = Knb = Kn.
These values for Kn are chosen, since they all represent cases where both the diffusive and ballistic
regimes are present, with a dominant diffusive regime for Kn = 0.1, and a dominant ballistic one for
Kn = 10. The results are presented for three non-dimensional times: t∗ = 1, 10, and 100. In order
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to emphasize the relative importance of the two contributions in our model, both the ballistic and
diffusive components of the temperature are shown next to the non-dimensional temperature (labelled
as “Total”). For comparison, the results from Fourier’s and Cattaneo’s models are presented as well.
We notice that generally, the region close to the hot side (z∗ = 0) is mainly dominated by the ballistic
component contribution, which decreases with space, while the diffusive one is increasing up to a
maximum (not so discernible for Kn = 10), after which one observes a decrease. This descent is the
steepest for smaller Kn. As expected, the influence of the ballistic component becomes more important
as Kn is larger, whilst that of the diffusive component is dominant for smaller values of Kn. Moreover,
although the ballistic component develops earlier, it appears that afterwards, the diffusion component
is growing more over time than the ballistic one. This observation reflects the conversion of the ballistic
internal energy into the diffusive one in time, but the reverse is not possible. We can also observe that
for small Kn values, the temperature at the cold side is close to zero, the reference value. The fact that
this temperature for Kn = 0.1 is not exactly zero, is due to the weak, non-zero, ballistic component that
is responsible for well-known temperature jumps. These temperature jumps are more pronounced at
larger Kn values, and are clearly seen for Kn = 10. Finally, it can be seen that Fourier’s and Cattaneo’s
laws are qualitatively close to our model for small values of Kn (more dominant diffusive regime),
but they differ considerably for larger values of Kn (higher ballistic contribution).
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Figure 2. Non-dimensional temperature profiles θ(z∗, t∗) as a function of distance z∗ = z/L at different
times t∗ = t/τb (t∗ = 1, 10, and 100, respectively) for Knd = Knb = Kn = 0.1, 1, and 10. The respective
contributions of the ballistic, diffusive, and total temperatures are shown and compared to the ones
obtained from Cattaneo’s and Fourier’s equations.
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4.2. Temperature Distribution of the Fourier and Cattaneo Laws with an Effective Thermal Conductivity

Another way of studying heat conduction through nanomaterials is to use Fourier’s or Cattaneo’s
law, but with an effective thermal conductivity, λeff, that takes into account the size of the material.
We propose to write λeff in the form:

λeff = λfc (34)

where λ stands for the bulk thermal conductivity, and the contributions linked to the size-effects of
the nanoparticles are described by the correction factor, fc. To determine fc, it is the idea to upgrade
the heat flux and its higher order fluxes to the rank of independent variables at the same footing
as the energy or the temperature. This procedure has been presented in Section 2. The strength of
this development is that from Equations (8) and (9); not only constitutive equations can be obtained,
but they can also be used to propose effective properties. In the case of heat transfer, this concerns
effective thermal conductivity. So, continuing from Equations (8) and (9), we present how this can
be obtained. The physical meanings of the phenomenological coefficients are also already discussed
and obtained in Section 2. We assume now that the system is described by an infinite number of
flux variables, i.e., N→ ∞ . Applying the spatial Fourier transform q(k, t) =

∫ +∞
−∞ q(r, t)e−ik
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⨂(𝛾𝑛𝜕𝑡𝑸
(𝑛) − 𝛽𝑛∇ ∙ 𝑸

(𝑛+1) − 𝛽𝑛−1∇𝑸
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∇𝑇−1 − 𝛾1𝜕𝑡𝒒 + 𝛽1∇ ∙ 𝑸
(2) = 𝜈1𝒒 (8) 

𝛽𝑛−1∇𝑸
(𝑛−1) − 𝛾𝑛𝜕𝑡𝑸

(𝑛) + 𝛽𝑛∇ ∙ 𝑸
(𝑛+1) = 𝜈𝑛𝑸

(𝑛)  (𝑛 = 2,3, …𝑁) (9) 

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that 
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(3) − 𝛾4𝜕𝑡𝑸

(4) + 𝛽4∇ ∙ 𝑸
(5) = 𝜈4𝑸

(4) 
(10) 

Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with 𝑛 = 3, and 

omitting any flux, 𝑛 > 4. This gives: 

rdr to
relations (8) and (9), with k as the wave-number vector and r as the position vector, one is led to the
following evolution equation of the Fourier-transformed heat flux:

τdt
^
q(k) +

^
q(k) = −ikλ(k)T̂(k), (35)

where λ(k) is wavelength-dependent thermal conductivity, taking the form of a continued fraction
expansion [24,28,31], so that the correction factor (this continued fraction divided by λ) finally becomes:

fc(k) =
1

1 + k2l21

1+
k2l22

1+
k2l23
1+...

, (36)

where ln is the correlation length of order n defined by l2n = β2
n

νnνn+1
= `2, following the discussion

under (15). This is reasonable if one wants to obtain constitutive relations, which was the case in
Section 3 (even the first order of fluxes is, in most cases, sufficient). Furthermore, it is quite necessary
to limit the order of fluxes, so that analytical solutions can be found, or numerical simulations can be
performed. However, when one wants to use Fourier’s or Cattaneo’s law, it is necessary to take into
account an infinite number of higher-order fluxes in the framework of an effective thermal conductivity.
In that case, we need to use kinetic theories [32,33]. In case we consider heat transfer in one direction
(such as through thin films), kinetic theories [32,33] stipulate that the correlation lengths should be
selected as l2n = an+1`

2, with an = n2/
(
4n2 − 1

)
, and ` is identified as the mean free path, independent

of the order of approximation. Generally, kinetic theories [32,33] also hold that the relaxation times τn

(n > 1), corresponding to higher order fluxes, are limited by the first-order one, i.e., τ1. In the limit of
the latter, we take τn = τ1 = τ. In the case of nanoparticles or nanofilms, there is only one dimension,
namely the radius ap,s of the spheres, or the thickness of the nanofilms. It is therefore natural to define
k = k ≡ 2π/ap,s. With these results in mind, and taking the stationary solution, the continued fraction
(34) reduces to an asymptotic limit [32,34], leading finally to the following expression for fc:

fc =
3

4π2Kn2

(
2πKnd

arctan(2πKnd)
− 1
)

(37)

where the Knudsen number is defined as Kn = `/ap,s. Combining (34) and (37) leads to the effective
thermal conductivity:

λeff =
3λ

4π2Kn2

(
2πKnd

arctan(2πKnd)
− 1
)

(38)
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With (38) instead of λ, we can define effective Fourier and Cattaneo laws. Using these effective
laws in combination with (19) with r = 0, we finally obtain in dimensionless form:

∂θf
∂t∗
− 1

4π2

(
2πKnd

arctan(2πKnd)
− 1
)

∂2θf

∂z∗2 = 0 (39)

∂2θc

∂t∗2 +
∂θc

∂t∗
− 1

4π2

(
2πKnd

arctan(2πKnd)
− 1
)

∂2θc

∂z∗2 = 0 (40)

Figure 3 compares the total temperature from our model (from Figure 2) to the ones obtained
from (39) and (40).

Inventions 2019, 4, x 12 of 16 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

∂ଶθୡ∂t∗ଶ + ∂θୡ∂t∗ − 14πଶ ൬ 2πKnୢarctan(2πKnୢ) − 1൰ ∂ଶθୡ∂z∗ଶ = 0 (40) 

Figure 3 compares the total temperature from our model (from Figure 2) to the ones obtained 
from (39) and (40). 

  

    

      

      
Figure 3. Non-dimensional temperature profiles 𝜃(𝑧∗, 𝑡∗)  as a function of distance 𝑧∗ = 𝑧/𝐿  at 
different times 𝑡∗ = 𝑡/𝜏 (𝑡∗ = 1, 10, and 100, respectively) for 𝐾𝑛ௗ = 𝐾𝑛 = 𝐾𝑛 = 0.1, 1, and 10. 
The total temperatures from Figure 2 are compared to the ones obtained from Fourier’s and Cattaneo’s 
equations ((39) and (40)), using the effective thermal conductivity (38). 

Figure 3 shows that, although no exact correspondence is observed, for small 𝐾𝑛 numbers and 
large times, the effective Cattaneo and Fourier results are qualitatively not far from our results. The 
temperature jumps are not represented by these effective models, and for large Kn numbers and 
small times, even the qualitative comparison does not hold. In general, the effective model, presented 
in this section, is reasonable for cases where the 𝐾𝑛 number is not too high (𝐾𝑛 ≤ 𝑂(1)) and the 
system is close to stationarity (at large times, moving slowly, and being close to their quasi-stationary 
state). 
 

5. Discussion 

The work started by showing principles, using Extended Non-Equilibrium Thermodynamics, in 
order to obtain constitutive equations that are applicable to systems at nanoscale. Since the subject of 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

z*

Total

Cattaneo

Fourier

𝐾𝑛 = 0.1  𝑡∗ = 1 

𝐾𝑛 = 0.1 𝑡∗ = 10 

𝐾𝑛 = 0.1 𝑡∗ = 100 

𝐾𝑛 = 1 𝑡∗ = 1 

𝐾𝑛 = 1 𝑡∗ = 10 

𝐾𝑛 = 1 𝑡∗ = 100 

𝐾𝑛 = 10 𝑡∗ = 1 

𝐾𝑛 = 10 𝑡∗ = 10 

𝐾𝑛 = 10 𝑡∗ = 100 

Figure 3. Non-dimensional temperature profiles θ(z∗, t∗) as a function of distance z∗ = z/L at different
times t∗ = t/τb (t∗ = 1, 10, and 100, respectively) for Knd = Knb = Kn = 0.1, 1, and 10. The total
temperatures from Figure 2 are compared to the ones obtained from Fourier’s and Cattaneo’s equations
((39) and (40)), using the effective thermal conductivity (38).

Figure 3 shows that, although no exact correspondence is observed, for small Kn numbers
and large times, the effective Cattaneo and Fourier results are qualitatively not far from our results.
The temperature jumps are not represented by these effective models, and for large Kn numbers and
small times, even the qualitative comparison does not hold. In general, the effective model, presented
in this section, is reasonable for cases where the Kn number is not too high (Kn ≤ O(1)) and the system
is close to stationarity (at large times, moving slowly, and being close to their quasi-stationary state).
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5. Discussion

The work started by showing principles, using Extended Non-Equilibrium Thermodynamics,
in order to obtain constitutive equations that are applicable to systems at nanoscale. Since the subject
of this paper is focused on heat transport, a generalized equation for heat transport is used for
the purposes of considering the problem of heat conduction through a rigid nanofilm. The central
assumption of the present work is that, contrary to previous approaches, the set of variables, namely
the internal energy and the energy flux, is split into contributions of diffusive and ballistic natures.
Heat transport is represented here as a two-component diffusion-reaction process, where ballistic
particles can convert irreversibly into diffusive ones. The latter are obeying a Cattaneo equation, while
the behaviors of the ballistic phonons are dictated by the aforementioned generalized Equation (16)
and (22). This choice stems from the premise that non-local effects are dominating in ballistic collisions.
Often, Fourier and/or Cattaneo laws are used, and are adapted by effective material properties,
in order to take into account the mentioned non-local effects. Not expecting exact correspondence, it is
interesting how close such an approach can be to our two-temperature model. An effective thermal
conductivity is derived from our theory, and introduced into the Fourier and Cattaneo laws, for the
purposes of comparison with our model. The results suggest that the comparison is reasonable for
Kn ≤ O(1) and large times.

It should be noted that one of the objectives is to demonstrate the versatility of Extended
Non-Equilibrium Thermodynamics, proposing relatively simple solutions to delicate and complicated
phenomena at the nanoscale level. However, it is noteworthy to mention that questions may be
raised about the definitions of diffusive and ballistic temperatures at nanoscales. This is the reason
for why in our development, we considered the two temperatures as measures of internal energies.
As such, the diffusive and ballistic components are to be viewed as quasi-temperatures that stand for
the amount of internal energy that is of either diffusive or ballistic natures. However, the total internal
energy is a well-defined property, and it directly representative for the temperature.

Our approach in this work can be extended beyond the linear regime, considering the non-linear
contributions of the heat flux. Nonetheless, it should be realized that this formulation forms the
necessary framework for further investigations. A set of variables has been defined, but the most
appropriate set of variables is not easy to define: should non-linear terms in the heat flux and their
higher orders be included as well, and if so, would this contribute significantly to the correct values
of the heat flux? Answering this asks for a more complex mathematical formulation that is not too
complicated to formulate, but not easy to solve, nor to interpret physically. Finally, the choice of the
boundary conditions is still a delicate issue, and calls for more study.

All in all, the present model presents a solid framework of investigations in heat conduction
through nanoscopic materials, and it is shown to be applicable to a transient problem of heat conduction
through a nanofilm. Other works, based on the theory put forward here, have proven to be validated
against other works [25,30,35].

6. Conclusions

The aim of this work is to show how insight can be obtained into the ballistic and diffusive
components of phonon heat transport through a nanofilm, by using extended developments from
thermodynamic principles. Our model shows good agreement with other sophisticated models in
the literature [25,30,35]. The importance of the ballistic and diffusive components depends on the
Kn number. For low Kn numbers, the ballistic component is almost absent, and only persists close
to the boundary on the hot side of the nanofilm. This is understandable, since the continuous heat
flux passing from the heat source into the nanofilm causes a flux of incident phonons, which are
transformed irreversibly almost immediately into diffusion ones. For Kn numbers that are higher,
these incident phonons evolve further into the nanofilm, and much less is converted into diffusion
phonons. This causes completely different temperature profiles. For small Kn numbers, the result
is a temperature profile that is close to the ones predicted by the classical laws. For higher Kn
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numbers, the temperature profiles are completely different from those from the classical Fourier and
Cattaneo laws. One may also observe pronounced temperature jumps on both sides of the nanofilm.
For comparison, and also because it is used rather often, the classical laws with effective thermal
conductivities are also compared to our complete model. It appears that the comparison is rather
satisfactory for small Kn numbers, but not at all for higher Kn numbers. Finally, one may state that for
higher Kn numbers, it is necessary to use non-local effects, which are explained by our model to come
from the ballistic phonons that are only slightly transformed into diffusive ones.
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Nomenclature

Symbols
c heat capacity per unit volume [J/m3K]
fc correction factor
Js entropy flux [Wm/K]
k wavenumber vector
Kn Knudsen number
` mean free path [m]
L characteristic length [m]
q heat flux [W/m2]
Q(n) heat flux of order n [W/m2(m/s)n−1]
r position vector
r source term [W/m3]
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be independent of 𝒒, and a dot stands for the scalar product. The coefficient 𝛾1 will be identified 

later on, where it will be shown to be related to the relaxation time 𝜏 and the thermal conductivity 

𝜆. It should be noted that (3) does not take into account any terms that allow for coping with non-

local effects, which are dominant at small length scales. To take them into account, it is suggested to 

introduce a hierarchy of fluxes 𝑸(1), 𝑸(2),..., 𝑸(𝑛) with 𝑸(1) being identical to the heat flux vector 𝒒, 

where 𝑸(2) (a tensor of rank two) is the flux of 𝒒, 𝑸(3) the flux of 𝑸(2), and so on. Up to the 𝑁𝑡ℎ-

order flux, the generalized Gibbs equation can then be written as: 

𝜕𝑡𝓈(𝑢, 𝒒, 𝑸
(1), … , 𝑸(𝑛)) = 𝑇−1𝜕𝑡𝑢 − 𝛾1𝒒 ∙ 𝜕𝑡𝒒 − 𝛾2𝑸

(2)⨂𝜕𝑡𝑸
(2) −⋯− 𝛾𝑛𝑸

(𝑛)⨂𝜕𝑡𝑸
(𝑛), (4) 

wherein the symbol ⨂ denotes the inner product of the corresponding tensors, and 𝑛 = 2,3, …𝑁. 

Moreover, the time evolution of the entropy is governed by a general balance equation, which can be 

written as: 

𝜂𝑠 = 𝜕𝑡𝓈 + ∇ ∙ 𝑱
𝑠 ≥ 0, (5) 

wherein 𝑱𝑠 stands for the entropy flux and 𝜂𝑠 for the rate of entropy production per unit volume, 

which is positive definite to fulfil the second law of thermodynamics. In order to deduce an 

expression for 𝜂𝑠, we use (4) for 𝜕𝑡𝓈, and we need a constitutive relation for 𝑱𝑠 in terms of the set of 

variables established earlier. It is natural to expect that 𝑱𝑠  is not simply given by the classical 

expression 𝑇−1𝒒 [25], but that it will depend on all the higher order fluxes up to order 𝑛, namely: 

𝐽𝑠 = 𝑇−1𝒒 + 𝛽1𝑸
(2) ∙ 𝒒 + ⋯+ 𝛽𝑛−1𝑸

(𝑛)⨂𝑸(𝑛−1), (6) 

with 𝛽𝑛 designating the phenomenological coefficients. We substitute in (5) the expressions of 𝜕𝑡𝓈 

and 𝑱𝑠 by (4) and (6), respectively. We then replace derivative ∂tu by the energy conservation law, 

𝜕𝑡𝑢 = −∇ ∙ 𝒒, which leads to the expression for the entropy production: 

𝜂𝑠 = −(−∇𝑇−1 + 𝛾1𝜕𝑡𝒒 − 𝛽1∇ ∙ 𝑸
(2)) ∙ 𝒒…−∑𝑸(𝑛)

𝑁

𝑛=2

⨂(𝛾𝑛𝜕𝑡𝑸
(𝑛) − 𝛽𝑛∇ ∙ 𝑸

(𝑛+1) − 𝛽𝑛−1∇𝑸
(𝑛−1)) ≥ 0 (7) 

The above is a bilinear expression in fluxes and forces (the quantities between parentheses), 

which suggests the following hierarchy of linear flux–force relations: 

∇𝑇−1 − 𝛾1𝜕𝑡𝒒 + 𝛽1∇ ∙ 𝑸
(2) = 𝜈1𝒒 (8) 

𝛽𝑛−1∇𝑸
(𝑛−1) − 𝛾𝑛𝜕𝑡𝑸

(𝑛) + 𝛽𝑛∇ ∙ 𝑸
(𝑛+1) = 𝜈𝑛𝑸

(𝑛)  (𝑛 = 2,3, …𝑁) (9) 

It is the purpose to replace the set of relations (8)–(9) by one single constitutive equation that 

takes into account all the 𝑁𝑡ℎ order fluxes. For the sake of clarity, we will make the development up 

to the fourth order, and generalize afterwards. The fourth order flux equation (𝑛 = 4 in Equation (9)) 

is given by: 

𝛽3∇𝑸
(3) − 𝛾4𝜕𝑡𝑸

(4) + 𝛽4∇ ∙ 𝑸
(5) = 𝜈4𝑸

(4) 
(10) 

Let us now take the divergence (∇) of (10), substituting it subsequently in (9), with 𝑛 = 3, and 

omitting any flux, 𝑛 > 4. This gives: 

entropy per unit volume [J/Km3]
T temperature [K]
t time [s]
t∗ dimensionless time
u internal energy per unit volume [J/m3]
v phonon velocity [m/s]
z spatial coordinate [m]
z∗ dimensionless spatial coordinate
Greek symbols
ηs rate of entropy production [W/K]
θ dimensionless temperature
λ thermal conductivity [W/Km]
τ relaxation time [s]
Subscript
0 initial state
b ballistic
c Cattaneo
d diffusive
e f f effective value
f Fourier
Upperscript
ˆ Fourier transformed variable
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