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Abstract: Lithium-ion batteries are well known in numerous commercial applications. Using accurate
and efficient models, system designers can predict the behavior of batteries and optimize the associated
performance management. Model-based development comprises the investigation of electrical,
electro-chemical, thermal, and aging characteristics. This paper focuses on the analysis of models
describing the electrical behavior. In particular, it investigates how cell voltage and state of charge can
be determined with sufficient accuracy for a given load profile. For this purpose, the Thevenin-based,
the Rint, and the Shepherd’s models, as well as a generic library model of an electronic circuit simulation
software package, are compared. The procedure for determining model parameters is discussed in
detail. All models are evaluated for the application in the analysis of distributed power generation.
The validation is carried out by comparing simulation and measurement results with the help of a
case study.
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1. Introduction

Forecasts indicate that the global energy demand will continue to rise through 2040 [1]. At the
same time, global greenhouse gas emissions need to be reduced by the mid-century to less than
half of the level of 1990 [2]. For this reason, fossil fuels cannot meet the rising demand for energy
under these claims in the long-term. Consequently, the expansion of renewables has continued to
gain in significance due to the 2015 United Nations Climate Change Conference in Paris [3]. The key
outcome is to limit global warming to less than 2 ◦C, at least 1.5 ◦C, compared to pre-industrial levels.
In this context, grid-connected distributed power generation (DG) plays a crucial role in achieving this
objective [4]. Architectures of DG can be found in a wide diversity of scenarios such as household
applications, in supply systems of residential areas, or in microgrids. The power range extends from a
few kilowatts to several megawatts [4]. Depending on the installed capacity, the DG is connected either
to the low-voltage or to the medium-voltage grid [4–6]. In addition to the advantage of generating
energy locally at the point of consumption, DG also enables the flexible integration of renewable
energies such as wind, micro hydropower, and biomass, as well as photovoltaics. The most common
DG with renewables is the installation of a photovoltaic system (PV) [7]. When using renewables with
fluctuating power generation such as a PV, electrical energy storage must be taken into account [8].

Decentralized electrochemical storage is of particular interest due to its flexible use in the expansion
of fluctuating renewable energies, and lithium-based storage still has enormous technical and cost
reduction potential [9]. The major design criteria of this technology are a high volumetric energy density,
a high round trip efficiency, a high cycle lifetime, and not least the investment costs. Most common are
lead-acid batteries with a high efficiency (75–90%), an energy density between 30 to 50 Wh/kg, and a
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cycle lifetime up to 1500. This type is used in numerous applications, e.g., in uninterruptable power
supply for large data center up to 1200 kVA [10]. A promising technology for grid applications is the
lithium-ion battery which is characterized by a high cell voltage (3.6 V), energy density (up to 200 Wh/kg),
efficiency (85–95%), and cycle lifetime (1000–15,000 cycles) [9,11]. Despite the high investment and low
energy density (50 Wh/kg), vanadium redox-flow batteries are used in grid applications. They offer a
flexible and modular design, high efficiency (>75%) and cycle lifetime (>10,000), deep discharge, and low
self-discharge [12]. Furthermore molten-salt batteries (Sodium-sulfur, Sodium-nickel chloride) are under
investigation. Although these two types of batteries require complex constructions and high operating
temperatures (300–350 ◦C), they offer a potential for grid applications due to their high efficiency
(80–90%), cycle lifetime (up to 4500), and energy density (up to 200 Wh/kg). Commercial availability
is expected beyond 2020 [13,14]. Advanced technologies like zinc-air, lithium-sulphur, and lithium-air
batteries are currently in the research phase [9]. Market availability is expected from 2030. Considering
that certain battery types are used for short-term (<1 h), intermediate (<1 day), and long-term (>1 day)
storage, a size class breakdown can be performed as summarized in Table 1 [9]. Technologies which are
expected to be launched between 2020 and 2030 or from 2030 are listed in italics.

Table 1. Battery storage portfolio.

<100 kWh 0.1–1 MWh 1 MWh–1 GWh

<1 h
lead-acid

lithium-ion
lithium-air

lead-acid
lithium-ion

lithium-sulphur

lead-acid
lithium-ion

<1 day

lead-acid
lithium-ion

vanadium-redox
sodium-sulphur

sodium-nickel-chloride
lithium-sulphur

lead-acid
lithium-ion

vanadium-redox
sodium-sulphur

sodium-nickel-chloride
zinc-air

lithium-air

lead-acid
vanadium-redox
sodium-sulphur

sodium-nickel-chloride

>1 day

lead-acid
lithium-ion

vanadium-redox
sodium-sulphur

sodium-nickel-chloride
zinc-air

lithium-sulphur

vanadium-redox
sodium-sulphur

sodium-nickel-chloride
vanadium-redox

As reported in [14–16], lithium-ion batteries are increasingly utilized in DG applications. For this
reason, the use of suitable models for simulating the operating performance of this type of electrical
energy storage system will receive more attention in the future. Examples of the use of battery models
in power and grid applications can be found in publications [17–22]. The aim of this research is to
evaluate battery models that are appropriate for predicting the current and voltage characteristics,
as well as the state of charge, of a battery used in a DG. The DG under discussion in this article
comprises a cogeneration (CG), a lithium-ion battery, and a PV system as a renewable source. Thermal
and electrical energy is supplied for a residential area with 180 town houses [23].

Typically, when dimensioning the DG, the nominal power of the CG, the installed PV power, and
the battery capacity are designed according to the load profile of the consumers. On the basis of the
nominal data, however, only the basic quality of the energy supply can be evaluated. The operating
strategy of an implemented battery management can be established while the system is running.
A simulation-based approach, on the other hand, allows the system designer to investigate various
dynamic and steady-state operating modes on the basis of suitable models, and thus to optimize the
battery management already in the development phase. In order to support this simulation-based
method, models must be introduced that fulfill the following requirements:
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• As simple as possible;
• As accurately as necessary; and
• Easy to implement in an electronic circuit simulator.

It seems that these demands cannot be met together. For this reason, the following objectives must
be taken into account:

• Which goals are achieved with the models?
• Which parameterization options are available?
• Which simulation environment is provided for implementation?

The objective of this study is not to provide a model for optimizing the design of a battery module
or for optimizing the thermal behavior of the entire storage system. Therefore, it does not have to be as
accurate as possible. In fact, the goals described above should be achieved with sufficient accuracy.
In addition, fast and easy access to parameterization must be ensured. Last but not least, the model
should be structured in such a way that it can be integrated into an existing overall model of the
DG plant. Consequently, the aim of this study is not to present a new battery model. Rather, from a
practical point of view, the task is to select a suitable model for a battery that is already installed in a
DG. Furthermore, it should be noted that no laboratory samples of the battery are available to carry
out measurements for parameterization. Only data sheets of the completed battery type are available.

For this reason, various lithium-ion battery models suitable for DG applications are investigated
in this work. First, the Thevenin-based, the Rint and the Shepherd’s model are investigated. Second,
a generic library model of the electrical circuit simulation software package PSIM is explored for its
suitability in the mentioned DG.

The article is organized as follows. In the next section, the most important battery models reported
in the literature are discussed first. In Section 3, a case study is considered in which the suggested
models are parameterized and implemented in a simulation environment. Subsequently, all models
are validated with regard to the prediction of the current and voltage performance on the basis of
measurement results of the described DG. Afterwards the models are examined with regard to the
prediction of the state of charge. For this purpose, the case study presents a method that allows an
effective validation of the models on the basis of 24 h load profiles. Sections 4 and 5 summarize the
main findings of the research and give an outlook on further aspects.

2. Overview of Battery Models

There is a variety of battery models with different objectives and complexity that have been
published in technical literature in recent years [24–29]. Basically, a classification into mathematical
and electrochemical, thermal, and electrical models can be made.

2.1. Mathematical and Electrochemical Models

These models have essentially been developed to describe fundamental mechanisms. The first
models were published by Fuller, Doyle and Newman [30,31]. They represent an important contribution
to physical cell design and the quantification of macroscopic variables such as battery voltage
and current, as well as microscopic such as concentration distribution and galvanostatic charge or
discharge. These models require a variety of cell parameters and complex numerical computational
methods. Regardless of the accuracy achievable with these models, they are unsuitable in a simulation
environment in which the electrical terminal behavior of the battery and the state of charge are to be
determined with reasonable computing times.

2.2. Thermal Models

The first studies on thermal models were presented by Newman and Pals [32,33]. Thermal models
have gained in importance in recent years, not least due to the increasing use of lithium-ion batteries



Inventions 2019, 4, 41 4 of 22

in hybrid and electric vehicles [34]. These models are also characterized by many parameters and
complex calculations. The battery system under investigation is installed in an air-conditioned room in
which the ambient temperature is controlled to a constant level. However, an evaluation of the cell
temperature cannot be conducted in this manner. Nevertheless, it is assumed in this study that the
cell temperature has no affect on the model behavior. For this reason, only electrical models will be
examined in more detail in the following paragraphs.

2.3. Electrical Models

In contrast to mathematical, electrochemical, or thermal models, electrical models are intuitive
and easy to use. Common to all electrical models is that they consist of equivalent circuits composed
of passive components such as resistors and capacitors, possibly inductors and a voltage source.
Therefore, they are particularly suitable for use in circuit simulators. The accuracy achievable with
these models with regard to voltage and current characteristics, as well as state of charge, is sufficient
for many applications. In the following, a brief description of the common models will be given,
from which models suitable for the analysis of a battery in DG applications can be selected.

2.3.1. Thevenin-Based Electrical Model

The most simple model, as shown in Figure 1a, consists of a series resistor RS, an RC network
(Rt, Ct) to describe basic charge transfer phenomenon, and an open circuit voltage dependent on the
SOC VOCV(SOC) [26]. However, the simple model has limited accuracy. An improvement for the
simulation of lithium-ion batteries can be achieved by a modification using a second RC network
(Figure 1b) [35,36]. The first RC network represents short-term transient behavior (Rt,s, Ct,s), and the
second, long-term transient behavior (Rt,l, Ct,l). In [37–40], a dependence of the network elements on
the SOC was further proposed to achieve higher accuracy. In detail, the dependence on the SOC is
described by the listed set of equations:

VOCV(SOC) = k0 + k1·SOC + k2·SOC2 + k3·SOC3 + k4·ek5·SOC (1)

RS(SOC) = Rs0 + k5·ek6·SOC (2)

Rt,s(SOC) = Rt,s0 + k7·ek8·SOC (3)

Ct,s(SOC) = Ct,s0 + k9·ek10·SOC (4)

Rt,l(SOC) = Rt,l0 + k11·ek12·SOC (5)

Ct,l(SOC) = Ct,l0 + k13·ek14·SOC (6)

The coefficients ki, i = 1 · · · 14 depend on the respective cell type and are subjects of measurements.
In [41] an extension by another RC network is proposed, in order to describe finally short-term,
mid-term, and long-term transient behavior. However, this makes the calculation of the associated
resistances and capacities (Rx, Cx) much more complex. In [18], it was reported that the Thevenin-based
model achieves good results in simulations of electrical power grids. Therefore, this model is used in
the subsequent case study.
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of the network contains the capacitor 𝐶, the self-discharge resistor 𝑅ௗ௦, and the current-controlled 
current source  𝐼௧, inherent to the original runtime model. This part models the capacity, the SOC, 
and the lifetime of the battery, while the right part simulates the transient response described above. 
A voltage-regulated voltage source  𝑉ை(𝑉ௌை) is used to bridge the SOC to the open circuit voltage. 
The so-called full capacity capacitor  𝐶  is introduced to describe the whole charge stored in the 
battery; 𝐶 is defined as a function of the nominal capacity of the battery 𝑄 and the correction 
factors  𝑓ଵ(𝐶𝑦𝑐𝑙𝑒) and  𝑓ଶ(𝑇𝑒𝑚𝑝), which depend on the cycle number and the cell temperature: 𝐶 = 𝑄 ∙ 𝑓ଵ(𝐶𝑦𝑐𝑙𝑒) ∙ 𝑓ଶ(𝑇𝑒𝑚𝑝) (7) 

With the aid of this model, influences of runtime and battery lifetime can be simulated. Since 
this study does not investigate runtime effects, the model is not considered for the case study. 

Figure 1. (a) Thevenin-based model, 1 RC network. (b) Thevenin-based model, 2 RC networks.

2.3.2. Rint Electrical Model

As shown in Figure 2a, the Rint model consists of a voltage source VOCV representing the open
circuit voltage and an internal resistor Rint. Both network elements depend on the SOC. Furthermore,
the internal resistor can depend on the two operating modes charging/discharging. This enables the
model depicted in Figure 2b to be specified with VOCV(SOC), Rint(SOC, charge), and Rint(SOC, discharge).
Since the model convinces by its basic topology, it is chosen for the following case study.
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2.3.3. Runtime-Based Electrical Model

Figure 3 shows a runtime-based model presented in [37]. It consists of an expansion of the
original model introduced in [42] by an electrical network based on the Thevenin model. The left part
of the network contains the capacitor CC, the self-discharge resistor Rdis, and the current-controlled
current source Ibat, inherent to the original runtime model. This part models the capacity, the SOC,
and the lifetime of the battery, while the right part simulates the transient response described above.
A voltage-regulated voltage source VOC(VSOC) is used to bridge the SOC to the open circuit voltage.
The so-called full capacity capacitor CC is introduced to describe the whole charge stored in the battery;
CC is defined as a function of the nominal capacity of the battery Qnom and the correction factors
f1(Cycle) and f2(Temp), which depend on the cycle number and the cell temperature:

CC = Qnom· f1(Cycle)· f2(Temp) (7)

With the aid of this model, influences of runtime and battery lifetime can be simulated. Since this
study does not investigate runtime effects, the model is not considered for the case study.
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2.3.4. Impedance-Based Electrical Model

The impedance model depicted in Figure 4 is based on an electrochemical impedance spectroscopy
to model an AC-equivalent impedance ZAC in the frequency domain [43,44]. However, fitting ZAC to
the impedance spectrum is very difficult and challenging. A comprehensive discussion of the method
can be found in [45]. Due to its complexity, this model is unsuitable for investigations in this work.
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2.3.5. Shepherd’s Model

The electrical circuit network in Figure 5a is known as the Shepherd’s Model, which was first
referenced in [46] and improved by subsequent work, e.g., [47,48]. In the original Shepherd’s model,
the open circuit voltage VOC is determined according to Equation (8):

VOC = V0 + K
Q

Q− it
·i (8)

where V0 is the constant battery voltage, K is the polarization resistance coefficient, Q is the battery
capacity, i is the dynamic battery current at the time t, and it is the discharge capacity. The commonly
used modified model is illustrated in Figure 5b [34,49]. Here the battery current is additionally filtered
by a low-pass (LP). Furthermore, for the calculation of the open circuit voltage, a distinction is made
between charging and discharging:

VOC,charge = V0 −K
Q

it− 0.1·Q
·i∗ −K

Q
Q− it

·it + A·e−B·it (9)

VOC,dis = V0 −K
Q

Q− it
·(it + i∗) + A·e−B·it (10)

The coefficient A represents the voltage amplitude in the exponential zone of the discharge curve
of the battery, while the coefficient B specifies the time constant inverse in this zone, and K is the
polarization voltage. For a better understanding, Figure 6 illustrates the simulated discharge curve of a
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lithium-ion cell (US26650). As indicated, the curve can be divided into three subintervals: Region 1O
consists of the exponential zone starting at the full voltage V f ull, region 2O describes the linear zone,
and region 3O finally includes the nonlinear zone up to the cut-off voltage Vcut−o f f . With the help of
this curve, the coefficients A, B, and K in Equations (9) and (10) can be determined:

A = V f ull −Vtop (11)

Assuming that the end-value in the exponential zone is reached after about three time constants,
the coefficient B can be calculated as follows:

B =
3

Qtop
(12)

The coefficient K can be calculated by Equation (10) for any point on the discharge curve [48].
It should be noted that the coefficient K in Equations (9) and (10) is multiplied by both the filtered
battery current i∗ (A) and the discharge capacity it (Ah). The units of K must be Ω or V/Ah. Therefore,
the representation of the open circuit voltage using one polarization coefficient is unfavorable.
Section 3.3 discusses this problem in more detail.
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Since all necessary model parameters can be derived from the data sheet of the cell type used,
the model is further investigated in the case study. An example of an implementation of the Shepherd’s
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model in the Simulink Simscape environment can be found in [51]. In this generic model, either
lead-acid, lithium-ion, nickel-cadmium, or nickel-metal-hydride batteries can be simulated.

2.3.6. Generic Library Model

In order to meet the demand for a model that can describe dynamic phenomena with sufficient
accuracy, and that can also be implemented as easily as possible in an electronic circuit simulator,
this study examines the generic lithium-ion model from the library of the software package PSIM.
Figure 7 depicts a schematic of the model. The load is connected to the positive and negative pin,
while the upper pin gives the actual SOC during simulation. For the user, the model appears as a
mask sub-circuit, which is parameterized by the cell characteristics [52]. The required cell voltage
points (V f ull, Vexp, Vnom and Vcut−o f f ) and capacities (Q f ull, Qexp, Qnom and Qmax) can be taken from the
discharge curve shown in Figure 6. The series resistance RS can be derived from the corresponding
data sheet. Furthermore, a voltage derating factor and a capacity derating factor are available to adapt
simulated curves. The default value of both factors is set to one. When a cell is parameterized, a battery
can be defined by the number of cells connected in series and in parallel. Due to these properties,
this model is used for the following case study.
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3. Case Study

The models described above (Thevenin-based, Rint, Shepherd’s, and library models) are validated
by means of a case study. Figure 8 depicts the architecture of the investigated DG, which was developed
to supply a residential area with 180 town houses (load, consumers) [23]. The CG has a rated thermal
power of 81 kWth and an electrical of 50 kWel. Thermal power is distributed via a district heating
network (dashed line). As shown in Figure 8, a heat store is used to cover thermal load peaks.
Additional electrical power is provided by the PV with an installed peak power of PPV = 65 kWpk.
A lithium-ion battery with a maximum discharge power of Pdis,max = 50 kW and a rated energy of
Erated = 135 kWh (capacity Qrated = 2688 Ah ) is integrated. The electrical systems operate on the
low voltage grid (solid line). All measured performance values of the plant are transmitted to the
monitoring system for data acquisition (dotted box).

In this application, iron phosphate (LiFePO4) batteries are used. In particular, energy storage
modules with the characteristics listed in Table 2 are utilized. One module consists of 16 cell clusters
connected in series, whereby one cluster consists of eight cells (US26650) connected in parallel [53].

Table 2. Specification energy storage module.

Energy/Capacity Nominal Voltage Maximum Discharge Current/Power

1.2 kWh/24 Ah 51.2 V 50 A/2.5 kW



Inventions 2019, 4, 41 9 of 22Inventions 2019, 4, x FOR PEER REVIEW 9 of 22 

 
Figure 8. Architecture of the distributed power generation (DG). 

In this application, iron phosphate (𝐿𝑖𝐹𝑒𝑃𝑂ସ) batteries are used. In particular, energy storage 
modules with the characteristics listed in Table 2 are utilized. One module consists of 16 cell clusters 
connected in series, whereby one cluster consists of eight cells (US26650) connected in parallel [53]. 

Table 2. Specification energy storage module. 

Energy/Capacity 
Nominal 
Voltage 

Maximum Discharge 
Current/Power 1.2 𝑘𝑊ℎ/24 𝐴ℎ 51.2 𝑉 50 𝐴/2.5 𝑘𝑊 

The storage modules are installed in battery cabinets with the following arrangement. First 𝑛, = 2 modules are connected in parallel, and then  𝑛ௌ = 8 of these parallel-connected modules 
are connected in series in one cabinet (Figure 9a). Finally, 𝑛 = 7 battery strings are connected in 
parallel. Thus, the entire storage system consists of seven battery cabinets, plus one control cabinet, 
as shown in Figure 9b [54]. 

  
(a) (b) 

Figure 9. (a) Connection of power modules in a cabinet. (b) Energy storage system with seven battery 
cabinets. 

The battery system is installed in an air-conditioned operating room, in which the ambient 
temperature is constantly controlled to 20 °C. 

Figure 8. Architecture of the distributed power generation (DG).

The storage modules are installed in battery cabinets with the following arrangement. First nm,P = 2
modules are connected in parallel, and then nS = 8 of these parallel-connected modules are connected in
series in one cabinet (Figure 9a). Finally, nP = 7 battery strings are connected in parallel. Thus, the entire
storage system consists of seven battery cabinets, plus one control cabinet, as shown in Figure 9b [54].
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Figure 9. (a) Connection of power modules in a cabinet. (b) Energy storage system with seven
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The battery system is installed in an air-conditioned operating room, in which the ambient
temperature is constantly controlled to 20 ◦C.

3.1. Implementation of the Thevenin-Based Model

The determination of the model parameters VOC (open circuit voltage), short-term transient
resistor Rt,s and capacitor Ct,s, and long-term transient resistor Rt,l and capacitor Ct,l according to
Equations (1)–(6) requires an experimental setup with laboratory samples of the battery cell type used.
Since such a sample is not available, the parameters cannot be identified experimentally in this study.
A detailed description of the experimental procedure is described in [37,38]. Therefore, it considered
to neglect the dependence of the RC network elements on the SOC. The results published in [37,38]
indicate that the RC network elements are almost independent of the SOC for the operating range
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SOC > 10%, with the exception of the long-term capacity Ct,l. In the application under investigation,
the battery is only operated in a range of 15% < SOC < 95%. For this reason, the Thevenin model for
constant RC network elements is examined in this study. Since no measurements could be carried
out, model parameters of lithium-ion batteries published in [37,38,55] are used as a reference for the
RC network elements for the purpose of simplicity. A parameter fitting leads to the following values
for the RC network elements of one module: Rt,s = 50 Ω, Ct,s = 500 F, Rt,l = 46 mΩ, Ct,l = 5000 F.
Due to the cell type and structure of the storage module, these values deviate from published ones,
but acceptable accuracy can be achieved.

As it was not possible in the present case to measure the open-circuit voltage VOCV(SOC) as a
function of the SOC while the system was running, the open-circuit voltage of a LiFePO4 battery as
depicted in Figure 10 is used in the model [56]. Although this parameterization does not follow a
strictly scientific methodology, it represents the main problem of integrating the Thevenin-based model
into practical work. Nevertheless, the next subsection shows that this simple approach leads to quite
accurate results.

Figure 11 illustrates the implementation of the model of one storage module in PSIM. The open
circuit voltage VOCV(SOC) is given by a look-up table; the SOC is calculated from the battery current
IBat and the usable capacity CBat of one battery module, as well as the initial SOCinit [57]:

SOC = SOCinit −
1

CBat

∫
IBatdt (13)

In order to validate the model, the battery current IBat is controlled by a voltage-controlled current
source. The input of this source is a current-proportional control signal IBat,request that corresponds to
the actual battery current of the DG. The control variable IBat,request is generated from the measured
power values of the system. A detailed description of the validation process will be given in Section 3.3.
The complete storage system is assembled by connecting the individual modules in series (nS) and in
parallel (nm,P, nP).

Inventions 2019, 4, x FOR PEER REVIEW 10 of 22 

3.1. Implementation of the Thevenin-Based Model 

The determination of the model parameters 𝑉ை  (open circuit voltage), short-term transient 
resistor  𝑅௧,௦ and capacitor  𝐶௧,௦, and long-term transient resistor  𝑅௧, and capacitor  𝐶௧, according 
to Equations (1)–(6) requires an experimental setup with laboratory samples of the battery cell type 
used. Since such a sample is not available, the parameters cannot be identified experimentally in this 
study. A detailed description of the experimental procedure is described in [37,38]. Therefore, it 
considered to neglect the dependence of the RC network elements on the SOC. The results published 
in [37,38] indicate that the RC network elements are almost independent of the SOC for the operating 
range  𝑆𝑂𝐶 > 10 % , with the exception of the long-term capacity  𝐶௧, . In the application under 
investigation, the battery is only operated in a range of  15% < 𝑆𝑂𝐶 < 95%. For this reason, the 
Thevenin model for constant RC network elements is examined in this study. Since no measurements 
could be carried out, model parameters of lithium-ion batteries published in [37,38,55] are used as a 
reference for the RC network elements for the purpose of simplicity. A parameter fitting leads to the 
following values for the RC network elements of one module:  𝑅௧,௦ = 50  Ω , 𝐶௧,௦ = 500𝐹, 𝑅௧, =46 𝑚Ω, 𝐶௧, = 5000 𝐹. Due to the cell type and structure of the storage module, these values deviate 
from published ones, but acceptable accuracy can be achieved. 

As it was not possible in the present case to measure the open-circuit voltage 𝑉ை(𝑆𝑂𝐶) as a 
function of the SOC while the system was running, the open-circuit voltage of a 𝐿𝑖𝐹𝑒𝑃𝑂ସ battery as 
depicted in Figure 10 is used in the model [56]. Although this parameterization does not follow a 
strictly scientific methodology, it represents the main problem of integrating the Thevenin-based 
model into practical work. Nevertheless, the next subsection shows that this simple approach leads 
to quite accurate results. 

Figure 11 illustrates the implementation of the model of one storage module in PSIM. The open 
circuit voltage 𝑉ை(𝑆𝑂𝐶) is given by a look-up table; the SOC is calculated from the battery current 𝐼௧  and the usable capacity 𝐶௧ of one battery module, as well as the initial  𝑆𝑂𝐶௧ [57]: 𝑆𝑂𝐶 = 𝑆𝑂𝐶௧ − 1𝐶௧ න 𝐼௧𝑑𝑡 (13) 

In order to validate the model, the battery current 𝐼௧  is controlled by a voltage-controlled 
current source. The input of this source is a current-proportional control signal 𝐼௧,௨௦௧  that 
corresponds to the actual battery current of the DG. The control variable 𝐼௧,௨௦௧ is generated from 
the measured power values of the system. A detailed description of the validation process will be 
given in Section 3.3. The complete storage system is assembled by connecting the individual modules 
in series (𝑛ௌ) and in parallel (𝑛,, 𝑛). 

 
Figure 10. Open circuit voltage 𝑉ை(𝑆𝑂𝐶). Figure 10. Open circuit voltage VOCV(SOC).



Inventions 2019, 4, 41 11 of 22

Inventions 2019, 4, x FOR PEER REVIEW 11 of 22 

 
Figure 11. Thevenin-based model of one energy storage module. 

3.2. Implementation of the Rint Model 

In the Rint model, the open circuit voltage 𝑉ை(𝑆𝑂𝐶) is simulated exactly as described in the 
Thevenin-based model. The internal resistors 𝑅௧(𝑆𝑂𝐶, 𝑐ℎ𝑎𝑟𝑔𝑒)  and 𝑅௧(𝑆𝑂𝐶, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒)  in 
Figure 2 are determined from the open circuit voltage  𝑉ை (Figure 10), the measured battery voltage 𝑉௧,, and measured battery current 𝐼௧, of the storage system according to Equation (14): 𝑅௧(𝑆𝑂𝐶, 𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) = 𝑉ை − 𝑉௧,𝐼௧,  (14) 

Figure 12 illustrates the dependence of the resistors of one storage module on the SOC with  𝑅௧(𝑆𝑂𝐶, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) = 𝑅ௗ௦ and  𝑅௧(𝑆𝑂𝐶, 𝑐ℎ𝑎𝑟𝑔𝑒) = 𝑅. 

 
Figure 12. Rint model, charge and discharge resistors in dependence on SOC. 

Since the resistance of 𝑅 changes only slightly with the SOC, a constant value of 𝑅 =17𝑚Ω is used for the simulation. In order to be able to simulate the dependence of 𝑅ௗ௦ on the SOC, 
the impact of 𝑅ௗ௦ is modeled using a look-up table. Instead of applying a variable resistor, the model 
determines the voltage drop across the resistor: 𝑉ோ,ௗ௦ = 𝑅ௗ௦ ∙ 𝐼௧ (15) 

R_trans_S

C_trans_S

R_series R_trans_L

C_trans_L

A

I_Bat
V V_oc V

V_Bat

/CP

I_bat_request

V_Bat_OC

P_Bat

ʃ K

1/C_Bat

SOC_init

Figure 11. Thevenin-based model of one energy storage module.

3.2. Implementation of the Rint Model

In the Rint model, the open circuit voltage VOCV(SOC) is simulated exactly as described in the
Thevenin-based model. The internal resistors Rint(SOC, charge) and Rint(SOC, discharge) in Figure 2
are determined from the open circuit voltage VOCV (Figure 10), the measured battery voltage VBat,m,
and measured battery current IBat,m of the storage system according to Equation (14):

Rint(SOC, charge/discharge) =
VOCV −VBat,m

IBat,m
(14)

Figure 12 illustrates the dependence of the resistors of one storage module on the SOC with
Rint(SOC, discharge) = Rdis and Rint(SOC, charge) = Rchar.
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Since the resistance of Rchar changes only slightly with the SOC, a constant value of Rchar = 17 mΩ
is used for the simulation. In order to be able to simulate the dependence of Rdis on the SOC, the impact
of Rdis is modeled using a look-up table. Instead of applying a variable resistor, the model determines
the voltage drop across the resistor:

VR,dis = Rdis·IBat (15)
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This is realized with the help of a controlled voltage source. Figure 13 shows the implementation
in PSIM. The actual battery current IBat is sensed and multiplied by the SOC-dependent resistance
Rdis from the look-up table. The battery current IBat is again generated by a controlled source with the
control signal IBat,request. The complete storage system is assembled considering the individual modules
connected in series (nS) and in parallel (nm,P, nP).
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3.3. Implementation of the Shepherd’s Model

The parameters for the Shepherd’s model are specified for one storage module (see Table 2).
The three required pairs of voltage and capacity for the 1C rate based on the data sheet of one cell
(Figure 6) and the number of cell connected in series in one module are given as follows:

V f ull, Q f ull = 54.4 V, 24 Ah (16)

Vexp, Qexp = 52.8 V, 1.6 Ah (17)

Vnom, Qnom = 51.2 V, 22.8 Ah (18)

According Equation (11), the coefficient A is calculated as follows:

A = V f ull −Vtop = 54.4 V − 52.8 V = 1.6 V (19)

According Equation (12), the coefficient B is calculated as follows:

B =
3

Qtop
=

3
1.6 Ah

= 1.875
1

Ah
(20)

Finally, the coefficient K is calculated according to:

K =
(
V f ull −Vnom + A·

(
e−B·Qnom

)
− 1

)Q f ull −Qnom

Qnom
= 0.084 V (21)

In [49], scalar factors were introduced to improve the fit to the investigated battery. As already
mentioned in Section 2.3.5, the unit of the coefficient must be modified. Taking into account scalar
factors (0.95 and 0.175) found in the optimization of the model in this study and coefficients with
the correct units, Equations (9) and (10) for determining the open circuit voltages for charging and
discharge can now be written in the following form:

VOC,charge = V0 −K1
Q

it− 0.1·Q
·i∗ −K2

Q
Q− it

·it + A·e−B·it (22)
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VOC,dis = V0 −K1
Q

Q− it
·i∗ −K2

Q
Q− it

·it + A·e−B·it (23)

K1 = 0.95
Ω
V

K = 0.0798 Ω (24)

K2 = 0.175
1

Ah
·K = 0.0147

V
Ah

(25)

Figure 14 depicts the implementation of the model in PSIM. The equations for computing the
open circuit voltages VOC,charge and VOC,dis are programmed in a C-block. The output variable of the
C-block is used to set a controlled voltage source according to the open circuit voltage. The series
resistance RS = 36 mΩ is calculated from the resistance of a single cell (RS,cell = 18 mΩ AC impedance
of one US26650 cell at 1 kHz [58]). Again, the complete storage system is assembled considering the
individual modules connected in series (nS) and in parallel (nm,P, nP). As described in Sections 3.1
and 3.2, the battery current IBat is generated by a controlled source with the control signal IBat,request.
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3.4. Implementation of the Generic Library Model

As explained with the Shepherd’s model, the library model is also specified for one storage
module. The three required pairs of voltage and capacity (V f ull, Q f ull), (Vexp, Qexp) and (Vnom , Qnom)

are given according Equations (15)–(17). The cut-off voltage and the maximum capacity are set
to Vcut−o f f = 32 V and Qmax = 24.8 Ah. Like the Shepherd’s model, the internal resistor is set to
RS = 36 mΩ. As described in the previous subsections, the complete storage system is assembled
considering the individual modules connected in series (nS) and in parallel (nm,P, nP). Figure 15 depicts
the arrangement in the PSIM schematic. The battery current IBat is again generated by a controlled
source with the control signal IBat,request.
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3.5. Model Validation

In order to validate the presented models, it is necessary to determine the precise load profile,
i.e., the exact battery current in the simulation. Since no currents are measured in the monitoring
system (see Figure 8), the current associated with the load distribution must be determined in a battery
management system. The battery power PBat in the model is calculated from the difference between
the measured power of the load (consumer PCSR,m) and the sources (PPV,m and PCG,m):

PBat = PCSR,m − (PPV,m + PCG,m) (26)

The signal IBat,request, which is the control variable of the voltage-regulated current source (see
Figures 11 and 13–15), can be calculated in the model from the power PBat and voltage VBat:

IBat,request =
PBat

Vbat
(27)

In this calculation, it is necessary to ensure that the maximum charge and discharge power is not
exceeded (Pdis,max = Pchar,max = 50 kW). Furthermore, it must be noted that the maximum and minimum
SOC is taken into account. As long as the SOC is within the specified limits (15% < SOC < 95%),
IBat,request is calculated according to Equation (27), otherwise IBat,request is zero ; IBat,request = 0 A.
The arrangement of the DG simulation model for validation implemented in PSIM is depicted in
Figure 16.
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The input data are the power curves of the consumers PCSR,m, the PV system PPV,m, and the CG
PCG,m measured over one day in the monitoring system. The battery model itself is linked to the
sub-models CSR, PV, CG, and GRID that determine the power flow according to the input data in the
simulation. With the help of this management system, the exact profile of the battery current can be
generated. The output values are the current IBat, voltage VBat, power PBat, and SOC. In this way, it can
be verified whether the models are suitable for a prediction of the current and voltage characteristics,
as well as the SOC, in the described grid application.

3.5.1. Predicting I–V Performance

In a first validation step, the discussed models are investigated with regard to their suitability
for predicting the current and voltage characteristics. For this purpose, one 24-h operating day with
the system quantities illustrated in Figure 17 is analyzed. The top layer shows the load power PCSR
(grey curve) and the electrical power of the CG PCG (red line) (for variable assignment see Figure 8).
The subsequent layer show the grid power PGRID (positive power is drawn from the grid, negative
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power is fed-into the grid), the PV power PPV, and the battery power PBat (positive power indicates
discharge, negative power charge). Finally the bottom layer displays the SOC.Inventions 2019, 4, x FOR PEER REVIEW 15 of 22 
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All power values are measured and recorded with a sampling time of 1 min in the monitoring
system and assigned to the simulation model as input data. As described in Section 3.5, the load profile
of the battery can thus be specified. The output voltage VBat and current IBat of the installed battery
are recorded by means of an oscillographical measurement for the same day with a sampling time of
200 ms. In the course of the validation, the battery charging from 0 to 5 h and discharge from 16 to 23 h
are considered as follows. Figure 18a,b shows the simulated and measured current and voltage curves
for the Thevenin-based model. The maximum absolute error is below 2.5 V (relative error related to
the full voltage 432.5 V is 0.6%) during charging. However, the simulation results during discharge
are quite inaccurate due to the coarse parameterization (error 7.5 V, 1.8%). The model cannot follow
dynamic load changes. Figure 19a,b illustrates the comparison of simulated and measured current
and voltage for the Rint model. In both cases, battery charging and discharge, the maximum absolute
error is below 2.5 V (0.6%). Figure 20a,b gives the corresponding results for the Shepherd’s model.
It achieves a good accuracy in both cases, the maximum absolute error is below 3.8 V (0.8%). Finally,
Figure 21a,b provides the related comparisons for the PSIM library model. A good accuracy of the
simulation results can also be observed herewith. For battery charging and discharge, the maximum
absolute error is below 2.5 V (0.6%).
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3.5.2. Predicting SOC Performance

For the development of an advanced power management in grid applications, e.g., dynamic
control of loads and load shifting for demand side management, accurate knowledge of the state of
charge is necessary. Therefore, the simulated and the measured SOC for a 24-h operating day of the
DG are now compared. For this purpose, the SOC is measured and recorded with a sampling time of
15 min in the monitoring system (a sampling time of 1 min could not be set when recording the SOC).
Since the simulated SOC and battery power PBat is identical for all four models examined, only one
curve for the results of the model is shown below. Figure 22 depicts the simulated and the measured
SOC and battery power PBat for charging, and Figure 23 for discharge. As mentioned in Section 3.5.1,
the battery is charged with negative power (PBat < 0) and discharged with positive power (PBat > 0).
The comparison in both cases shows a reasonable accuracy of the model results. These findings reveal
that the investigated models are suitable for SOC evaluation, in addition to adequate current and
voltage performance prediction.
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4. Discussion

From consideration of the variety of models for batteries, in particular for lithium-ion batteries,
the discussion focuses on the problems of parameterization and implementation in a simulation
environment. In principle, the Thevenin-based, the Rint, and the Shepherd’s models, as well as the
PSIM model, are suitable for the simulation-based development of power supply networks, smart grids,
and distributed power generation. The determination of the network elements of the Thevenin-based
model demands a parameter extraction based on a measurement procedure of the used battery.
Similarly, the internal resistance of the Rint model must be obtained from measurements. Both models
require knowledge of the open circuit voltage as a function of the SOC. It was shown how these models
can be parameterized, even without available laboratory samples, with the help of the presented case
study. The parameterization of the Shepherd’s and PSIM models is rather uncomplicated, since all
necessary parameters can be taken from the data sheet of the cell type utilized. The validation carried
out shows that all four models provide adequate simulation results.

5. Conclusions

In this study, it was discussed that distributed energy generation represents a significant
contribution to the use of renewable energies. By utilizing lithium-ion batteries to store electrical energy
in these systems, there is a need to provide appropriate battery models for the design of advanced
power managements in the future. It was pointed out which requirements are demanded of suitable
models. For this purpose, a brief review of the most important models was given first, followed by a
discussion of electrical equivalent circuit models. In this context, the advantages and disadvantages
of the individual models were outlined. Subsequently, the parameterization and implementation of
three commonly known models and one library model in an electrical circuit simulator was presented.
Finally, all four models were validated using a case study. Here it could be shown that very good
simulation results can be achieved with regard to voltage and current characteristics. With regard to
the prediction of the state of charge, adequate results were achieved.

In this work, no temperature effects on the cell behavior were considered. In addition, it was
assumed that the battery capacity does not change with the current amplitude. Therefore, in continuing
work, models will be identified taking into account the Peukert effect in order to improve the prediction
of the state of charge.
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