Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Photovoltaic (PV) Energy Model
2.2. Wind Energy Model
2.3. Performance Assessment of the RES
2.4. The Economic Assessment of the Renewable Energy Systems (RES)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2018, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghussain, L.; Al-Oran, O.; Lezsovits, F. Statistical Estimation of Hourly Diffuse Radiation Intensity of Budapest City. Environ. Prog. Sustain. Energy 2020. [Google Scholar] [CrossRef]
- Hosseini, S.E. An outlook on the global development of renewable and sustainable energy at the time of COVID-19. Energy Res. Soc. Sci. 2020, 68, 101633. [Google Scholar] [CrossRef]
- Wilson, J.E.; Grib, S.W.; Ahmad, A.D.; Renfro, M.W.; Adams, S.A.; Salaimeh, A.A. Study of Near-Cup Droplet Breakup of an Automotive Electrostatic Rotary Bell (ESRB) Atomizer Using High-Speed Shadowgraph Imaging. Coatings 2018, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.D.; Abubaker, A.M.; Salaimeh, A.A.; Akafuah, N.K. Schlieren Visualization of Shaping Air during Operation of an Electrostatic Rotary Bell Sprayer: Impact of Shaping Air on Droplet Atomization and Transport. Coatings 2018, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Darwish Ahmad, A.; Singh, B.B.; Doerre, M.; Abubaker, A.M.; Arabghahestani, M.; Salaimeh, A.A.; Akafuah, N.K. Spatial Positioning and Operating Parameters of a Rotary Bell Sprayer: 3D Mapping of Droplet Size Distributions. Fluids 2019, 4, 165. [Google Scholar] [CrossRef] [Green Version]
- Najjar, Y.S.H.; Abubaker, A.M. Exergy analysis of a novel inlet air cooling system with gas turbine engines using cascaded waste-heat recovery. Int. J. Exergy 2017, 22, 183–204. [Google Scholar] [CrossRef]
- Abubaker, A.M.; Najjar, Y.S.H.; Ahmad, A.D. A Uniquely Finned Tube Heat Exchanger Design of a Condenser for Heavy-Duty Air Conditioning Systems. Int. J. Air Cond. Refrig. 2020, 28, 2050004. [Google Scholar] [CrossRef]
- Najjar, Y.S.H.; Abubaker, A.M.; El-Khalil, A.F.S. Novel inlet air cooling with gas turbine engines using cascaded waste-heat recovery for green sustainable energy. Energy 2015, 93, 770–785. [Google Scholar] [CrossRef]
- Najjar, Y.S.H.; Abubaker, A.M. Using novel compressed-air energy storage systems as a green strategy in sustainable power generation—A review. Int. J. Energy Res. 2016, 40, 1595–1610. [Google Scholar] [CrossRef]
- Najjar, Y.S.H.; Abubaker, A.M. Indirect evaporative combined inlet air cooling with gas turbines for green power technology. Int. J. Refrig. 2015, 59, 235–250. [Google Scholar] [CrossRef]
- Ahmad, A.D.; Abubaker, A.M.; Najjar, Y.S.H.; Manaserh, Y.M.A. Power boosting of a combined cycle power plant in Jordan: An integration of hybrid inlet cooling & solar systems. Energy Convers. Manag. 2020, 214, 112894. [Google Scholar]
- Samu, R.; Fahrioglu, M. An analysis on the potential of solar photovoltaic power. Energy Sources Part B Econ. Plan. Policy 2017, 12, 883–889. [Google Scholar] [CrossRef]
- Jingura, R.M.; Matengaifa, R. Rural energy resources and agriculture’s potential as an Energy producer in Zimbabwe. Energy Sources Part B Econ. Plan. Policy 2009, 4, 68–76. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Samu, R.; Fahrioglu, M. Techno-Economic Feasibility of PV/Wind-Battery Storage: Case Analysis in Zimbabwe. In Proceedings of the 16th International Conference on Clean Energy (ICCE-2018), Famagusta, Cyprus, 9–11 May 2018; pp. 9–11. [Google Scholar]
- Al-Ghussain, L.; Samu, R.; Taylan, O.; Fahrioglu, M. Techno-Economic Analysis of Photovoltaic-Hydrogen Fuel Cell/Pumped Hydro Storage System for Micro Grid Applications: Case Study in Cyprus. In Proceedings of the 2018 International Conference on Photovoltaic Science and Technologies (PVCon), Ankara, Turkey, 4–6 July 2018; pp. 1–6. [Google Scholar]
- Al-Ghussain, L.; Ahmed, H.; Haneef, F. Optimization of hybrid PV-wind system: Case study Al-Tafilah cement factory, Jordan. Sustain. Energy Technol. Assess. 2018, 30, 24–36. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Taylan, O. Sizing methodology of a PV/wind hybrid system: Case study in cyprus. Environ. Prog. Sustain. Energy 2019, 38, e13052. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Taylan, O.; Baker, D.K. An investigation of optimum PV and wind energy system capacities for alternate short and long-term energy storage sizing methodologies. Int. J. Energy Res. 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghussain, L.; Samu, R.; Taylan, O.; Fahrioglu, M. Sizing Renewable Energy Systems with Energy Storage Systems in Microgrids for Maximum Cost-Efficient Utilization of Renewable Energy Resources. Sustain. Cities Soc. 2020, 55, 102059. [Google Scholar] [CrossRef]
- Abujubbeh, M.; Marazanye, V.T.; Qadir, Z.; Fahrioglu, M.; Batunlu, C. Techno-Economic Feasibility Analysis of Grid-Tied PV-Wind Hybrid System to Meet a Typical Household Demand: Case Study-Amman, Jordan. In Proceedings of the 2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 418–423. [Google Scholar]
- Rashid, M.; Abujubbeh, M.; Fahrioglu, M. Improving capacity factor of transmission lines by hybridizing CSP with wind. In Proceedings of the 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 8–10 April 2017. [Google Scholar]
- Abujubbeh, M.; Fahrioglu, M. Determining Maximum Allowable PV Penetration Level in Transmission Networks: Case Analysis-Northern Cyprus Power System. In Proceedings of the 2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 292–297. [Google Scholar]
- Reiniger, K.; Schottland, T.; Zeidler, A. Optimization of Hybrid Stand-alone systems. In Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 7–9 October 1986. [Google Scholar]
- Contaxis, G.C.; Kabouris, J. Short-term scheduling in a wind dieselautonomous energy system. IEEE Trans. Power Syst. 1991, 6, 1161–1167. [Google Scholar] [CrossRef]
- Singh, G.; Baredar, P.; Singh, A.; Kurup, D. Optimal sizing and location of PV, wind and battery storage for electrification to an island: A case study of Kavaratti, Lakshadweep. J. Energy Storage 2017, 12, 78–86. [Google Scholar] [CrossRef]
- Sadati, S.M.S.; Jahani, E.; Taylan, O.; Baker, D.K. Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data. J. Sol. Energy Eng. 2018, 140, 011006. [Google Scholar] [CrossRef]
- Azerefegn, T.M.; Bhandari, R.; Ramayya, A.V. Techno-economic analysis of grid-integrated PV/wind systems for electricity reliability enhancement in Ethiopian industrial park. Sustain. Cities Soc. 2020, 53, 101915. [Google Scholar] [CrossRef]
- Bortolini, M.; Gamberi, M.; Graziani, A. Technical and economic design of photovoltaic and battery energy storage system. Energy Convers. Manag. 2014, 86, 81–92. [Google Scholar] [CrossRef]
- Al-assad, R.; Ayadi, O. Techno-Economic Assessment of Grid Connected Photovoltaic Systems in Jordan. In Proceedings of the 2017 8th International Renewable Energy Congress (IREC), Amman, Jordan, 21–23 March 2017; pp. 1–4. [Google Scholar]
- Pradhan, S.R.; Sahoo, S.P.; Das, R.; Priyanka, S. Design of Off-Grid Home with Solar-Wind-Biomass Energy. Int. J. Eng. Res. Appl. 2014, 4, 76–81. [Google Scholar]
- Mehrpooya, M.; Mohammadi, M.; Ahmadi, E. Techno-economic-environmental study of hybrid power supply system: A case study in Iran. Sustain. Energy Technol. Assess. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Jurasz, J.; Campana, P.E. The potential of photovoltaic systems to reduce energy costs for office buildings in time-dependent and peak-load-dependent tariffs. Sustain. Cities Soc. 2019, 44, 871–879. [Google Scholar] [CrossRef]
- El-Tous, Y.; Al-Battat, S.; Abdel, H.S. Hybrid Wind-PV grid connected Power Station Case Study: Al-Tafila, Jordan. Int. J. Energy Environ. 2012, 3, 605–616. [Google Scholar]
- Al-Masri, H.; Amoura, F. Feasibility Study of A Hybrid Wind/PV System Connected to the Jordanian Grid. Int. J. Appl. Power Eng. 2013, 2. [Google Scholar] [CrossRef]
- Benlouba, S.; Bourouis, M. Feasibility Study of a Wind-Photovoltaic Power generation System for a remote area in the extreme south of Algeria. Appl. Energy 2016, 99, 713–719. [Google Scholar] [CrossRef]
- Ashok, S. Optimised model for community-based hybrid energy system. Renew. Energy 2007, 32, 1155–1164. [Google Scholar] [CrossRef]
- Samu, R.; Fahrioglu, M.; Taylan, O. Feasibility Study of a Grid Connected Hybrid PV-Wind Power Plant in Gwanda, Zimbabwe. In Proceedings of the IEEE Honet Symposium, Nicosia, Cyprus, 13 October 2016; pp. 122–126. [Google Scholar]
- Asumadu-Sarkodie, P.A.; Owusu, S. The potential and economic viability of solar photovoltaic power in Ghana. Energy Sources Part A 2016, 38, 709–716. [Google Scholar] [CrossRef]
- Adaramola, M. Viability of grid-connected solar PV energy system in Jos, Nigeria. Int. J. Electr. Power Energy Syst. 2014, 61, 64–69. [Google Scholar] [CrossRef]
- Kebede, K.Y. Viability study of grid-connected solar PV system in Ethiopia. Sustain. Energy Technol. Assess. 2015, 10, 63–70. [Google Scholar] [CrossRef]
- L-Shimy, M.E. Viability analysis of PV power plants in Egypt. Renew. Energy 2009, 34, 2187–2196. [Google Scholar] [CrossRef]
- Baurzhan, S.; Jenkins, G. Off-grid solar PV: Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries? Renew. Sustain. Energy Rev. 2016, 60, 1405–1418. [Google Scholar] [CrossRef]
- Pan, C.A.; Dinter, F. Combination of PV and central receiver CSP plants for base load power generation in South Africa. Sol. Energy 2017, 146, 379–388. [Google Scholar] [CrossRef]
- Chahuruva, R.; Dei, T. Study on Isolated Solar Home Systems for Application in Zimbabwe. Energy Procedia 2017, 138, 931–936. [Google Scholar] [CrossRef]
- Ziuku, S.; Seyitini, L.; Mapurisa, B.; Chikodzi, D.; van Kuijk, K. Potential of Concentrated Solar Power (CSP) in Zimbabwe. Energy Sustain. Dev. 2014, 23, 220–227. [Google Scholar] [CrossRef]
- Mentis, D.; Hermann, S.; Howells, M.; Welsch, M.; Siyal, S. Assessing the technical wind energy potential in Africa a GIS-based approach. Renew. Energy 2015, 83, 110–125. [Google Scholar] [CrossRef]
- Fant, C.; Gunturu, B.; Schlosser, A. Characterizing wind power resource reliability in southern Africa. Appl. Energy 2016, 161, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Bogno, B.; Sali, M.; Aillerie, M. Technical and Economic Analysis of a Wind Power Generation System for Rural Electrification in Subequatorial Area of Africa. Energy Procedia 2014, 50, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Kazet, M.; Mouangue, R.; Kuitche, A.; Ndjaka, J.M. Wind Energy Resource Assessment in Ngaoundere Locality. Energy Procedia 2016, 93, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Energy and Power Development. National Renewable Energy Policy; Ministry of Energy and Power Development: Harare, Zimbabwe, 2019. [Google Scholar]
- Dubey, S.; Sarvaiya, J.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Canadian Solar. Photovoltaic Panels Datasheet; Canadian Solar: Guelph, ON, Canada, 2017. [Google Scholar]
- Duffie, J.; Beckman, W. Solar Engineering of Thermal Processes, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; Wiley: Chichester, UK, 2009. [Google Scholar]
- Gamesa. Greater Energy Produced From Low and Medium Wind Sites; Gamesa: Zamudio, Spain, 2014. [Google Scholar]
- Tembo, B.; Merven, B. Policy options for the sustainable development of Zambia’s electricity sector. J. Energy S. Afr. 2013, 24, 16–27. [Google Scholar] [CrossRef]
- Fichter, T.; Trieb, F.; Moser, M.; Kern, J. Optimized integration of renewable energies into existing power plant portfolios. Energy Procedia 2013, 49, 1858–1868. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghussain, L.; Taylan, O.; Fahrioglu, M. Sizing of a Photovoltaic-Wind Oil Shale Hybrid System: Case Analysis in Jordan. J. Sol. Energy Eng. Incl. Wind Energy Build. Energy Conserv. 2018, 140, 1–12. [Google Scholar] [CrossRef]
- Sangster, A.J. Solar Photovoltaics. Green Energy Technol. 2014, 194, 145–172. [Google Scholar]
- Breeze, P. Wind Power. Power Gener. Technol. 2014, 1, 223–242. [Google Scholar]
- Yang, H.; Wei, Z.; Chengzhi, L. Optimal design and techno-economic analysis of a hybrid solar-wind power generation system. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Numbi, B.P.; Malinga, S.J. Optimal energy cost and economic analysis of a residential grid-interactive solar PV system-case of eThekwini municipality in South Africa. Appl. Energy 2017, 186, 28–45. [Google Scholar] [CrossRef]
- Okoye, C.O.; Oranekwu-Okoye, B.C. Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa. Renew. Sustain. Energy Rev. 2018, 82, 2537–2547. [Google Scholar] [CrossRef]
- Samu, R.; Fahrioglu, M.; Ozansoy, C. The potential and economic viability of wind farms in Zimbabwe. Int. J. Green Energy 2019, 1–8. [Google Scholar] [CrossRef]
Parameter | Value | Reference |
---|---|---|
Photovoltaic system capital cost (USD/kW) | 1533 | [58,59] |
Wind system capital cost (USD/kW) | 1516 | [58,59] |
Photovoltaic maintenance cost (USD/kW) | 24.7 | [60] |
Wind maintenance cost (USD/kW) | 39.53 | [61] |
System expected lifetime (Years) | 25 | [59,62] |
Grid tariff (USD/MWh) | 100 | [38] |
Annual discount rate (%) | 7.2 | [38] |
Configuration | Wind | PV | PV-Wind |
---|---|---|---|
PV Capacity (MW) | - | 1.41 | 1 |
Wind Capacity (MW) | 2 | - | 2 |
Capacity Factor (%) | 34.57 | 18.72 | 29.29 |
RES Fraction (%) | 54.99 | 28.72 | 65.07 |
DSF (%) | 32.55 | 9.57 | 42.03 |
LCOE (USD/kWh) | 0.09 | 0.10 | 0.10 |
NPV (million USD) | 3.00 | 0.087 | 3.06 |
IRR (%) | 17 | 7.65 | 14.04 |
PBP (years) | 5 | 13.1 | 3.94 |
Paper | Location | System Type | LCOE (USD/kWh) | NPV (USD) | RES Fraction (%) |
---|---|---|---|---|---|
[63] | South Africa | Standalone PV | 0.16 | - | - |
[44] | South Africa | PV/CSP | 0.16 | - | - |
[43] | Sub-Saharan Africa | Standalone PV | 0.83 | - | - |
[64] | Nigeria | Standalone PV | 0.40 | 590 × | - |
[13] | Zimbabwe | Standalone PV | 0.10 | 29.3 × | - |
[38] | Zimbabwe | Hybrid Wind/PV | 0.21 | - | 42 |
[15] | Zimbabwe | Hybrid PV/Wind-Battery | 0.10 | 39.13 × | 60.47 |
[65] | Zimbabwe | Wind System | 0.13 | 7.8 × | - |
This study | Zimbabwe | Hybrid PV/Wind | 0.1 | 3.06 × | 65.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghussain, L.; Samu, R.; Taylan, O.; Fahrioglu, M. Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe. Inventions 2020, 5, 27. https://doi.org/10.3390/inventions5030027
Al-Ghussain L, Samu R, Taylan O, Fahrioglu M. Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe. Inventions. 2020; 5(3):27. https://doi.org/10.3390/inventions5030027
Chicago/Turabian StyleAl-Ghussain, Loiy, Remember Samu, Onur Taylan, and Murat Fahrioglu. 2020. "Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe" Inventions 5, no. 3: 27. https://doi.org/10.3390/inventions5030027
APA StyleAl-Ghussain, L., Samu, R., Taylan, O., & Fahrioglu, M. (2020). Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe. Inventions, 5(3), 27. https://doi.org/10.3390/inventions5030027