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Abstract: In measurement systems operating under various disturbances the probabilistic character-
istics of measurement noises are usually known approximately. To improve the observation accuracy,
a new approach to the Kalman’s filter adaptation is proposed. In this approach, the Covariance Matrix
of Measurement Noises (CMMN) is estimated by accurate measurements detected irregularly by
the mobile object observation system (from radiofrequency identifiers, etalon reference, fixed points
etc.). The problem of adaptive estimation of the observer’s noises covariance matrix in the Kalman
filter is solved analytically for two cases: mutual noises correlation, and its absence. The numerical
example for adaptive filtration of complexing navigation system parameters of a mobile object using
irregular accurate measurements is given to illustrate the effectiveness of the proposed algorithm.
Coordinate estimating errors have changed in comparison with the traditional scheme from 100 m to
2 m in latitude, and from 200 m to 1.5 m in longitude.

Keywords: adaptive estimation; covariance matrix of measurement noises (CMMN); Kalman filter;
irregular accurate observation; moving object

1. Introduction

Currently, one of the central problems in the theory and practice of measurements
is the development of algorithms for processing measurements [1], providing a given
accuracy of information extracted from them under conditions of noises of various physical
nature. This problem is particularly acute for stochastic dynamic processes with dynamic
noisy measurements [2], moreover, in various fields of measurement technology:

• measurements of state parameters of complex mechanical systems [3];
• measurements of electric motor characteristics [4,5];
• photogrammetric measurements [6];
• estimation of spacecraft orientation [7];
• measurements of motion parameters of unmanned objects [8,9];
• measurements of chemical process characteristics [10], etc.

Among the numerous methods of processing dynamic measurements under noisey
conditions, focused on various specific features of certain measured processes [3,11–13],
the most universal and effective today are the methods of the stochastic filtration the-
ory [4,11,14–19], which provide an optimal evaluation of the measured process by a
given criterion.

The use of filtration theory approaches including the Kalman filter [20], for the assess-
ment of dynamic stochastic processes assumes an accurate initialization of the random
noises of these processes [14,16]. At the same time, in real information and control systems
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exposed to various disturbing effects, the meters’ stochastic noises are recognized, as a
rule, approximately or fluctuate randomly [10,19,21–27]. As a consequence, one of the
very critical Kalman filter characteristics is the Covariance Matrix of Measurement Noises
(CMMN), which straightforwardly influences the filter gain change and, consequently, the
rate of convergence of the filtration process. In order to avoid a priori uncertainty, various
approaches have been designed among which the following can be recognized as the main
ones:

1. introduction of empirical scale coefficients for calculating the posteriori covariance
matrix and the CMMN-matrix [16,25,28,29];

2. scaling of the noises covariance matrix [8,10,30,31];
3. estimation of CMMN and object noises from the condition of minimum covariance of

the updating sequence [1,32–34];
4. extending the dimension of the state vector [9];
5. combining Kalman filters with a deep neural network containing a recurrent neural

network with memory that is effective for analyzing a large data ensemble [35];
6. using the variational Bayesian approximation to construct algorithms for interacting

multiple models and model-conditioned estimates [36,37] etc.

A serious drawback of the first and second approaches is the lack of strict selection cri-
teria and scale factors, respectively, in the procedure of their calculation. The disadvantage
of the third approach is the impossibility of adaptive estimation in real time, since it is nec-
essary to pre-calculate the covariance of the updating sequence. A common disadvantage
of fourth, fifith, and sixth approaches is a significant increase in computational costs.

This leads to the need to develop a fundamentally different approach that allows us
to ensure the required accuracy of the Kalman filter by using an adaptive algorithm for
estimating the CMMN carried out directly in the process of current filtering of the dynamic
system state vector.

2. Task Definition

The solution of this problem is considered for a wide class of information-measuring
and control systems, in which the measurements of “rough” sensors with unstable and
significant measurement errors are corrected by the measurements of significantly more
accurate sensors, which are considered references. The correction procedure is carried out,
as a rule, at time intervals significantly exceeding the measurement step of “rough” sensors
and often is irregular (random).

Examples of such systems include the following:

• inertial-satellite Navigation Systems (NS), where the measurement correction of iner-
tial NS is based on satellite NS measurements; in this case, the measurement errors of
the inertial NS increase with time, and the satellite NS measurements are considered
as accurate measurements of the velocity vector and coordinates of the object [38,39];

• different robots’ NS, in which the correction of the navigation parameters of the robot
(or person) is subject to a zero speed of his feet (or bottom of wheel) at the moment of
touching the surface of the earth [40];

• information-measuring systems of different transport systems (maritime, rail, etc.),
where the correction of the parameters of orientation and navigation upon the com-
pletion of a baseline (reference) point with exactly known coordinates [41,42];

• combined NS based on inertial sensors, providing navigation inside premises, and
closed spaces [43,44], etc.

Nevertheless, to date, such a correction is made mainly by directly replacing the
current estimates of navigation (or other) variables with their corresponding exact mea-
surements without changing the parameters of the estimation algorithm. Obviously, with
this approach, the growth of estimation errors in the time interval determined by the
moment of the next accurate measurement will not decrease (which is what happens in the
above-mentioned measurement systems) [40,44,45].
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In connection with the above, the possibility of using the obtained accurate obser-
vations to construct an adaptive algorithm for forming the CMMN is considered. This
algorithm allows us to significantly increase the accuracy and stability of the process of
evaluating the state vector of the system by the Kalman filter as a whole in the time intervals
between them [44].

Since accurate observations are made at discrete time points, a Kalman’s filter discrete
version is further considered to solve the problem. In this version, the system state vector
estimation Xk at a k-th time moment is determined by the equation [14,16,28–30,44]:

X̂k = Φk · X̂k−1 + Kk ·
(
Zk − Hk ·Φk · X̂k−1

)
(1)

where X̂k−1 is the system state vector estimation at the (k−1)-th time moment;

Φk is the transition matrix of the system state;
Zk is the measurement vector, Zk = Hk · Xk + Vk;
Hk is the measurement matrix that maps the space of system state vectors to the space of
measurement vectors;
Vk is the measurement interference approximated further by a centered Gaussian sequence
with an unknown covariance matrix Rk, estimated from accurate observations;
Kk is the filter gain defined as

Kk = Pk/k−1 · HT
k · (Hk · Pk/k−1 · HT

k + Rk)
−1

(2)

Pk/k−1 = Φk · Pk−1 ·ΦT
k + Qk (3)

where Pk/k−1 is the extrapolated covariance matrix that characterizes the error value of the
a posteriori state vector estimation;
Qk is the covariance matrix of system noise that characterizes the level of its impact on the
system.

Based on the filter gain Equation (2), it is necessary to formulate the objective of
adaptive assessment of the desired CMMN Rk from irregular accurate measurements.
In this case, the matrix is determined from the condition that the vector of estimates X̂k
Equation (1) coincides with the exact state system vector Xk (i.e., accurate observations) at
the time of accurate observations receipt.

The solution of the problem is carried out in two stages. In the first stage, an adaptive
algorithm is developed for the case of no cross-correlation of noise in the components of the
measurement vector, that is, for the diagonal CMMN. The adaptive algorithm development
for cross-correlated noise in the measurement vector for the complete (non-diagonal)
CMMN is performed at the second stage.

3. Results
3.1. Adaptive Filtration Algorithm for Uncorrelated Noises in the Measurement Vector

To solve this problem, we will use the full formula of the Kalman gain obtained by
inserting Equation (3) into Equation (2):

Kk =
(

Φk · Pk−1 ·ΦT
k + Qk

)
· HT

k ×
[

Hk ·
(

Φk · Pk−1 ·ΦT
k + Qk

)
· HT

k + Rk

]−1

where for convenience of the subsequent decision we will enter notation
(
Φk · Pk−1 ·ΦT

k + Qk
)
·

HT
k = γk and we will write down the coefficient KK formula as follows:

Kk = γk · (Hk · γk + Rk)
−1 (4)

In this case, Equation (1) will take the form

X̂k −Φk · X̂k−1 = γk · (Hk · γk + Rk)
−1 ·

(
Zk − Hk ·Φk · X̂k−1

)
(5)
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And, with respect to the matrix Rk, is a nonlinear vector equation that requires the
solution of traditional numerical methods to use a very expensive multiple procedure of
matrix inversion. For the possibility of Equation (5)’s analytical solution, we will carry out
the following.

Since under the task conditions X̂k = Xk, then, entering the notation Xk−Φk · X̂k−1 =
X∗, Zk − Hk ·Φk · X̂k−1 = Z∗, we present Equation (5) as

X∗ = γk · (Hk · γk + Rk)
−1 · Z∗ (6)

Multiplying both parts of Equation (6) by the inverse matrix, we have

(Hk · γk + Rk) · γk
−1 · X∗ = Z∗

or
Rk · γk

−1 · X∗ = Z∗ − Hk · X∗ (7)

The standard inversion of the matrix γk
−1 is possible only in the case of a square matrix

HK; so, to preserve the generality of reasoning, we use the pseudo-inversion operation
γk

+ [46].
To simplify the subsequent solution, we denote the vector γ+

k X∗ as ∆∗. Then Equation
(7) easily admits an analytical solution with respect to all elements of the diagonal matrix
RK; if we consider the possibility Rk∆∗ in the form ∆∗diagRkvect, where

∆∗diag =

∣∣∣∣∣∣∣∣
∆∗1 0 0 . . . 0

0 ∆∗2 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . ∆∗n

∣∣∣∣∣∣∣∣, Rkvect =

∣∣∣∣∣∣∣∣∣
Rk1
Rk2

...
Rkn

∣∣∣∣∣∣∣∣∣
∆∗i, Rki, i = 1, . . . , n elements of the vector ∆∗ and matrix RK, respectively.

In this case, we have the desired equation of the vector of elements of the dispersion
matrix of measurement noises in the form

∆−1
∗diag(Z∗ − HkX∗) = Rkvect (8)

where ∆−1
∗diag is the inverse matrix, easily calculated due to its diagonality:

∆−1
∗diag =

∣∣∣∣∣∣∣∣∣
1

∆∗1
0 0 . . . 0

0 1
∆∗2

0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

∆∗n

∣∣∣∣∣∣∣∣∣.
Thus, the found solution of the nonlinear vector Equation (5) in the form of Equation (8)

allows us to analytically solve the problem of adaptive estimation of the CMMN from
accurate observations.

3.2. Adaptive Filtration Algorithm for Correlated Noises in the Measurement Vector

In the more general case of forming a measurement vector—when the interference
of its components is mutually correlated, the covariance matrix RK may be non-diagonal,
which somewhat complicates the procedure for its calculation. First, with the dimension of
the state vector N, the dimension of the matrix RK is generally equal to N2, which requires
additional accurate measurements at N time steps. In practice, this possibility is often quite
feasible—on roads and railways with a developed system of various road landmarks, in
inertial satellite navigation systems with a high frequency (up to 100 Hz) transmission of
satellite messages, etc.
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Secondly, in order to be able to analytically determine all the components of the matrix
RK, the obtained measurements must be regrouped accordingly, followed by the solution
of a new system of equations. In this case, the algorithm construction scheme takes the
following form.

The exact measurements obtained at N time steps transform the estimation scheme
as follows:

Xk = ΦkX̂k−1 + Kk
(
Zk − HkΦkX̂k−1

)
,

Xk+1 = Φk+1Xk+1 + Kk+1(Zk+1 − Hk+1ΦkXk),
Xk+2 = Φk+2Xk+1 + Kk+2(Zk+2 − Hk+2ΦkXk+1),

...
Xk+N−1 = Φk+N−1Xk+N−2 + Kk+N−1(Zk+N−1 − Hk+N−1ΦkXk+N−2).

(9)

For each i-th step of the evaluation, transformations similar to Equations (5)–(7) are
performed, after which the Eq’s system (9) is transformed into the system

U∗1 = RK · ∆∗1,
U∗2 = RK · ∆∗2,
U∗3 = RK

...

· ∆∗3,

U∗N = RK · ∆∗N

(10)

where the matrix RK is assumed to be constant at all N time steps

X∗1 = X∗, U∗1 = U∗, ∆∗1 = ∆∗,
Xk+i −Φk+i−1Xk+i−1 = X∗i, γ+

k+iX∗i = ∆∗i,
Zk+i − Hk+iΦk+iXk+i−1 = Z∗i, Z∗i − Hk+iX∗i = U∗i, i = 2, . . . , N.

Next, the Equation (10) is transformed as follows: from each i-th subsystem of the
equations U∗i = RK · ∆∗i of dimension N, the j-th equation is selected, j = 1,...,N:

U∗ij = RKj · ∆∗i

where U∗ij is the j-th component of the vector U∗i, RKj is the j-th row of the matrix RK. After
that, a system of N linear equations is formed to determine all N components of the j-th
row of the matrix RK:

U∗1j = RKj · ∆∗1,
U∗2j = RKj · ∆∗2,
U∗3j = RKj · ∆∗3,

...
U∗Nj = RKj · ∆∗N

(11)

In vector form, the Eq’s system (11) can be written as

U(j)
∗ =

∣∣∣∣∣∣∣∣∣∣∣

U∗1j
U∗2j
U∗3j

...
U∗Nj

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∆T
∗1

∆T
∗2

∆T
∗3
...

∆T
∗N

∣∣∣∣∣∣∣∣∣∣∣
RT

Kj

from where the j-th row of the matrix RK is immediately determined

[U(j)
∗ ]

T
|∆∗1∆∗2∆∗3 · · ·∆∗N|−1 = RKj
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and, accordingly, the matrix RK is∣∣∣∣∣∣∣∣∣∣∣∣

[U(1)
∗ ]

T

[U(2)
∗ ]

T

...

[U(N)
∗ ]

T

∣∣∣∣∣∣∣∣∣∣∣∣
|∆∗1∆∗2∆∗3 · · ·∆∗N|−1 = RK

Here, as before, the task of adapting the Kalman estimation algorithm based on
accurate observations is solved analytically.

In conclusion, it should be noted that the property of symmetry of the matrix RK
inherent in it by definition, on the one hand, reduces the number of its unknown com-
ponents from N2 to N2 + N

2 , but, on the other hand, when solving (N − 1) systems of
equations reduced with respect to Equation (11), requires the definition of (N − 1) inverse
matrices, although reduced with respect to the matrix |∆∗1∆∗2∆∗3 · · ·∆∗N|−1 = Λ, but,
nevertheless, requiring significant computational costs compared to a single calculation Λ.
This circumstance allows us to consider the algorithm described above as the most efficient
in terms of computational costs.

Next, consider an example that illustrates the effectiveness of the proposed approach.

3.3. Example

The movement of any object in the geographical coordinate system (GCS) is described
by the following equation [45]:

.
ϕ =

Vy

(r + h)
,

.
λ =

Vx

cos φ(r + h)
(12)

where φ, λ—the object’s latitude and longitude accordingly; r is the radius of the Earth; h is
the object height; Vy, Vx are the linear velocity projections on the GCS-axes.

Next, we consider that the beginning coordinates of the object’s trajectory are defined
as ϕ0 = 0.8 rad, λ0 = 0.3 rad, time interval of movement (0; 1000) s; the object moves at a
constant velocity V = 20 m s−1 along a loxodromic trajectory with an azimuthal angle at a
constant speed along a loxodromic trajectory with an azimuthal angle A = 0.2 rad. In the
process of movement, the topography of the Earth’s surface leads to a random change in
the height of the object with zero expectation and standard deviation of 0.15 m. Based on
the nature of the object’s trajectory, the projections of its linear velocity on the GSC-axes
can be determined as follows:

Vx = V · sin A,Vy = V · cos A

We further assume that the navigation system (NS) of the object is built on the basis of
weak integration of inertial NS (INS) and satellite NS (SNS). The measurement complex of
this integrated NS receives satellite measurements at intervals of 20, 15 and 30 s, which
are considered accurate. At other times, to estimate the vector of navigation parameters
with a clock cycle of 0.1 s, INS measurements are used for channels λ and ϕ, for which the

CMMN has the Rk =

∣∣∣∣ 4, 2 · 10−10 0
0 9, 5 · 10−10

∣∣∣∣ (rad)2.

Due to the fact that the speed of movement of an object causes a slight change in its
coordinates at a given time interval, it is possible to use linearized navigation equations
Equation (12) [45] relative to the initial coordinates for the subsequent solution of the
problem
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.
ϕ(t) = Vy·(r+2h0)

(r+h0) cos2 −
Vy

(r+h0)
2 · h ,

.
λ(t) = Vx

cos ϕ0·(r+h0)
·
[

r+2h0
r+h0

− sin ϕ0·ϕ0
cos ϕ0

]
− Vx

cos ϕ0·(r+h0)
2 · h + Vx·sin ϕ0

cos2 ϕ0·(r+h0)
· ϕ

(13)

Since, in accordance with the example conditions, the change in the object height is a
random process with zero expectation and a standard deviation of 0.15 m, then we assume
h0 = 0. Reducing the Equation (13) to a discrete form by the Eulers method with a sampling
step τ:

ϕk = ϕk−1 + τ
Vy
r − τ

Vy
r2 · hk ,

λk = λk−1 + τ
Vx·tan ϕ0
r cos ϕ0

· ϕk−1 + τ Vx
r cos ϕ0

· [1− ϕ0 tan ϕ0]− τ Vx
cos ϕ0·r2 · hk

we have a filter that in the accepted notation has the form:

X̂k+1 = ΦkX̂k + Ωk + Kk
(
Zk − HkΦkX̂k

)
(14)

where

X̂k =

∣∣∣∣ ϕ̂

λ̂

∣∣∣∣,
Φk =

∣∣∣∣∣ 10
τ

Vx tan ϕ0
r cos ϕ0

1

∣∣∣∣∣,
Ωk =

∣∣∣∣∣ τ
Vy
r

τ Vx
r cos ϕ0

(1− ϕ0tgϕ0)

∣∣∣∣∣,
Qk =

∣∣∣∣∣∣ (τ
Vy
r2 · 0.15)

2 Vy
r2 · Vx

r2 cos ϕ0
· (τ · 0.15)2

Vy
r2 · Vx

r2 cos ϕ0
· (τ · 0.15)2(τ Vx

r2 cos ϕ0
· 0.15)

2

∣∣∣∣∣∣,
Hk =

∣∣∣∣ 1 0
0 1

∣∣∣∣
Since the CMMN Rk is unknown under the initial conditions, the estimation of navi-

gation variables was conducted for two cases: when the value of Rk is set with an error

over the entire modeling interval Rk =

∣∣∣∣ 1, 1 · 10−10 0
0 2, 5 · 10−10

∣∣∣∣ (rad)2, and when the Rk value is

estimated according to the proposed algorithm.
Graphs of estimation errors obtained when implementing the Equation (14) in the

first version are shown in Figures 1 and 2, where a significant error in the estimation of the
current coordinates of the object is obvious: the latitude error lies in the range from 100 to
350 m, the longitude from 50 to 200 m.
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Figure 1. Graph of errors in estimating the latitude ϕ of the object obtained by implementing the
classical Kalman filter.

Figure 2. Graph of errors in estimating the longitude λ of the object obtained by implementing the
classical Kalman filter.

When designing an adaptive filter in accordance with the above algorithm, the estima-
tion errors have the form shown in Figures 3 and 4.
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Figure 3. Graph of errors in estimating the latitude ϕ of the object obtained by implementing the
adaptive filter.

Figure 4. Graph of errors in estimating the longitude λ of the object obtained by implementing the
adaptive filter.

It is obvious that when using the proposed algorithm, the estimation errors in com-
parison with the traditional scheme changed sharply to the range from 2 to 7 m in latitude,
and from 1.5 to 4 m in longitude.

For a more complete assessment of the capabilities of the proposed approach, it was
compared with the innovation-based adaptive estimation algorithm [47] with the same
model parameters and errors in setting the CMMN. When using innovation-based adaptive
estimation, the covariance matrix Rk was evaluated in accordance with the equation [47]

R̂k =
1
N

k

∑
j=j0

υjυj
T − HkPk/k−1Hk

T

where υk = Zk − Ẑk/k−1 is the discrepancy between the received measurement and its
predicted value;
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N is the number of samples in the sliding “window” of the measurement in which the
covariance matrix Rk is estimated;
j0 = k − N + 1 is the initial position of the sliding “window“.

In the case under study, N was chosen to be 25, and the sliding window was used three
times for the 50th, 250th, and 800th seconds. The character of changes in estimation errors
for both coordinates remained the same as in the developed algorithm, but the estimation
errors themselves increased significantly in comparison to the range from 20 to 37 m in
latitude and from 15 to 28 m in longitude.

4. Conclusions

A comparison of all the considered variants of traditional and adaptive filtration
clearly shows the advantages of the proposed algorithm, despite the slight increase in
computational cost (very small relative to total costs for a traditional filter; the Central
Processing Unit (CPU) operation time for the combined calculation of the covariance matrix
estimation and the current step of the filtration equation (14) was 1.849 s, and without the
calculation of the covariance matrix estimation was 1.253 s). The simplicity, stability, con-
vergence, and accuracy of the proposed algorithm make it possible to effectively use it for
a wide range of measurements: measurements of motion parameters of unmanned objects,
assessment of spacecraft orientation, measurements of chemical process characteristics,
measurements of state parameters of complex mechanical systems, and others.
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