A Review of Cooling Studies on Gas Turbine Rotor Blades with Rotation
Abstract
:1. Internal Cooling of a Gas Turbine Rotor Blade
2. Strategy for Engine Condition Emulation
3. Heat Transfer Enhancement of a Rotating Channel
4. Leading-Edge Cooling
4.1. Rotating Channels with Impinging Jets
4.2. Rotating Channels with Swirl Chamber
5. Mid-Chord Region Cooling
5.1. Rotating Rectangular Channel
5.2. Rotating Non-Rectangular Channel
5.3. Rotating Multi-Pass Channel with Variant Sectional Shapes
6. Trailing-Edge Cooling
6.1. Smooth-Walled Channel
6.2. Pin Fin Channel
6.3. Dimpled Channel
6.4. Latticework Channel
7. Prospective Works
7.1. Realistic Engine Conditions
7.2. Hot Spot Prevention
8. Conclusions and Recommendations
- The novelty in experimental method for acquiring the heat transfer data at the realistic Bu range of approximately 4.95–17.85 with a density ratio above 1.1 should be prioritized for emulating the realistic buoyancy effect on the heat transfer performance in an internal coolant channel of a gas turbine rotor blade.
- The data analysis and presentation in terms of (ηw − ηf) assist to visualize the combined effects of spatial Nu variation and raised downstream fluid temperatures, especially for the multi-pass coolant channel with a long heating path.
- The HTE benefits from the positive utilization of the Coriolis force effect by arranging the coolant walls in contact with the hot gas to be the destabilized sides of the internal cooling channels were experimentally affirmed [39,40]. The novel interconnected channels with radial inform and outflow under this cooling framework is worthy of future exploration.
- Along with the continuing endeavors aimed at promoting the aerothermal performances of the rotating coolant passages, the direct mixing of cold and hot flow streams using the supplementary coolant supply or the internal effusion exhibit considerable HTE improvements due to the reduction in local fluid temperatures and the relevant HTE flow mechanisms.
- The identification of the minimum heat transfer scenario aimed at determining the critical Ro and Bu for a particular cooling flow configuration is advantageous for a designer to determine the effective diameter of a rotating coolant channel for operating a cooling network away from the worst rotational conditions.
- The full Nu maps involving Re, Ro, and Bu effects for a rotating coolant channel in realistic engine conditions are necessary to reveal Nu levels at the locations with the local minimum heat transfer rates in a rotating channel to assist the formulation of the countermeasures for avoiding hot spot development in a gas turbine rotor blade.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
English symbols | |
Bu | rotating buoyancy number = Ro2β(T − Tref)ε |
dh | channel hydraulic diameter (m) |
h | convective heat transfer coefficient (Wm−2K−1) |
kf | thermal conductivity of fluid (Wm−1K−1) |
Nu | Nusselt number = hdh/kf |
P | static pressure involving hydrostatic effect of centrifugal force (Pa) |
P’ | dimensionless pressure = P*/(ρrefWm2) |
R | gas constant of coolant (Jkg−1K−1) |
Rm | mean radius of rotating channel (m) |
Re | Reynolds number = ρrefWmdh/μ |
T | local fluid temperature (K) |
Tref | referenced fluid temperature (K) |
U | dimensionless fluid velocity in x direction = u/Wm |
V | dimensionless fluid velocity in y direction = v/Wm |
dimensionless fluid velocity vector = | |
W | dimensionless fluid velocity in z direction = w/Wm |
Wm | mean fluid velocity in z directoin (ms−1) |
X* | dimensionless x coordinate = x/dh |
Y* | dimensionless y coordinate = x/dh |
Z* | dimensionless z coordinate = z/dh |
Greek symbols | |
β | thermal expansion coefficient of fluid = 1/T (K−1) |
ε | eccentricity ratio = H/dh or R/dh |
μ | fluid viscosity (kgm−1s−1) |
dimensionless angular velocity vector = /Ω | |
ρref | fluid density at Tref (kgm−3) |
Suffix | |
0 | static (non-rotating) channel |
∞ | fully developed flow in straight smooth-walled plain tube |
References
- Morris, W.D. A rotating facility to study heat transfer in the cooling passages of turbine rotor blades. Proc. Inst. Mech. Eng. Part A J. Power Energy 1996, 210, 55–63. [Google Scholar] [CrossRef]
- Chang, S.W.; Morris, W.D. Heat transfer in a radially rotating square duct fitted with in-line transverse. Int. J. Therm. Sci. Ribs 2003, 42, 267–282. [Google Scholar] [CrossRef]
- Wagner, J.H.; Johnson, B.V.; Kopper, F.C. Heat transfer in rotating serpentine passages with smooth walls. Trans. ASME J. Turbomach. 1991, 113, 321–330. [Google Scholar] [CrossRef]
- Wagner, J.H.; Johnson, B.V.; Graziani, R.A.; Yeh, F.C. Heat transfer in rotating serpentine passages with trips normal to the flow. Trans. ASME J. Turbomach. 1992, 114, 847–857. [Google Scholar] [CrossRef]
- Johnson, B.V.; Wagner, J.H.; Steuber, G.D.; Yeh, F.C. Heat transfer in rotating serpentine passages with trips skewed to the flow. Trans. ASME J. Turbomach. 1994, 116, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.W.; Liou, T.-M.; Po, Y. Coriolis and rotating buoyancy effect on detailed heat transfer distributions in a two-pass square channel roughened by 45° ribs at high rotation numbers. Int. J. Heat Mass Transf. 2010, 53, 1349–1363. [Google Scholar] [CrossRef]
- Morris, W.D.; Chang, S.W. Heat transfer in a radially rotating smooth-walled tube. Aeronaut. J. 1998, 102, 277–285. [Google Scholar]
- Du, W.; Luo, L.; Jiao, Y.; Wang, S.; Li, X.; Bengt, S. Heat transfer in the trailing region of gas turbines—A state-of-the-art review. Appl. Therm. Eng. 2021, 199, 117614. [Google Scholar] [CrossRef]
- Giugno, A.; Sorce, A.; Cuneo, A.; Barberis, S. Effects of market and climatic conditions over a gas turbine combined cycle integrated with a heat pump for inlet cooling. Appl. Energy 2021, 290, 116724. [Google Scholar] [CrossRef]
- Han, J.-C.; Wright, L.M. Enhanced Internal Cooling of Turbine Blades and Vanes. In The Gas Turbine Handbook; U.S. DOE, National Energy Technology Laboratory: Morgantown, WV, USA, 2007; pp. 321–352. [Google Scholar]
- Chang, S.W.; Chiang, P.-A.; Cai, W.L. Thermal performance of impinging jet-row onto trapezoidal channel with different effusion and discharge conditions. Int. J. Therm. Sci. 2021, 159, 106590. [Google Scholar] [CrossRef]
- Chang, S.W.; Yu, K.-C. Thermal performance of radially rotating trapezoidal channel with impinging jet-row. Int. J. Heat Mass Transf. 2019, 136, 246–264. [Google Scholar] [CrossRef]
- Amagasa, S.; Shimomura, K.; Kadowaki, M.; Takeishi, K.; Kawai, H. Study on the turbine vane and blade from a 1500 °C class industrial gas turbine. Trans. ASME J. Eng. Gas Turbine Power 1994, 116, 591–604. [Google Scholar]
- Chang, S.W.; Huang, S.-W. Aerothermal performance of a rotating two-pass furrowed channel roughened by angled ribs. Appl. Therm. Eng. 2021, 199, 117613. [Google Scholar] [CrossRef]
- Cai, L.; He, Y.; Wang, S.; Li, Y.; Li, F. Thermal-fluid-solid coupling analysis on the temperature and thermal stress field of a nickel-base superalloy turbine blade. Materials 2021, 14, 3315. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.W.; Yang, T.L.; Huang, C.C.; Chiang, K.F. Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array. Int. J. Heat Mass Transf. 2008, 51, 5247–5259. [Google Scholar] [CrossRef]
- Ames, F.E.; Dvorak, L.A. Turbulent transport in pin fin arrays: Experimental data and predictions. ASME Trans. J. Turbomach. 2006, 128, 71–81. [Google Scholar] [CrossRef]
- Chyu, M.K.; Hsing, Y.C.; Shih, T.P.; Natarajan, V. Heat transfer contributions of pins and endwall in pin-fin arrays: Effects of thermal boundary condition modeling. ASME Trans. J. Turbomach. 1999, 121, 257–263. [Google Scholar] [CrossRef]
- Chang, S.W.; Hu, Y.-W. Endwall thermal performances of radially rotating rectangular channel with pin-fins on skewed rib lands. Int. J. Heat Mass Transf. 2014, 69, 173–190. [Google Scholar] [CrossRef]
- Rao, Y.; Wan, C.; Xu, Y. An experimental study of pressure loss and heat transfer in the d channels with various dimple depths. Int. J. Heat Mass Transf. 2012, 55, 6723–6733. [Google Scholar] [CrossRef]
- Han, J.C.; Zhang, Y.M.; Lee, C.P. Augmented heat transfer in square channel with parallel crossed and V-shaped angled ribs. ASME Trans. J. Turbomach. 1991, 113, 590–597. [Google Scholar] [CrossRef]
- Jeng, T.M. Thermal performance of in-line diamond-shaped pin-fins in a rectangular duct. Int. Commun. Heat Mass Transf. 2006, 33, 1139–1146. [Google Scholar] [CrossRef]
- Chyu, M.K.; Yen, C.H.; Siw, S. Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond shaped elements. Turbo Expo Power Land Sea Air. 2007, 47934, 991–999. [Google Scholar]
- Wright, L.M.; Lee, E.; Han, J.C. Effect of rotation on heat transfer in rectangular channels with pin-fins. AIAA J. Thermophys. Heat Transf. 2004, 18, 263–272. [Google Scholar] [CrossRef]
- Elyyan, M.A.; Tafti, D.K. Investigation of Coriolis forces effect of flow structure and heat transfer distribution in a rotating dimpled channel. ASME Trans. J. Turbomach. 2012, 134, 031007. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Tsai, H.-H.; Chan, S.-C. Local heat transfer in rotating square-rib-roughened and smooth channels with jet impingement. Int. J. Heat Mass Transf. 2004, 47, 2769–2784. [Google Scholar] [CrossRef]
- Adreini, A.; Brberi, E.; Cocchi, L.; Facchini, B.; Massini, D.; Pievaroli, M. Heat transfer investigation on an internal cooling system of a gas turbine leading edge model. Energy Procedia 2015, 82, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Cocchi, L.; Facchini, B.; Picchi, A. Heat transfer measurements in leading-edge cooling geometry under rotating conditions. J. Thermophys. Heat Transf. 2019, 33, 844–855. [Google Scholar] [CrossRef]
- Furlani, L.; Armellini, A.; Casarsa, L. Rotational effects on the flow field inside a leading edge impingement cooling passage. Exp. Therm. Fluid Sci. 2016, 76, 57–66. [Google Scholar] [CrossRef]
- Elston, C.A.; Wright, L.M. Leading edge jet impingement under high rotation numbers. ASME Trans. J. Therm. Sci. Eng. Appl. 2017, 9, 021010. [Google Scholar] [CrossRef]
- Singh, P.; Ekkad, S.V. Detailed heat transfer measurements of jet impingement on dimpled target surface under rotation. ASME Trans. J. Therm. Sci. Eng. Appl. 2018, 10, 031006. [Google Scholar] [CrossRef]
- Wang, J.; Deng, H.; Tao, Z.; Li, Y.; Zhu, J. Heat transfer in a rotating rectangular channel with impingement jet and film holes. Int. J. Therm. Sci. 2021, 163, 106832. [Google Scholar] [CrossRef]
- Deng, H.; Wang, Z.; Wang, J.; Li, H. Flow and heat transfer in a rotating channel with impingement cooling and film extraction. Int. J. Heat Mass Transf. 2021, 180, 121751. [Google Scholar] [CrossRef]
- Li, H.; Deng, H.; Qiu, L. Effect of channel orientation on heat transfer in a rotating impingement cooling channel. Int. J. Heat Mass Transf. 2022, 187, 122493. [Google Scholar] [CrossRef]
- Gleze, B.; Moon, H.K.; Kerrebrock, J.; Bons, J.; Guenette, G. Heat transfer in a rotating radial channel with swirling internal flow. Int. Gas Turbine Aeroengine Congr. Exhib. 1998, 98-GT-214, 1–7. [Google Scholar]
- Rao, Y.; Biegger, C.; Weigand, B. Heat transfer and pressure loss in swirl tubes with one and multiple tangential jets pertinent to gas turbine internal cooling. Int. J. Heat Mass Transf. 2017, 106, 1356–1367. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Wang, L.; Sundén, B.; Wang, S. Conjugated heat transfer investigation with racetrack-shaped jet hole and double swirling chamber in rotating jet impingement. Numer. Heat Transf. Part A Appl. 2018, 73, 768–787. [Google Scholar] [CrossRef] [Green Version]
- Tansakul, P.; Thawornsathit, P.; Juntasaro, V.; Juntasaro, E. Buoyancy effect on leading edge cooling of a rotating turbine blade. Trans. ASME J. Therm. Sci. Eng. Appl. 2022, 14, 111015. [Google Scholar] [CrossRef]
- Chang, S.W.; Yang, T.L.; Wang, W.J. Heat transfer in a rotating twin-pass trapezoidal-sectioned passage roughened by skewed ribs on two opposite walls. J. Heat Transf. Eng. 2006, 27, 63–79. [Google Scholar] [CrossRef]
- Guo, X.; Xu, H.; Li, X.; Ren, J. Flow and heat transfer characteristics of Coriolis-utilization rotating rectangular smooth cooling U-channel. Appl. Therm. Eng. 2022, 211, 118420. [Google Scholar]
- Su, G.; Chen, H.-C.; Han, J.-C.; Heidmann, J.D. Computation of flow and heat transfer in rotating two-pass rectangular channels (AR = 1:1, 1:2, and 1:4) with smooth wall by a Reynolds stress turbulence model. Int. J. Heat Mass Transf. 2004, 47, 5665–5683. [Google Scholar] [CrossRef]
- Liou, T.-M.; Chang, S.W.; Chen, J.S.; Yang, T.L.; Lan, Y.-A. Influence of channel aspect ratio on heat transfer in rotating rectangular ducts with skewed ribs at high rotation numbers. Int. J. Heat. Mass Transf. 2009, 52, 5309–5322. [Google Scholar] [CrossRef]
- Murata, A.; Mochizuki, S. Large eddy simulation with a dynamic subgrid-scale model of turbulent heat transfer in an orthogonally rotating rectangular duct with transverse rib turbulators. Int. J. Heat Mass Transf. 2000, 43, 1243–1259. [Google Scholar] [CrossRef]
- Murata, A.; Mochizuki, S. Effect of cross-sectioned aspect ratio on turbulent heat transfer in an orthogonally rotating rectangular duct with angled rib turbulators. Int. J. Heat Mass Transf. 2003, 46, 3119–3133. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, Y.Y.; Lee, D.H.; Rhee, D.H.; Cho, H.H. Influence of duct aspect ratio on heat/mass transfer in coolant passages with rotation. Int. J. Heat Fluid Flow 2007, 28, 357–373. [Google Scholar] [CrossRef]
- Chang, S.W.; Lees, A.W.; Liou, T.-M.; Hong, G.F. Heat transfer of a radially rotating furrowed channel with two opposite skewed sinusoidal wavy walls. Int. J. Therm. Sci. 2010, 49, 769–785. [Google Scholar] [CrossRef]
- Mayo, I.; Arts, T.; El-Habib, A.; Parres, B. Two-dimensional heat transfer distribution of a rotating ribbed channel at different Reynolds numbers. ASME Trans. J. Turbomach. 2015, 137, 031002. [Google Scholar] [CrossRef]
- Xu, G.; Li, Y.; Deng, H. Effect of rib spacing on heat transfer and friction in a rotating two-pass square channel with asymmetrical 90-deg rib turbulators. Appl. Therm. Eng. 2015, 80, 386–395. [Google Scholar] [CrossRef]
- Wang, Z.; Corral, R. Effect of uneven wall heating conditions under different buoyancy numbers for a one side rib-roughened rotating channel. ASME Trans. J. Turbomach. 2017, 139, 111011. [Google Scholar] [CrossRef]
- Deng, H.; Li, Y.; Tao, Z.; Xu, G.; Tian, S. Pressure drop and heat transfer performance in a rotating two-pass channel with staggered 45-deg ribs. Int. J. Heat Mass Transf. 2017, 108, 2273–2282. [Google Scholar] [CrossRef]
- Singh, P.; Li, W.; Ekkad, S.V.; Ren, J. A new cooling design for rib roughened two-pass channel having positive effects of rotation on heat transfer enhancement on both pressure and suction side internal walls of a gas turbine blade. Int. J. Heat Mass Transf. 2017, 115, 6–20. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Wang, L.; Sunden, B.; Wang, S. Numerical investigation of heat transfer and fluid flow in a rotating rectangular channel with variously discrete ribs. Appl. Therm. Eng. 2018, 129, 1369–1381. [Google Scholar] [CrossRef]
- Yan, H.; Luo, L.; Sun, P.; Du, W.; Wang, S.; Huang, D. Combined effects of bleed hole extraction and rotation on internal heat transfer in a ribbed two-pass channel. Int. Commun. Heat Mass Transf. 2022, 133, 105964. [Google Scholar] [CrossRef]
- Li, H.-L.; Chiang, H.-W.D.; Hsu, C.N. Jet impingement and forced convection cooling experimental study in rotating turbine blades. Int. J. Turbo Jet Engines 2011, 28, 147–158. [Google Scholar] [CrossRef]
- Kim, S.; Choi, E.Y.; Kwak, J.S. Effect of channel orientation on the heat transfer coefficient in the smooth and dimpled rotating rectangular channels. ASME Trans. J. Heat Transf. 2012, 134, 064504. [Google Scholar] [CrossRef]
- Lamont, J.A.; Ekkad, S.V.; Alvin, M.A. Effects of rotation on heat transfer for a single row jet impingement array with crossflow. ASME Trans. J. Heat Transf. 2012, 134, 082202. [Google Scholar] [CrossRef]
- Chang, S.W.; Liou, T.-M.; Chen, W.-C. Influence of radial rotation on heat transfer in a rectangular channel with two opposite walls roughened by hemispherical protrusions at high rotation numbers. ASME Trans. J. Turbomach. 2012, 134, 011010. [Google Scholar] [CrossRef]
- Xu, G.; Chen, Y.; Wen, J. Heat transfer in a rotating rectangular channel (AR=4) with dimples and sidewall bleeds. Int. J. Heat Mass Transf. 2020, 150, 119118. [Google Scholar] [CrossRef]
- Chang, S.W.; Wu, P.-S.; Chen, C.-S.; Weng, C.-C.; Jiang, Y.-R.; Shihe, S.-H. Thermal performance of radially rotating two-pass S-shaped zig-zag channel. Int. J. Heat Mass Transf. 2017, 115, 1011–1031. [Google Scholar] [CrossRef]
- Siw, S.C.; Chyu, M.K.; Alvin, M.A. Heat transfer and pressure loss characteristics of zig-zag channel with rib-turbulators. ASME Turbo Expo 2013, GT2013-95407, 1–10. [Google Scholar]
- Dutta, S.; Han, J.C.; Lee, C.P. Local heat transfer in a rotating two-pass ribbed triangular duct with two model orientations. Int. J. Heat Mass Transf. 1996, 39, 707–715. [Google Scholar] [CrossRef]
- Chang, S.W.; Liou, T.-M.; Lee, T.-H. Thermal performance comparison between radially rotating ribbed parallelogram channels with and without dimples. Int. J Heat Mass Transf. 2012, 55, 3541–3559. [Google Scholar] [CrossRef]
- Liou, T.-M.; Chang, S.W.; Yang, C.-C. Heat transfer and pressure drop measurements of rotating twin-pass parallelogram ribbed channel. Int. J. Therm. Sci. 2014, 79, 206–219. [Google Scholar] [CrossRef]
- Liou, T.-M.; Chang, S.W.; Lan, Y.-A.; Chan, S.-P. Isolated and coupled effects of rotating and buoyancy number on heat transfer and pressure drop in a rotating two-pass parallelogram channel with transverse ribs. ASME Trans. J. Heat Transf. 2018, 140, 032001. [Google Scholar] [CrossRef]
- Brahim, B.; Miloud, A. Numerical simulation of the effect of channel orientation on fluid flow and heat transfer at high buoyancy number in a rotating two-pass channel with angled ribs. ASME Trans. J. Heat Transf. 2019, 141, 022502. [Google Scholar] [CrossRef]
- Li, H.; You, R.; Deng, H.; Tao, Z.; Zhu, J. Heat transfer investigation in a rotating U-turn smooth channel with irregular cross-section. Int. J. Heat Mass Transf. 2016, 96, 267–277. [Google Scholar] [CrossRef]
- Tao, Z.; Yang, M.; Deng, H.; Li, H.; Tian, S. Heat transfer study in a rotating ribbed two-pass channel with engine-similar cross section at high rotation number. Appl. Therm. Eng. 2016, 106, 681–696. [Google Scholar] [CrossRef]
- Chen, A.F.; Wu, H.-W.; Wang, N.; Han, J.-C. Heat transfer in a rotating cooling channel (AR = 2:1) with rib turbulators and a tip turning vane. ASME Trans. J. Heat Transf. 2018, 140, 102007. [Google Scholar] [CrossRef]
- Chen, A.F.; Shiau, C.-C.; Han, J.-C.; Krewinkel, R. Heat transfer in a rotating two-pass rectangular channel featuring reduced cross-sectional area after tip turn (aspect ratio = 4:1 to 2:1) with profiled 60 deg angled ribs. ASME Trans. J. Turbomach. 2019, 141, 071008. [Google Scholar] [CrossRef]
- Sahin, I.; Chen, A.F.; Shiau, C.-C.; Han, J.-C.; Krewinkel, R. Effect of 45-deg rib orientations on heat transfer in a rotating two-pass channel with aspect ratio from 4:1 to 2:1. ASME Trans. J. Turbomach. 2020, 142, 071003. [Google Scholar] [CrossRef]
- Chen, I.-L.; Sahin, I.; Wright, L.M.; Han, J.-C.; Krewinkel, R. Heat transfer in a rotating, two-pass, variable aspect ratio cooling channel with profiled V-shaped ribs. ASME Trans. J. Turbomach. 2021, 143, 081013. [Google Scholar] [CrossRef]
- Parsons, J.A.; Han, J.-C.; Zhang, Y. Wall heating effect on local heat transfer in a rotating two-pass square channel with 90° rib turbulators. Int. J. Heat Mass Transf. 1996, 37, 1411–1420. [Google Scholar] [CrossRef]
- Abdel-Wahab, S.; Tafti, D.K. Large eddy simulation of flow and heat transfer in a 90 deg ribbed duct with rotation: Effect of Coriolis and centrifugal buoyancy forces. ASME Trans. J. Turbomach. 2004, 126, 627–636. [Google Scholar] [CrossRef]
- Kim, K.M.; Lee, D.H.; Cho, H.H. Detailed measurement of heat/mass transfer and pressure drop in a rotating two-pass duct with transverse ribs. Heat Mass Transf. 2007, 43, 801–815. [Google Scholar] [CrossRef]
- Sleiti, A.K.; Kapat, J.S. Effect of Coriolis and centrifugal forces on turbulence and transport at high rotation and density ratios in a rib-roughened channel. Int. J. Therm. Sci. 2008, 47, 609–619. [Google Scholar] [CrossRef]
- Saha, A.K.; Acharya, S. Turbulent heat transfer in ribbed coolant passages of different aspect ratios: Parametric effects. Int. J. Heat Mass Transf. 2006, 129, 449–463. [Google Scholar] [CrossRef]
- Morris, W.D.; Farhadi, R.-A.K. Convective heat transfer in rotating ribbed tubes. Int. J. Heat Mass Transf. 1996, 39, 2253–2266. [Google Scholar] [CrossRef]
- Chang, S.W.; Liou, T.-M.; Chiou, S.F.; Chang, S.F. Heat transfer in high-speed rotating trapezoidal duct with rib-roughened surfaces and air bleeds from the wall on apical side. Int. J. Heat Mass Transf. 2008, 130, 061702. [Google Scholar] [CrossRef]
- Lee, D.H.; Rhee, D.H.; Kim, K.M.; Cho, H.H.; Moon, H.K. Heat transfer and flow temperature measurements in a rotating triangular channel with various rib arrangements. Heat Mass Transf. 2009, 45, 1543–1553. [Google Scholar] [CrossRef]
- Chang, S.W.; Liou, T.-M.; Lee, T.H. Thermal performance of developing flow in a radially rotating parallelogram channel with 45° ribs. Int. J. Therm. Sci. 2012, 52, 186–204. [Google Scholar] [CrossRef]
- Wright, L.M.; Liu, Y.-H.; Han, J.-C.; Chopra, S. Heat transfer in trailing edge, wedge-shaped cooling channels under high rotation numbers. ASME Trans. J. Heat Transf. 2008, 130, 071701. [Google Scholar] [CrossRef]
- Li, Y.; Deng, H.; Tao, Z.; Xu, G.; Chen, Y. Heat transfer characteristics in a rotating trailing edge internal cooling channel with two coolant inlets. Int. J. Heat Mass Transf. 2017, 105, 220–229. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Tao, Z.; Li, Y.; Qiu, L. Heat transfer in a two-inlet rotating rectangular channel with side-wall fluid extraction. Int. J. Heat Mass Transf. 2017, 105, 525–534. [Google Scholar] [CrossRef]
- Deng, H.; Cheng, Y.; Li, Y.; Li, B.; Qiu, L. Heat transfer in a two-inlet rotating wedge-shaped channel with various locations of the second inlet. Int. J. Heat Mass Transf. 2017, 106, 25–34. [Google Scholar] [CrossRef]
- Deng, H.; Li, L.; Zhu, J.; Tao, Z.; Tian, S.; Yang, Z. Heat transfer of a rotating two-inlet trailing edge channel with lateral fluid extractions. Int. J. Therm. Sci. 2018, 125, 313–323. [Google Scholar] [CrossRef]
- Chang, S.W.; Liou, T.-M.; Yang, T.L.; Hong, G.F. Heat transfer in radially rotating pin-fin channel at high rotation numbers. ASME Trans. J. Turbomach. 2010, 132, 021019. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, K.M.; Lee, D.H.; Cho, H.H.; Chyu, M. Heat transfer in rotating channel with inclined pin-fins. ASME Trans. J. Turbomach. 2011, 133, 021003. [Google Scholar] [CrossRef]
- Chang, S.W.; Liou, T.-M.; Lee, T.-H. Heat transfer of a rotating rectangular channel with a diamond-shaped pin-fin array at high rotation numbers. ASME Trans. Turbomach. 2013, 135, 041007. [Google Scholar] [CrossRef]
- Huang, S.-C.; Wang, C.-C.; Liu, Y.-H. Heat transfer measurement in a rotating cooling channel with staggered and inlined pin-fin array using liquid crystal and stroboscopy. Int. J. Heat Mass Transf. 2017, 115, 364–376. [Google Scholar] [CrossRef]
- Huang, S.C.; Wang, C.-C.; Liu, Y.-H. Channel orientation effect on endwall heat transfer in rotating passages with pin-fins. Int. J. Heat Mass Transf. 2019, 136, 1115–1126. [Google Scholar] [CrossRef]
- Hung, S.-C.; Huang, S.-C.; Liu, Y.-H. Effect of nonuniform pin size on heat transfer in a rotating rectangular channel with pin-fin arrays. Appl. Therm. Eng. 2019, 163, 114393. [Google Scholar] [CrossRef]
- Du, W.; Luo, L.; Wang, S.; Zhang, X. Effect of the dimple location and rotating number on the heat transfer and flow structure in a pin finned channel. Int. J. Heat Mass Transf. 2018, 127, 111–129. [Google Scholar] [CrossRef]
- Luo, L.; Yan, H.; Yang, S.; Du, W.; Wang, S.; Sunden, B.; Zhang, X. Convergence angle and dimple shape effects on the heat transfer characteristics in a rotating dimple-pin fin wedge duct. Numer. Heat Transf. Part A 2018, 74, 1611–1635. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Deng, H.; Bai, L.; Zhu, J.; Tian, S.; Qiu, L. Heat transfer in a rotating two-inlet wedge-shaped channel with pin-fins. Int. J. Heat Mass Transf. 2020, 163, 120380. [Google Scholar] [CrossRef]
- Liang, C.; Rao, Y. Numerical study of turbulent flow and heat transfer in channels with detached pin fin arrays under stationary and rotating conditions. Int. J. Therm. Sci. 2021, 160, 106659. [Google Scholar] [CrossRef]
- Yan, H.; Luo, L.; Zhang, J.; Du, W.; Wang, S.; Huang, D. Flow structure and heat transfer characteristics of a pin-finned channel with upright/curved/inclined pin fins under stationary and rotating conditions. Int. Commun. Heat Mass Transf. 2021, 127, 105483. [Google Scholar] [CrossRef]
- Madhavan, S.; Singh, P.; Ekkad, S. Effect of rotation on heat transfer in AR = 2:1 and AR = 4:1 channels connected by a series of crossover jets. ASME Trans. J. Turbomach. 2022, 144, 061011. [Google Scholar] [CrossRef]
- Liang, C.; Rao, Y.; Chen, J.; Zhang, P. Experimental and numerical study of the turbulent flow and heat transfer in a wedge-shaped channel with guiding pin fin arrays under rotating conditions. ASME Trans. J. Turbomach. 2022, 144, 071007. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Tian, Y.; You, R.; Zhang, D.; Wu, A. Heat transfer in a rotating lateral outflow trapezoidal channel with pin fins under high rotation numbers and Reynolds numbers. Appl. Therm. Eng. 2022, 213, 118725. [Google Scholar] [CrossRef]
- Jing, Q.; Xie, Y.; Zhang, D. Numerical investigation of flow and heat transfer in rotating trapezoidal channel with lateral slots and dimple structure. Int. Commun. Heat Mass Transf. 2020, 118, 104865. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, G.; Wen, J.; Zhu, C. Rotational heat transfer in a rectangular cooling channel with compound turbulators of pin-fins and dimples. Int. J. Heat Mass Transf. 2022, 184, 121897. [Google Scholar] [CrossRef]
- Oh, I.T.; Kim, K.M.; Lee, D.H.; Park, J.S.; Cho, H.H. Local heat/mass transfer and friction loss measurement in a rotating matrix cooling channel. ASME Trans. J. Heat Transf. 2012, 134, 011901. [Google Scholar]
- Du, W.; Luo, L.; Wang, S.; Liu, J.; Sunden, B. Effect of the broken rib locations on the heat transfer and fluid flow in a rotating latticework duct. ASME Trans. J. Heat Transf. 2019, 141, 102102. [Google Scholar] [CrossRef]
- Chang, S.W.; Hsu, C.J. Effect of internal effusion on aerothermal performance of a three-pass channel roughened by angled ribs and pin-fins with lateral flow exit. Int. J. Heat Mass Transf. 2022, 198, 123387. [Google Scholar] [CrossRef]
Cooling Geometry | Re | Ro | Δρ/ρ (βΔT) | Bu | Nu/Nu0 | Nu0/Nu∞ | f/f0 | f0/f∞ | Ref. |
---|---|---|---|---|---|---|---|---|---|
10,000–40,000 | 0–1.4 | - | - | 0.7–1.3 | - | - | - | [30] | |
2500 (jet) | 0–0.00274 (jet) | - | - | 0.51–1.37 | - | - | - | [31] | |
7854–19,635 | 0–1.9557 | - | - | 0.18–0.98 | 0.9–1.42 | - | - | [37] | |
5000–17,500 | 0–0.3 | 0.057–0.151 | 0–0.088 | 0.5–4.6 | 0.9–1.1 | 16–23 | [12] | ||
5000–10,000 | 0–0.24 | - | 0–0.57 | 0.76–1.24 | 1.1–4.2 | - | - | [32] | |
5000 | 0–0.24 | - | 0–0.57 | 0.3–2.75 | 0.55–4.3 | - | - | [33] | |
5000–15,000 | 0–0.24 | - | 0–0.2 | 0.25–2.25 | - | - | [34] |
Cooling Geometry | Re | Ro | Δρ/ρ (βΔT) | Bu | Nu/Nu0 | Nu0/Nu∞ | f/f0 | f0/f∞ | Ref. |
---|---|---|---|---|---|---|---|---|---|
10,000–100,000 | 0–0.28 | 0.13–0.4 | - | 0.6–5.5 | 0.2–7.8 | [41] | |||
5000–15,000 | 0–2.0 | 0.07–0.31 | 0.005–8.652 | 0.2–1.68 | 2.4–2.7 | - | - | [42] | |
4000–14,000 | 0–0.22 | 0.03–0.09 | 0.003–0.11 | 0.77–1.46 | 4.08–4.23 | - | - | [46] | |
4000–16,000 | 0–0.8 | 0.05–0.1 | 0.0015–0.93 | 0.7–2.3 | 3.1–4.9 | - | - | [6] | |
5000–12,500 | 0–0.6 | 0.07–0.3 | 0.0021–0863 | 0.7–3.3 | 3.2–3.8 | - | - | [57] | |
5000–15,000 | 0–0.3 | 0.06–0.188 | 0–0.23 | 0.74–2.4 | 3.44–6.71 | 0.6–5.7 | 3 | [62] | |
4000–10,000 | 0–0.4 | 0.042–0.14 | 0.0016–0.24 | 0.76–1.91 | 2.94–3.78 | - | - | [63] | |
20,000–50,000 | 0–0.8 | - | 0–1.8 | 0.75–1.55 | 2–3.6 | - | 5.5–10.5 | [48] | |
25,000–50,000 | 0–0.72 | 0.138 | 0–1.31 | 0.75–2.5 | 1.85–1.95 | - | - | [66] | |
10,000–50,000 | 0–1.88 | 0.138 | 0–9.02 | 0.8–5 | 2.7–2.9 | - | - | [67] | |
5000–15,000 | 0–0.5 | 0.03–0.12 | 0–0.15 | 0.93–2.34 | - | 1.21–2.04 | - | [59] | |
5000–20,000 | 0–0.3 | 0.0263–0.119 | 0.0015–0.122 | 0.68–2.16 | - | 0.9–2.8 | [64] | ||
10,000–40,000 | 0–0.42 | - | - | 0.65–1.55 | 3.5–5.7 | - | - | [68] | |
0.87–1.3 | 3.75–5.4 | - | - | ||||||
10,000–70,000 | 0–0.39 | - | - | 0.68–1.4 | 2.5–4.2 | - | - | [69] | |
5500–25,000 | 0–1.24 | 0.05–0.11 | 0–3.86 | 0.6–1.45 | 1.8–5.7 | - | - | [58] | |
10,000–70,000 | 0–0.39 | - | - | 0.6–1.65 | 2.3–4.5 | - | - | [70] | |
0.5–1.3 | 2–4 | - | - | ||||||
10,000–45,000 | 0–0.39 | - | - | 0.75–1.8 | 3–4.9 | - | - | [71] | |
0.45–1.9 | 2.8–5 | - | |||||||
5000–15,000 | 0–0.4 | 0.058–0.14 | 0–0.183 | 0.7–2.2 | 3.98–5.34 | 0.9–1.8 | 32–35 | [14] |
Cooling Geometry | Re | Ro | Δρ/ρ (βΔT) | Bu | Nu/Nu0 | Nu0/Nu∞ | f/f0 | f0/f∞ | Ref. |
---|---|---|---|---|---|---|---|---|---|
5000–15,000 | 0–0.4 | 0.08–0.18 | 0.0007–0.31 | 0.94–1.43 | 5–6.1 | 0.43–0.99 | - | [19] | |
10,000–25,000 | 0–1.06 | - | 0–3.2 | 0.9–2.9 | 1.8–5.3 | - | - | [82] | |
5000–20,000 | 0–1.4 | 0.1–0.24 | 0.004–3.6 | 0.79–2.47 | 2.3–3.1 | - | - | [86] | |
5000–15,000 | 0–0.6 | 0.0032–0.1519 | 0–0.31 | 0.82–1.89 | 2.21–2.77 | - | - | [88] | |
10,000–20,000 | 0–0.33 | - | - | 0.95–1.1 | 1.95–2.4 | - | - | [91] | |
0.05–1.075 | 1.9–2.45 | ||||||||
0.93–1.2 | 1.9–2.55 | ||||||||
20,000–45,000 | 0–0.155 | - | 0–0.075 | 0.72–1.25 | 1.6–9 | - | - | [94] | |
7000–18,600 | 0–0.5 | - | - | 0.812–1.432 | 1.75–2.65 | - | - | [96] | |
0.99–1.31 | 2–2.5 | ||||||||
20,000 | 0–0.14 | - | - | 2.1–3.5 | 2.25–3.7 | - | - | [97] | |
12,000–20,000 | 0–0.89 | 0.05–0.1 | 0–1.32 | 0.56–1.05 | 1.5–10.1 | - | - | [101] | |
10,500–44,000 | 0–0.8 | - | - | 0.9–1.18 | 1.5–4.8 | - | - | [102] | |
44,000 | 0–0.5 | - | - | 0.961–1.07 | 4.58–4.92 | - | 350–460 | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.W.; Wu, P.-S.; Wan, T.-Y.; Cai, W.-L. A Review of Cooling Studies on Gas Turbine Rotor Blades with Rotation. Inventions 2023, 8, 21. https://doi.org/10.3390/inventions8010021
Chang SW, Wu P-S, Wan T-Y, Cai W-L. A Review of Cooling Studies on Gas Turbine Rotor Blades with Rotation. Inventions. 2023; 8(1):21. https://doi.org/10.3390/inventions8010021
Chicago/Turabian StyleChang, Shyy Woei, Pey-Shey Wu, Ting-Yu Wan, and Wei-Ling Cai. 2023. "A Review of Cooling Studies on Gas Turbine Rotor Blades with Rotation" Inventions 8, no. 1: 21. https://doi.org/10.3390/inventions8010021
APA StyleChang, S. W., Wu, P. -S., Wan, T. -Y., & Cai, W. -L. (2023). A Review of Cooling Studies on Gas Turbine Rotor Blades with Rotation. Inventions, 8(1), 21. https://doi.org/10.3390/inventions8010021