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Abstract: Sprinkler irrigation is widely used in agriculture because it allows for rational use of water.
However, it can induce negative effects of soil erosion and of surface waterproofing. The scholars
of these phenomena use the numerical integration of the equation of motion, but if there was an
analytical solution, the study would be facilitated, and this solution could be used as software for
regulating sprinklers. Therefore, in this study, the solution of the differential equation of the flight
of droplets produced by sprinklers in the absence of wind was developed. The impossibility of an
exact analytical solution to the ballistic problem due to the variability of the drag coefficient of the
droplets is known; therefore, to find the integrals in closed form, the following were adopted: a
new formula for the drag coefficient; a projection of the dynamic’s equation onto two local axes, one
tangent and one normal to the trajectory and some linearization. To reduce the errors caused by the
latter, the linearization coefficients and their calculation formulas were introduced through multiple
non-linear regressions with respect to the jet angle and the initial droplet speed. The analytical
modeling obtained, valid for jet angles from 10◦ to 40◦, was compared to the exact numerical solution,
showing, for the total travel distance, a high accuracy with a mean relative error MRE of 1.8% ± 1.4%.
Even the comparison with the experimental data showed high accuracy with an MRE of 2.5% ±1.1%.
These results make the analytical modeling capable of reliably calculating the travel distance, the
flight time, the maximum trajectory height, the final fall angle and the ground impact speed. Since
the proposed analytical modeling uses only elementary functions, it can be implemented in PLC
programmable logic controllers, which could be useful for controlling water waste and erosive effects
on the soil during sprinkler irrigation.

Keywords: droplet; dynamics; closed-form solution; sprinkler; irrigation; ballistics; mathematical
modeling; water waste; soil erosion; PLC control system

1. Introduction

Sprinkler irrigation is widely used in agriculture because it allows a rational use of
water. However, the high specific power (W m−2), a product of kinetic energy (J m−3)
with an application rate (m3 s−1 m−2) of water droplets impacting soil, is a factor to be
controlled because it can induce the negative effects of soil erosion and surface sealing [1].
The landing angle of the droplets on the soil surface is also a factor to be controlled because
low values induce the negative effects of soil erosion and surface sealing [1].

In recent years, scientific research in this area has been oriented towards study, mathe-
matical modeling and experimentation to reduce the phenomena of soil sealing and erosion
and to increase distribution uniformity. Hui et al. [1] studied the influence of low sprinkler
pressure on soil erosion. Chen et al. [2] investigated erosion due to droplet kinetic energy
for different soil types and indicated the importance of pressure, nozzle diameter and sprin-
kler spacing. Hui et al. [3], after confirming that the phenomenon of soil erosion depends
more on the impact angle than on the kinetic energy of the droplets, identify low-pressure
sprinklers as a possible solution. Zhu et al. [4] quantified the angle of impact on crops
such as corn and the associated splash production resulting in soil erosion. Chen et al. [5]
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studied the influence of the kinetic energy of droplets produced by low-pressure sprinklers
on soil erosion. Ge et al. [6] set up a method to evaluate the kinetic energy, the diameter
of the droplets and the distribution of their speeds. Félix-Félix et al. [7] characterized
the morphology and velocity of the droplets in the laboratory with the aim of improving
sprinkler simulation models. Hua et al. [8] proposed three-dimensional mathematical
modeling of sprinkler rainfall, based on numerically solved ballistics equations, to estimate
the influence of rotation speed and performed an experimental verification of it.

In many of these works, it was necessary to use the differential equations of droplet
motion, solved through numerical methods [9–12]. In fact, the numerical solution allows for
the simulation of the characteristics of the droplet trajectory and, therefore, the total travel
distance, the height of the trajectory, the flight time, the landing angle and the terminal
velocity. The differential equations of droplet motion during sprinkler irrigation are derived
from Newton’s second law of dynamics, in which the system of external forces applied to
the droplet is equal to the product of mass and acceleration [13–19]. The forces applied
are gravity, buoyancy and drag. While the first two are constant during the motion, the
drag force depends on the droplet velocity with a complex and non-unique law: this is
the reason why the exact closed-form solution of the droplet flight dynamic equations
is impossible.

This is why the numerical solution is necessary; however, in the recent past, two pro-
posals for approximate analytical solutions have been made. In the first proposal [20], the
closed-form solution was possible because two simplifying hypotheses were adopted. The
first was on the simplified formulation of the drag coefficient, while the second concerned
the way to project the vector equation of dynamics onto the x and y axes, multiplying the
drag force by cos2 θ and by sin2 θ instead of by cos θ and by sin θ, respectively. These
simplifications, on the one hand, had allowed an easy closed-form solution, but on the other,
had led to a certain error then calculated by Yan et al. [21]. In the second proposal [22], the
solution was obtained by imposing that the drag coefficient followed Stokes’ law, i.e., the
drag force linear function of the droplet velocity. This hypothesis, on the one hand, allowed
for easy analytical integration but, on the other hand, introduced an easily reliable error
if one considers that Stokes’ law is valid for 0.1 ≤ Re ≤ 2 while during the motion of the
droplets, the Reynolds number Re is many times higher than this range, often by two or
three orders of magnitude.

Comparing the two methods of solving the equations of motion, the analytical one
and the numerical one, the advantage of the closed-form solution is that this is a set of
equations based on elementary functions (trigonometric, logarithmic and exponential) that
can be solved in sequence and instantaneously, using a double dozen cells in a spreadsheet.
A pocket scientific calculator can also be used. Furthermore, it must be considered that
equations based on elementary functions can be implemented in PLC (programmable
logic controller). This possibility is precluded by numerical integration methods and,
furthermore, these methods are not instantaneous: for each condition to be analyzed,
modern software requires, on average, tens of seconds of processing. Finally, software for
numerical integration can have high investment costs.

Therefore, a closed-form solution of the droplet flight dynamic equation, approximated
by minimizing errors, will be carried out through a series of measures: the development
of a new single formula for the drag coefficient valid for the entire droplet flight; a pro-
jection of the dynamic equation onto two local axes, one tangent and one normal to the
trajectory; some appropriate linearization [23] introducing linearization coefficients as a
function of the jet angle and the initial speed, with formulas obtained through multiple
non-linear regressions.

2. Materials and Methods

Section 2.1 is dedicated to the setting of the two flight differential equations, one for the
ascending portion of the trajectory and one for the descending portion, and to their partially
approximate analytical solution. The integration procedure of these two flight equations is
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long and divided into many steps and is reported to allow interested readers to follow the
procedure and the phases dedicated to the approximations. Instead, readers interested only
in the final equations to determine the geometric and dynamic values of the trajectories
useful for the study and mitigation of the soil erosion phenomenon can find them grouped
in Section 3.4, which follows. They are to be used on the spreadsheet or inserted into the
PLC software, i.e., into the microprocessors that can be installed in the sprinklers for their
adjustment aimed at mitigating soil erosion during irrigation. Section 2.2 is dedicated to
the description of the exact numerical integration of the two flight equations. The exact
results of the numerical integration constitute the benchmark to evaluate (Section 3.1) the
accuracy of the results of the analytical modeling equations developed in Section 2.1 and
summarized in Section 3.4.

2.1. Closed-Form Solution and Mathematical Modeling

When the water jet comes out of the sprinkler nozzle, it is compact but then breaks
into ligaments and then into droplets, thanks to the interaction with the ambient air.
This is a complex phenomenon which also sees a subsequent interaction between the
droplets themselves, already formed. As always happens in engineering, to study such
a high complexity, some simplifying hypotheses [9] are posed to carry out mathematical
modeling. If necessary, after comparing the solution and the experimental results, correction
coefficients can be introduced.

Therefore, to set the differential equation of the flight of the droplets emitted from the
nozzle, it was necessary to define some simplifying conditions:

1. Flow of water completely disintegrates into droplets of various diameters in the outlet
section of the sprinkler nozzle;

2. All droplets have the same initial velocity, which is equal to the average velocity of
the water flow in the exit section of the nozzle;

3. Each droplet of water is considered alone along the trajectory, i.e., without collisions
with the other droplets;

4. Water droplets are considered rigid spheres upon exiting the nozzle and remain
spherical during flight;

5. Water droplets are not subject to evaporation, so their diameters remain unchanged
throughout their trajectory;

6. No wind.

Figure 1 shows the trajectory of a droplet emitted from the nozzle of a sprinkler.
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Figure 1. Flight trajectory of a droplet emitted by a sprinkler at a height h above the ground. The
trajectory is composed of a first portion ascending to the top and a second portion descending from
the top to the landing.

It is possible to divide the trajectory into a first part from the emission point of the
nozzle 0, which is at a height h (m) from the ground up to the top, and into a second part
from the top up to the landing. The jet angle θ0 (◦) is the initial angle of the droplet jet, equal
to the nozzle angle. The most important expected results of the mathematical modeling
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are the droplet travel distance xtot (m), the flight time ttot (s), the terminal velocity vend
(m s−1) and the ground impact angle θend (◦), which depend on droplet diameter D (m);
initial velocity of the droplet v0 (m s−1); jet angle θ0; nozzle height from the ground h (m);
characteristics of air, such as viscosity µ (Pa s) and density ρair (kg m−3).

2.1.1. Ascending Portion of the Trajectory

Considering the ascending portion (Figure 1) from the sprinkler (0, h) to the top (xtop,
ytop), the differential equation of dynamics is

m·a = −m·g − R → mD·
dv
dt

= −(mD − mair)·g − cd
π

4
D2ρair

v
2

v (1)

where a = dv
dt is the acceleration vector (m s−2), mD·g is the gravitational force vector (N),

mD is the mass of the droplet (kg), mair·g is the buoyancy force (N), mair is the mass (kg)
of the air moved by the droplet, R = cd

π
4 D2ρair

v
2 v is the drag force vector (N), which is

proportional to the drag coefficient cd, to the equatorial area of the droplet of diameter D and
to the kinetic energy (J). The air density is ρair (kg m−3). The buoyancy force is three orders
of magnitude less than the gravitational force, so it can be neglected: (mD − mair

∼= mD).
Generally, to proceed with numerical integration and as was performed in a previous

simplified analytical modeling [20], the vector Equation (1) is projected along the horizontal
x and vertical y axes. Instead, in the present study, the projection of dynamics equation
onto a local reference system having a tangent axis s and a normal axis n to the trajectory
was chosen (Figure 2).
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Figure 2. The local reference system adopted, with the s and n axes that are, respectively, tangent
and normal to the trajectory. The red vector is the drag force R, the black vector is the gravitational
force mg projected in the two components along s (mDgsin θ) and n (mDgcos θ). The blue vector is
the velocity v.

Figure 3 shows that the scalar velocity variation in the s direction is dv, and therefore,
the acceleration is dv

dt , while in the n direction, the scalar velocity variation is v·dθ; there-
fore, the acceleration is v dθ

dt . Therefore, Equation (1) projected onto s and n, neglecting
the buoyancy force, which is three orders of magnitude less than the gravitational force
(mD − mair

∼= mD), becomes

s : mD·
dv
dt

= mD·
d2s
dt2 = −mD·g·sinθ − cd

π

4
D2ρair

v2

2
(2)

n : mD·
dθ

dt
v = mD·g·cosθ (3)

The convention that the angle θ starts from the jet angle θ0 value and takes on a
positive value during the ascending portion of the trajectory is adopted.

In Equation (3), the component of the gravitational force has a positive sign be-
cause its direction is concordant with the n-axis. In Equation (2), the drag force ap-
pears in which the drag coefficient cd is not constant but depends on the velocity v
through the Reynolds number. Bird et al. (1960) [24] indicated that, with laminar mo-
tion (0.1 ≤ Re ≤ 2) in the boundary layer, the Stokes formula cd = 24

Re applies; with
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transition motion (2 < Re ≤ 500), the formula cd = 18.5
Re0.6 applies; with turbulent motion

(Re > 500) , the formula cd = 0.44 applies. These formulas are valid for rigid spheres.
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Figure 3. (a) In an infinitesimal interval of time dt, the droplet travels along an elementary trajectory
section ds, which subtends an angle dθ and the velocity vector v becomes v + dv. (b) Graphic
construction to highlight the components along s and n of the velocity variations and, therefore, of
the accelerations.

Since, during the motion of the droplet, the Reynolds number varies, it may be that the
choice of a relationship between the three indicated by Bird et al. [24] in order to perform
the integration of Equation (2) produces important errors in the prediction of the droplet
travel distance and the flight time.

To overcome this difficulty, in the present analytical model, a unique relationship has
been applied. Recently [25], for 0.1 ≤ Re ≤ 200, 000, the following formula was developed:

cd = 26.31·Re−(0.000037447·G4−0.00066989·G3+0.0016779·G2−0.033243·G+0.86961), where G =
ln(Re). However, since in the motion of the droplets emitted by the sprinklers, the Reynolds
number does not exceed the value of 10,000, the previous relationship has been simplified,
always using the Standard Drag Curve data (SDC) [25,26]:

cd = 25.1·Re0.04925·lnRe−0.90977 (4)

It is valid for 0.3 ≤ Re ≤ 10, 000 and, compared to the SDC data, it has a relative mean
error—MRE = 3.8% and a standard deviation—SD = 3.0%. In the same Reynolds range,
the three relationships proposed by Bird et el. [24] present MRE = 3.1% and SD = 3.0%,
i.e., values similar to those obtained with (4).

Equation (2) with (4), after dividing by the mass of the droplet mD, becomes

dv
dt

=
dv
dθ

·dθ

dt
= −g·sinθ − 25.1·Re0.04925·lnRe−0.90977·π

8
D2 ρair

mD
v2 (5)

Equation (3) gives dθ
dt = g

v ·cosθ, which is inserted into (5). Furthermore, the velocity
variable v is replaced with the Reynolds number variable Re, v = Re µ

ρair ·D , where µ is the
air viscosity (Pa s). Finally, instead of the mass of the spherical droplet, the expression is
inserted, mD = ρw

πD3

6 , where ρw is the density of water (kg m−3). Equation (5) becomes

dRe
dθ

= −Re·tan θ − 25.1
Ar

·Re0.04925·lnRe−0.90977+3

cos θ
(6)

where the quantity Ar is the Archimedes number [25]: Ar = 4
3

D3ρair ·ρw ·g
µ2 .

Equation (6) is a non-integrable differential equation due to the exponent (0.04925·lnRe
− 0.90977 + 3). However, through some parallel numerical integration tests of Equation
(6), it was seen that the maximum decrease in Re occurs with the minimum droplet diam-
eter of 0.25 mm and is approximately 30-fold during the ascending part of the trajectory.
Consequently, the maximum variation of the exponent (0.04925·lnRe − 0.90977 + 3) is 7%,
while it reduces to 2% with large droplet diameter (D = 5 mm).
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Consequently, the simplifying hypothesis of considering the exponent calculated with
the Reynolds number equal to the initial value Re0 = ρairv0D

µ was adopted. Therefore,
Equation (6) becomes

dRe
dθ

= −Re·tan θ − 25.1
Ar

· Reβ

cos θ
(7)

where β = 0.04925·lnRe0 − 0.90977 + 3.
By introducing the new variable ua =

1
Reβ−1 , so dua

dθ = −(β−1)
Reβ

dRe
dθ , Equation (7) can be

transformed:
dua

dθ
= (β − 1)·ua·tan θ +

(β − 1)
Ar

· 25.1
cos θ

(8)

Equation (8) is a first-order linear differential equation that can be solved by the
Bernoulli method, that is, by introducing the variable ua as the product of two dummy
variables wa and za: ua = wa·za. Therefore, Equation (8) becomes

dwa

dθ
za + wa

dza

dθ
= (β − 1)·wa·za·tan θ +

(β − 1)
Ar

· 25.1
cos θ

(9)

A function za = za(θ) must be found such that its derivative satisfies this equality:

wa
dza

dθ
= (β − 1)·wa·za·tan θ (10)

It is sufficient to integrate, by separation of the variables, Equation (10) to obtain the
desired function:

za = Cza·(cos θ)−(β−1) (11)

where Cza is the constant of integration. The combination of Equations (9)–(11) gives

dwa

dθ
=

β − 1
Cza

·25.1
Ar

· (cos θ)(β−1)

cos θ
(12)

Since β is between approximately 2.3 and 2.6 depending on the droplet diameter
D and the initial velocity v0, (β − 1) is between 1.3 and 1.6, i.e., non-integer number, so
the differential equation (12) has no solution in closed form. However, the expression
(cos θ)(β−1) can be replaced by α (cos θ)2, where the coefficient α depends on the initial
values of the Reynolds number Re0, the jet angle θ0 and the water pressure in the nozzle p.
The relationship α = α(Re0, θ0, p) will be obtained later, in Appendix A, using a nonlinear
multiple regression. It will be performed in such a way as to also consider the errors due
to the approximation introduced in Equation (7) with the exponent β = constant. Thus,
Equation (12) becomes

dwa

dθ
=

β − 1
Cza

·25.1
Ar

·α· cosθ (13)

The solution of which, containing the quantity Cwa, which is the value assumed by the
variable wa when θ = θ0, is

wa =
β − 1
Cza

·25.1
Ar

·α(sin θ0 − sin θ) + Cwa (14)

Combining Equations (14) and (11), the variable ua becomes

ua = wa·za =
(25.1/Ar)·(β − 1)·α·(sin θ0 − sin θ) + Cua

(cos θ)β−1 (15)
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where Cua = Cwa·Cza. Since ua = Re−(β−1), Equation (15) becomes

Re =
cos θ[

25.1
Ar (β − 1)·α·(sin θ0 − sin θ) + Cua

] 1
β−1

(16)

By imposing the initial conditions, θ = θ0, Re = Re0, the constant Cua is obtained,
as follows:

Cua =

(
cos θ0

Re0

)β−1
(17)

Setting θ = 0, Equation (16) gives the value of the Reynolds number at the top of
the trajectory:

Retop =
1[

25.1
Ar (β − 1)·α·sin θ0 + Cua

] 1
β−1

(18)

From Equation (16), it is easy to obtain the velocity of the droplet with diameter D:

va =
dsa

dt
=

µ

ρairD
· cos θ[

25.1
Ar (β − 1)·α·(sin θ0 − sin θ) + Cua

] 1
β−1

(19)

The integral of Equation (19) provides the length sa (m) of the trajectory in the ascend-
ing portion as a function of the time and angle θ:

sa =
µ

ρairD

∫ cos θ·dt[
25.1
Ar (β − 1)·α·(sin θ0 − sin θ) + Cua

] 1
β−1

(20)

The combination of Equation (19) with the expression dθ
dt = g

v ·cosθ obtained from
Equation (3) gives the elemental time interval dt as a function of angle θ:

dt =
µ

ρairDg
dθ[

25.1
Ar (β − 1)·α·(sin θ0 − sin θ) + Cua

] 1
β−1

(21)

Finally, the combination of Equations (20) and (21) gives sa as a function of only the
angle θ:

sa =
µ2

ρ2
airD2g

∫ cos θ·dθ[
25.1
Ar (β − 1)·α·(sin θ0 − sin θ) + Cua

] 2
β−1

(22)

Performing the integral, Equation (22) becomes

sa =
µ2

ρ2
airD2g

·
25.1
Ar α(β − 1) (sin θ−sin θ0)− Cua

25.1
Ar α(3 − β)

[
− 25.1

Ar α(β − 1)(sin θ−sin θ0) + Cua

] 2
β−1

+ Cs (23)

where Cs is the constant of integration, which is determined by imposing the initial condi-
tions θ = θ0, sa = 0. Furthermore, by imposing θ = 0, Equation (23) gives the length of
the ascending trajectory up to the top:

stop =
µ2

ρ2
airD2g


− 25.1

Ar α(β − 1)sin θ0 − Cua

25.1
Ar α(3 − β)

[
25.1
Ar α(β − 1)sin θ0 + Cua

] 2
β−1

+
Cua

β−3
β−1

25.1
Ar α(3 − β)

 (24)

If the function inside the integral of Equation (22) were multiplied by cos θ, the
integration would provide the droplet travel distance xtop or, if it were multiplied by sin
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θ, the integration would provide the height ytop (Figure 1). Unfortunately, the two new
functions cannot be integrated; therefore, simplified calculation methods of xa and ya are
proposed. It is valid because it involves mean relative errors of approximately 1%. The
variables sa and, therefore, xa and ya of the ascending portion originate at the sprinkler
nozzle (Figure 1).

The method consists of calculating the arithmetic mean value, γ, of cos θ0 and cos 0,
which is γ = cos θ0+1

2 , and multiplying it by sa, obtaining the droplet travel distance xtop.
To obtain ytop, first, the average angle θave is calculated, then its trigonometric tangent is
calculated, which is the ratio between ytop and xtop. The formulas are

γ = cos θ0+1
2

xtop = stop·γ
θave = arccosγ

ytop = xtop·tan θave

(25)

To obtain the flight time to the top, Equation (21) could be used, which, however,
cannot be integrated. However, with the precaution of multiplying the function inside
the integral of Equation (21) by the cos θ, a solution is obtained, which must be corrected
with a coefficient φ to be obtained (Appendix A) via the regression method, similar to the
coefficient α. Therefore, the following equation gives the flight time ttop:

ttop = φ
µ

ρairDg


− 25.1

Ar α(β − 1)sin θ0 − Cua

25.1
Ar α(2 − β)

[
25.1
Ar α(β − 1)sin θ0 + Cua

] 1
β−1

+
Cua

β−2
β−1

25.1
Ar α(2 − β)

 (26)

2.1.2. Descending Portion of the Trajectory

The descending portion presents a differential equation of droplet motion like Equation (1),
but with the difference that the sign of the gravitational force is positive because it becomes
a driving force (Figure 1):

mD·
dv
dt

= (mD − mair)·g − cd
π

4
D2ρair

v
2

v (27)

Therefore, Equation (7) also changes the sign as follows:

dRe
dθ

= Re·tan θ − 25.1
Ar

· Reδ

cos θ
(28)

where the exponent δ depends on the Reynolds number at the top of the trajectory Retop,
already determined by Equation (18): δ = 0.04925·lnRetop − 0.90977 + 3.

The convention is adopted that the angle θ starts from a zero value at the top of the
trajectory and takes on a positive value during the descending portion.

Also, considering the dummy variable for the descending segment, ud = 1
Reδ−1 and

ud= wd·zd, Equations (9)–(12) become

dwd
dθ

zd + wd
dzd
dθ

= −(δ − 1)·wd·zd·tan θ +
(δ − 1)

Ar
· 25.1
cos θ

(29)

wd
dzd
dθ

= −(δ − 1)·wd·zd·tan θ (30)

zd = Czd·(cos θ)(δ−1) (31)

dwd
dθ

=
δ − 1
Czd

·25.1
Ar

· 1

(cos θ)δ
(32)
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Equation (32), like Equation (12), cannot be integrated because δ is not integer. But,
even in this case, an approximation such as (cos θ)δ ∼= ε(cos θ)2, where ε is a coefficient
obtainable (Appendix A) through regression method like α, makes Equation (32) integrable,
as follows:

dwd
dθ

=
δ − 1
Czd

·25.1
Ar

· 1

ε(cos θ)2 (33)

The solution is
wd =

δ − 1
ε·Czd

·25.1
Ar

·tan θ + Cwd (34)

where Cwd is the value of the variable wd at the beginning of the descending trajectory,
i.e., at the top when θ = θtop = 0.

The multiplication of Equations (31) and (34) gives the dummy variable ud relating to
the descending section:

ud= wd·zd =

[
δ − 1

ε
·25.1

Ar
·tan θ + Cud

]
(cos θ)(δ−1) (35)

The new constant of the descending portion is Cud = Cwd·Czd. Since ud = 1
Reδ−1 ,

Equation (35) becomes for the descending portion:

Re =
ρair·vd·D

µ
=

1[
δ−1

ε · 25.1
Ar ·tan θ + Cud

] 1
δ−1 cos θ

(36)

The constant Cud is determined with the initial condition of the descending portion:
θ = 0, Re = Retop:

Cud =

(
1

Retop

)δ−1
(37)

From Equation (36), it is easy to obtain the elemental displacement dsd of the droplet
of diameter D along the descending portion of the trajectory:

dsd =
µ

ρairD
· dt[

δ−1
ε · 25.1

Ar ·tan θ + Cud

] 1
δ−1 cos θ

(38)

The combination of Equation (36) with the expression dθ
dt = g

v ·cosθ, obtained from
Equation (3), gives the following:

dt =
µ

ρairDg
· dθ[

δ−1
ε · 25.1

Ar ·tan θ + Cud

] 1
δ−1

(cos θ)2
(39)

By inserting Equation (39) into (38) and proceeding on to integration, the path length
sd(θ) of the droplet along the descending trajectory can be obtained:

sd =
µ2

ρ2
airD2g

∫ dθ[
δ−1

ε · 25.1
Ar ·tan θ + Cud

] 2
δ−1

(cos θ)3
(40)

Unfortunately, Equation (40) has no solution due to the term (cos θ)3 and the non-
integer exponent 2

δ−1 . To overcome the first difficulty, (40) was projected onto the x-axis,
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given that the main objective is to have a formula for the droplet travel distance x. To
overcome the second difficulty, a linearization was introduced:

[
tan θ +

ε·Ar·Cud
25.1(δ − 1)

] 2
δ−1 ∼= λ

[
tan θ +

ε·Ar·Cud
25.1(δ − 1)

]
+ η (41)

The coefficients λ and η will be determined using the regression method (Appendix A),
as expected for the previous coefficients α, ε and φ. Equation (40) transforms as follows:

xd =
µ2

ρ2
airD2g·

(
δ−1

ε · 25.1
Ar

)∫ dθ{
λ
[
tan θ + ε·Ar·Cud

25.1(δ−1)

]
+ η

}
(cos θ)

2 (42)

The variables xd, yd and sd originate at the top of the trajectory (Figure 1).
The solution of Equation (42), including the constant of integration, is

xd =
1
λ

µ2

ρ2
airD2g·

(
δ−1

ε · 25.1
Ar

) · ln

 tan θ + ε·Ar·Cud
25.1(δ−1) +

η
λ

ε·Ar·Cud
25.1(δ−1) +

η
λ

 (43)

For Equation (43) to provide the droplet travel distance xd = xend up to the point of
impact to the ground, the landing angle of the trajectory at the point of impact θend must be
known (Figure 1). An effective way to solve the problem is to start from the observation
that the tan θ coincides with the derivative dyd/dxd. Therefore, it is sufficient to highlight
the tan θ and proceed to the integration to obtain the coordinate yd = yd (xd).

To facilitate the operation, some groups of parameters will be collected under two
constant symbols, K1 and K2:

K1 =
1
λ

µ2

ρ2
airD2g·

(
δ−1

ε · 25.1
Ar

) (44)

K2 =
ε·Ar·Cud

25.1(δ − 1)
+

η

λ
(45)

Thus, Equation (43) becomes

xd = K1· ln
[

tan θ

K2
+ 1

]
(46)

From which it is easy to highlight tan θ:

tan θ =
dyd
dxd

= K2

(
e

xd
K1 − 1

)
(47)

Integration of Equation (47) gives

yd = K2K1

(
e

xd
K1 − 1

)
− K2xd (48)

The combination of Equations (46) and (48) gives

yd = K1tan θ − K2K1· ln
[

tan θ

K2
+ 1

]
(49)

If this Equation (49) is applied to the landing point of the droplet, then the total height
of the descending trajectory is known and equals yend = ytop + h (Figure 1), where ytop is
obtained from Equation (25). Therefore, from (49), the only remaining unknown can be
found: θ = θend.
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With the value of θend entered into Equation (46), the complete travel distance of the
descending portion xend can be obtained. The total travel distance is the sum of the travel
distance of the ascending portion xtop (25) and the descending portion xend (46):

xtot = xtop + xend (50)

Concerning the flight time during the descending trajectory, Equation (39) needs to be
integrated. However, the exponent 1

δ−1 is not an integer and, therefore, prevents a solution.
As already performed to solve Equation (40), a linearization is necessary:

[
tan θ +

ε·Ar·Cud
25.1(δ − 1)

] 1
δ−1 ∼= σ

[
tan θ +

ε·Ar·Cud
25.1(δ − 1)

]
+ ψ (51)

The coefficients σ and ψ will be determined using the regression method (Appendix A),
as expected for the previous coefficients λ, η, α, ε and φ. Equation (39) transforms as follows:

t =
µ

ρairDg
(

δ−1
ε · 25.1

Ar

)∫ dθ{
σ
[
tan θ + ε·Ar·Cud

25.1(δ−1)

]
+ ψ

}
(cos θ)

2 (52)

After integrating (52) and entering the value of the landing angle θ = θend, the result
obtained is the flight time from the top to the point of landing.

tend =
1
σ
· µ

ρairDg
(

δ−1
ε · 25.1

Ar

) · ln

 tan θend +
ε·Ar·Cud

25.1(δ−1) +
ψ
σ

ε·Ar·Cud
25.1(δ−1) +

ψ
σ

 (53)

Finally, the total flight time ttot results from the sum of ttop (26) with tend (53):

ttot = ttop + tend (54)

2.2. Numerical Solution

The approximate closed-form solution, which led to the analytical modeling of the tra-
jectory and, therefore, the travel distance, represented by Equations (18) for the calculation
of Retop, Equations (24) and (25) for the calculation of xtop and ytop, Equation (49) for the
calculation of θend and Equation (46) for the calculation of xend, was evaluated by comparing
its results with the exact ones obtained with a numerical solution of the differential equation
(ODE) of motion:

dRe
dθ

= −Re·tan θ − 25.1
Ar

·Re0.04925·lnRe−0.90977+3

cos θ
(55)

This Equation (55) is that of the ascending portion of the trajectory and is different
from Equation (7) because the variable exponent with ln Re has been kept, and therefore, it
is the exact ODE. A similar differential equation was used for the descending portion of the
trajectory. It also differs from Equation (28) because the variable exponent with ln Re has
been maintained:

dRe
dθ

= Re·tan θ − 25.1
Ar

·Re0.04925·lnRe−0.90977+3

cos θ
(56)

Both ODEs were integrated numerically for the first time to obtain Re as a function of
θ. Finally, a subsequent numerical integration led to travel distance x and flight time t.

Numerical Adams’ method, especially suitable for this type of differential equation
and easily implementable in Excel, was used for solving the two ODEs (55) and (56).
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3. Results and Discussion
3.1. Comparison between Approximate Closed-Form Solution and Exact Numerical Solution

To evaluate the accuracy of the analytical modeling constituted by the approximate
closed-form solution obtained in Section 2.1, the relevant equations to determine the travel
distance were applied to droplets of seven different diameters (D = 0.25, 0.5, 1, 2, 3, 4 and
5 mm) produced by a sprinkler with different jet angles (θ0 = 40◦, 30◦, 20◦ and 10◦) and
with two different pressures (p = 2.5 and 4 bar). The reference environmental conditions
were air temperature Tair = 20 ◦C and altitude 50 m, which corresponded to air density ρair
of 1.2 kg m−3 and air viscosity µ of 0.000018 Pa s.

With the same values of D, θ0 and p, the numerical integrations described in Section 2.2
were carried out to obtain the exact values of the travel distance xtot.

The comparison results are shown in Figure 4a–d, respectively, for each of the four jet
angles θ0 but with the same pressure p = 2.5 bar. To verify the accuracy of the approximate
closed-form solution compared to the exact numerical one, with p = 4 bar, the numerical
experimentation was limited to the variation of the diameter D, maintaining a single jet
angle of 30◦. The comparison results are shown in Figure 5.
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p = 4 bar and jet angle θ0 = 30◦.

The histograms of all the Figures show, through horizontal bars, the values of the
travel distance xtot obtained analytically (blue color) and numerically (red color) for each of
the seven diameters of the droplet. In the histograms, for each diameter, there is a third bar
(green color), which represents the relative percentage error, equal to

Error% =

∣∣∣∣∣ (xtot)analytic − (xtot)numeric

(xtot)numeric

∣∣∣∣∣·100 (57)

Considering the set of 35 error% values, the mean relative error MRE is 1.8%, and the
standard deviation SD is 1.4%. These values show how analytical modeling, i.e., based on
the approximate closed-form solution, is a valid calculation tool.

To have a further qualitative evaluation of the accuracy of the approximate analytical
solution compared to the exact numerical one, in Figure 6a–d, the trajectories were plotted
and calculated both analytically and numerically with the four different jet angles (40◦,
30◦, 20◦ and 10◦). The curves are limited to the case of the 2 mm droplet because, for
other droplet diameters, the differences between the two trajectories are similar. These
differences between the two trajectories, one calculated analytically (black line) and one
calculated numerically (red line), confirm the relative error% calculated on the total travel
distance, which was shown in Figures 4 and 5.

For diameters less than approximately 0.45 mm, it may happen that the constant K2
calculated with Equation (45) is negative, just below zero, due to the approximation of the
values of the linearization coefficients introduced with the regression (Appendix A) of λ
and η, despite R2 = 0.99. This makes the solution of Equation (49) impossible because the
argument of the logarithm function becomes negative.

The meaning of this event is that K2 should tend to 0 due to the small size of the droplet
and, therefore, its tendency to end its flight in a direction close to the vertical ( θend → 90◦),
i.e., mathematically, the trajectory tends toward an asymptote. Therefore, for very small
variations of θend, the variations of xend are infinitesimal, but those of yend become very large.
This extreme situation would require absolute accuracy in the calculation of K2 → 0 , which
the regression of λ and η cannot ensure. However, if (45) gives a negative K2 just below
zero, the difficulty is easily overcome by replacing this negative value with a positive K2
value close to 0. Empirically, it has been found that the optimal value is K2 = 10−4.
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of 40◦ (a), 30◦ (b), 20◦ (c) and 10◦ (d): black line for the closed-form solution; red line for numerical
solution. Pressure p of 2.5 bar.

3.2. Comparison between Approximate Closed-Form Solution and Experimental Data

Analytical modeling based on the approximate closed-form solution was also applied
to the experimentally measured droplet motion by Tompson et al. [27,28]. These authors
measured the travel distance xtot and the flight time ttot for droplets with diameters D
equal to 0.3, 0.9, 1.8, 3.0 and 5.1 mm emitted by a sprinkler with a jet angle θ0 of 25◦

and with an initial velocity v0 of 30.9 m/s. Nozzle height above ground h was 4.5 m and
environmental conditions were air temperature Tair = 38 ◦C, relative humidity RH = 20%
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and no wind. Tompson’s experimental results compared to those of this study are shown
in Tables 1 and 2.

Table 1. Total travel distance xtot of sprinkler droplets: data of this study compared to those of
Tompson et al. [27,28].

Droplet Diameter D
(mm)

Travel Distance xtot (m)
Tompson et al. [27,28]

Travel Distance xtot (m)
This Study

Relative
Error (%)

0.3 1.30 1.27 −2.6
0.9 5.22 5.20 −0.3
1.8 10.00 10.92 +9.2
3.0 13.48 17.27 +28.2
5.1 17.83 25.76 +44.5

Table 2. Total flight time ttot of sprinkler droplets: data of this study compared to those of Tompson
et al. [27,28].

Droplet Diameter D
(mm)

Flight Time ttot (s)
Tompson et al. [27,28]

Flight Time ttot (s)
This Study Relative Error (%)

0.3 2.63 1.03 −60.9
0.9 1.54 1.66 +7.7
1.8 1.63 1.97 +20.8
3.0 1.75 2.17 +24.1
5.1 1.84 2.38 +29.4

About the travel distance (Table 1), the mean relative error MRE is 17%, mainly due to
a prediction of excessive travel distance xtot for large droplets, from 3 to 5.1 mm.

For the flight time (Table 2), an MRE of 28% occurs due to the excessive time ttot
predicted by the analytical modeling for the larger droplets and a reduced ttot for the
0.3 mm droplet.

3.3. Modification of the Drag Coefficient Formula to Consider the Deformation of the Droplets

Tables 1 and 2 showed, in the case of medium and large droplets, too high values of
the total travel distance and total flight time predicted by the analytical modeling. This
is attributable to the reduced value of the drag coefficient obtained from Equation (4). In
fact, it was obtained with a regression procedure starting from experimental data of the
Standard Drag Curve (SDC) [25,26], which are valid for rigid spheres.

Yan et al. [21] and Kincaid [29], however, suggest using the approach of Park et al. [30,31],
who, analyzing the data of Laws [32] and Gunn and Kinzer [33], found that the drag
coefficient cd for Re ≥ 1000 begins to increase compared to the constant value of 0.44 due
to the deformation of the droplets during flight.

The equation that Park et al. [30,31] suggested to take this fact into account is
the following:

cd = 0.438·
[

1 + 0.021·
(

Re
1000

− 1
)1.25

]
(58)

In this formula, there is a first constant term equal to 0.438, which is like the value of
0.44 predicted by Bird’s model [24] and 0.45 predicted by Fukui’s model [14]. Then, there is
a second term in parentheses, which is a factor greater than 1 for Re ≥ 1000. Due to this
increasing factor, for example, with Re = 10, 000, the drag coefficient cd is 0.591.

In Table 3, the cd values from Equations (4) and (58) have been compared considering
the Reynolds numbers Re0 of the experimental tests of Tompson et al. [27,28].
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Table 3. Drag coefficient cd calculated with Equation (4), based on the Standard Drag Curve—SDC,
introducing Re0 of Tompson tests [27,28], compared with those calculated with Equation (58) of Park
et al. [30,31].

Droplet Diameter
D (mm)

Re0
Tompson et al. [27,28]

Drag Coefficient cd
Equation (4) Based on SDC

Drag Coefficient cd
Equation (58) Park et al. [30,31]

0.3 554 0.572 -
0.9 1661 0.442 0.443
1.8 3323 0.400 0.464
3.0 5538 0.383 0.499
5.1 9414 0.376 0.570

Table 3 shows that the values of Equation (4) are close to the experimental ones of the
Standard Drag Curve—SDC [25,26], while those of Equation (58) are increasing with Re0.
The solution to this problem is to introduce the increasing factor present in the Equation (58)
of Park et al. [30,31], also in Equation (4).

But Equation (58) has the term inside the brackets, which for Re ≤ 1000 cannot be
calculated because it contains a negative number with a non-integer exponent, and in
any case, the term in the brackets should remain constant and equal to 1. Therefore, a
new empirical formula has been identified, which has a polynomial in place of the Park
Equation (58), so that, for Re ≤ 1000, Equation (4) remains valid, and for Re > 1000, it
provides increasing values like those of Park. Ultimately, Formula (4), also considering the
hypotheses written for Equation (7), becomes

cd =

[
0.000304

(
Re0

1000

)4

− 0.00688
(

Re0

1000

)3

+ 0.0499
(

Re0

1000

)2

− 0.0637
(

Re0

1000

)
+ 1.015

]
·25.1·Re0.04925·lnRe0−0.90977 (59)

The new cd values calculated with Equation (59) are, in the order of increasing D
from 0.9 to 5.1 mm, 0.450, 0.456, 0.502 and 0.560. They differ from those obtained with
Equation (58) of Park et al. (Table 3), with an MRE of only 1.5%. It must be noted that (58)
is valid only for 1000 ≤ Re ≤ 10, 000, while (59) is valid for 0.3 ≤ Re ≤ 10, 000.

Formula (59) keeps expression (4) within it; therefore, the only modification to be
made to the analytical modeling of Section 2.1. is to replace, in all the equations in which it
is present, the number 25.1 with the constant K equal to

K = 25.1·
[

0.000304
(

Re0

1000

)4
− 0.00688

(
Re0

1000

)3
+ 0.0499

(
Re0

1000

)2
− 0.0637

(
Re0

1000

)
+ 1.015

]
(60)

Because of this modification, the new values of total travel distance xtot and total flight
time ttot are shown in Tables 4 and 5, respectively.

Table 4. Total travel distance xtot of the droplets: data from the analytical modeling completed with
Equation (60) of this study, compared to the experimental ones of Tompson et al. [27,28].

Droplet Diameter
D (mm)

Travel Distance xtot (m)
Tompson et al. [27,28]

Travel Distance xtot (m)
This Study with

Equation (60)
Relative Error (%)

0.3 1.30 1.27 −2.6
0.9 5.22 5.10 −2.4
1.8 10.00 9.60 −4.0
3.0 13.48 13.61 +1.0
5.1 17.83 18.23 +2.3

Table 4 shows the new travel distance values xtot and the relative error% compared to
Tompson’s experimental data. They are significantly better than those in Table 1. Now, the
mean relative error MRE is 2.5%, and the standard deviation SD is 1.1%.
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Table 5. Total flight time ttot of sprinkler droplets: data of the analytical modeling completed with
Equation (60), compared to those of Tompson et al. [27,28].

Droplet Diameter
D (mm)

Total Flight Time ttot (s)
Tompson et al. [27,28]

Total Flight Time ttot (s)
This Study with

Equation (60)
Relative Error (%)

0.3 2.63 1.03 −60.9
0.9 1.54 1.63 +5.8
1.8 1.63 1.85 +13.3
3.0 1.75 1.94 +11.0
5.1 1.84 2.01 +9.0

Therefore, the new values of cd calculated with Equation (59), based on the indications
of Park et al. [30,31], and the consequent replacement in the analytical model of Section 2.1.
of the number 25.1 with the constant K of Equation (60), made the model capable of
correctly describing the trajectory and therefore the total travel distance xtot of the droplets
experimentally analyzed by Tompson et al. [27,28].

Table 5 shows the new flight time values ttop. Excluding the flight time of the 0.3 mm
droplet, the others were improved compared to those in Table 2. In particular, the mean
relative error—MRE was 9.8%, and the SD was 3.2%.

The error of −60.9%, relating to the smallest droplet, seems to have no explanation.
Perhaps the flight time was longer during the experimentation because the droplet was
also involved, in the last part of the almost vertical trajectory, in a convective upward
motion of the air due to temperature differences with the ground; very small mass of the
droplet (14 µg); high height of the nozzle from the ground (4.5 m); final angle calculated
with Equation (49) very high (θ0 = 89.8◦), which confirms a last part of the trajectory that is
almost vertical.

3.4. Synoptic Table of the Definitive Analytical Modeling Based on Approximated Closed-Form
Solution with the Drag Coefficient according to Park’s Values with Equations (59) and (60)

In this section, only the final equations of the closed-form integration carried out
in Section 2.1 are collected, together with Equation (60) of Section 3.3 and the regression
equations of Appendix A. They represent the mathematical model to be used on the
spreadsheet or to be inserted into the PLC software (microprocessors dedicated to the
control and regulation of sprinklers) to determine the geometric and dynamic values
of the trajectories useful for the study and mitigation of the phenomena of soil sealing
and erosion.

The travel distance of the ascending portion of the trajectory (0-top) is (Figure 1):

xtop = stop·γ (25a)

where
γ =

cos θ0 + 1
2

(25b)

stop =
µ2

ρ2
airD2g


− K

Ar α(β − 1)sin θ0 − Cua

K
Ar α(3 − β)

[
K
Ar α(β − 1)sin θ0 + Cua

] 2
β−1

+
Cua

β−3
β−1

K
Ar α(3 − β)

 (24)

where the quantities K, Ar, β, α and Cua are

K = 25.1·
[

0.000304
(

Re0

1000

)4
− 0.00688

(
Re0

1000

)3
+ 0.0499

(
Re0

1000

)2
− 0.0637

(
Re0

1000

)
+ 1.015

]
(60)

Ar =
4
3

D3ρair · ρw · g
µ2 (6)

β = 0.04925·lnRe0 − 0.90977 + 3 (7)
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α =
(

1.4677·10−6Re0θ0 + 7.7412·10−3θ0 + 1.1394·10−5Re0 + 0.7516
)
·
(

2.5
p

)0.01156·Re0.4
0

(A1)

Cua =

(
cos θ0

Re0

)β−1
(17)

where the initial value of Reynolds number (Figure 1) is Re0 = ρairv0D
µ .

The height from the nozzle to the top of the trajectory ytop is (Figure 1)

ytop = xtop·tan θave (25d)

where
θave = arccosγ (25c)

The number of Reynolds at the top of trajectory Retop is

Retop =
1[

K
Ar ·(β − 1)·α·sin θ0 + Cua

] 1
β−1

(18)

The flight time from the nozzle to the top of the trajectory ttop is

ttop = φ
µ

ρairDg


− K

Ar α(β − 1)sin θ0 − Cua

K
Ar α(2 − β)

[
K
Ar α(β − 1)sin θ0 + Cua

] 1
β−1

+
Cua

β−2
β−1

K
Ar α(2 − β)

 (26)

where
φ = 1.247·(cos θ0)

−0.5865·Re−0.02691
0 (A2)

The travel distance of the descending portion of the trajectory (top-end) is (Figure 1):

xend = K1· ln
[

tan θ

K2
+ 1

]
(46)

where the quantities K1, K2, δ, ε, λ, η and Cud, are

K1 =
1
λ

µ2

ρ2
airD2g·

(
δ−1

ε · K
Ar

) (44)

K2 =
ε·Ar·Cud
K·(δ − 1)

+
η

λ
(45)

δ = 0.04925·lnRetop − 0.90977 + 3 (28)

ε = 0.966 (A3)

λ = 8.748·θ0.3179
0 ·

(
ln Retop

)−1.3454 (A4)

η = 0.115·θ1.4321
0 ·Re−0.3646

top (A5)

Cud =

(
1

Retop

)δ−1
(37)

The tan θend can be obtained with an iterative method from the following:

yend = ytop + h = K1tan θend − K2K1· ln
[

tan θend
K2

+ 1
]

(49)
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The terminal velocity vend is

vend =
µ

ρairD
· 1[

δ−1
ε · K

Ar ·tan θend + Cud

] 1
δ−1 cos θend

(36)

The total travel distance xtot results from the sum of xtop (25a) and xend (46):

xtot = xtop + xend (50)

The flight time from top to end of the trajectory tend is

tend =
1
σ
· µ

ρairDg
(

δ−1
ε · K

Ar

) · ln

 tan θend +
ε·Ar·Cud
K·(δ−1) +

ψ
σ

ε·Ar·Cud
K·(δ−1) +

ψ
σ

 (53)

where
σ = 1.2762·θ−0.2312

0 ·Re0.001854
top (A6)

ψ = 0.0788·θ0.3443
0 ·Re0.05992

top (A7)

The total flight time ttot is the sum of ttop (26) and tend (51):

ttot = ttop + tend (54)

The nomenclature of the quantities present in this Section 3.4 is collected in Table 6.

Table 6. Nomenclature relating to the quantities of the equations in the synoptic table of definitive
analytical modeling.

Symbol Unity of Measurement Description

a m s−2 acceleration
Ar - Archimedes number
C - integration constant
cd - drag coefficient
D m droplet diameter
g m s−2 gravity acceleration
h m nozzle height from the ground
m kg mass
n axis normal to the trajectory
p bar nozzle pressure

Re - Reynolds number

s m axis tangential to the trajectory
and/or length of the trajectory

t s time
v m s−1 droplet velocity

u, w, z - auxiliary variables
x m travel distance
y m height of trajectory

Greek symbol Unity of measurement Description

α - linearization coefficient

β - Exponent in the drag coefficient formula
for ascending trajectory

γ - linearization coefficient

δ - Exponent in the drag coefficient formula
for descending trajectory

ε - linearization coefficient
η - “
θ ◦ trajectory angle
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Table 6. Cont.

Greek symbol Unity of measurement Description

λ - linearization coefficient
µ Pa s viscosity
ρ kg m3 density
σ - linearization coefficient
φ - “
ψ - “

Subscript Description

a ascending portion of trajectory
air air
ave average
d descending portion of trajectory
D droplet

end end of trajectory
top top of trajectory

ua integration constant of auxiliary variable u
of ascending trajectory

ud integration constant of auxiliary variable u
of descending trajectory

w water
0 start of trajectory

3.5. Results of the Application of Definitive Analytical Modeling

The definitive approximate analytical modeling, presented in the previous Section 3.4,
was applied with the same diameters D (0.25, 0.5, 1, 2, 3, 4 and 5 mm) and with the same
jet angles θ0 (40◦, 30◦, 20◦ and 10◦) and with the pressure p of 2.5 bar adopted during
the comparison (Section 3.1) between the exact numerical solution and the approximate
analytical one. For each diameter and for each jet angle, the result was the trajectories
diagram (Figure 7a–d) and the total travel distance xtot, the maximum height ytop, the
impact angle on the ground θend and the terminal velocity vend (Table 7).

Figure 7a–d, respectively, for the jet angles of 40◦, 30◦, 20◦ and 10◦, each show the
trajectories of the seven droplets differing in diameter, from 0.25 to 5 mm. Note that the
total travel distances are smaller than those reported in Figure 4a–d due to the correction
introduced with Equation (60), which is necessary to take into account the deformation of
the larger droplets during the motion as predicted by Park et al. [30,31].

Finally, Table 7 shows the values of the total travel distance xtot, obtained with
Equation (50); of the maximum height ytop, obtained with (25d); of the landing angle
θend, obtained with (49) and of the terminal velocity vend, obtained with (36).

In the application of the definitive analytical model presented in Section 3.4, Figure 7
and, even more so, Table 7 show how the smallest jet angle (10◦) has the smallest landing
angles and quite high landing speeds. Scholars [1–4] point out that these values of the two
parameters, the high dynamic one (landing velocity) and the low geometric one (landing
angle), are the most dangerous for erosion and the formation of the superficial crust with
relative reduction in infiltration. The travel distance achieved with a jet angle of 10◦ is also
the lowest, therefore showing a lower efficiency in the use of irrigated water.

The largest landing angles, at less risk of erosion and the formation of surface crust,
are obtained with jet angles of 40◦. However, accepting a slight reduction in the landing
angle but with an improvement in the travel distance and, above all, with a reduction in
the landing velocity and, therefore, in the impact kinetic energy, the jet angle of 30◦ seems
the most appropriate.
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Figure 7. Trajectories of the droplet with the droplet diameters D of 0.25, 0.5, 1, 2, 3, 4 and 5 mm and
with different jet angle values θ0 of 40◦ (a), 30◦ (b), 20◦ (c) and 10◦ (d); for each figure, the trajectories
increase the travel distance as the diameter increases from 0.25 up to 5 mm. Pressure p of 2.5 bar.
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Table 7. Geometric and kinematic characteristics of droplet trajectories: total travel distance xtot,
maximum height from ground ytop + h, landing angle θend and terminal velocity at the landing vend.
Pressure p of 2.5 bar.

Jet Angle
θ0 (◦)

Droplet
Diameter
D (mm)

Travel
Distance
xtot (m)

Top Height
from Ground
ytop + h (m)

Landing
Angl e
θend (◦)

Terminal Velocity
vend (m/s)

0.25 0.65 0.96 89.5 1.9
0.5 1.73 1.37 87.2 3.2
1 3.94 2.14 82.0 4.7

40◦ 2 7.62 3.30 75.0 6.4
3 9.43 3.83 71.7 7.2
4 11.24 4.34 69.0 7.9
5 12.55 4.69 67.0 8.4

0.25 0.69 0.88 89.4 1.8
0.5 1.82 1.18 86.5 3.0
1 4.05 1.72 79.5 4.3

30◦ 2 7.65 2.52 69.9 5.8
3 9.43 2.88 65.4 6.5
4 11.17 3.22 61.7 7.2
5 12.44 3.46 59.2 7.7

0.25 0.81 0.80 89.2 1.7
0.5 1.97 1.00 85.3 2.8
1 4.15 1.33 75.3 3.9

20◦ 2 7.57 1.79 61.1 5.3
3 9.22 1.99 54.9 6.1
4 10.80 2.17 50.1 6.8
5 11.96 2.30 47.0 7.4

0.25 0.87 0.73 88.7 1.6
0.5 2.04 0.81 83.0 2.4
1 4.04 0.94 66.9 3.3

10◦ 2 6.91 1.10 45.4 5.1
3 8.25 1.16 37.6 6.2
4 9.45 1.21 32.3 7.3
5 10.32 1.25 29.2 8.2

In any case, the application carried out here is limited to discrete jet angle values and,
therefore, has only an example value. The reader will be able to carry out the application
with different angles if they are within the 10–40◦ range.

As regards the influence of the diameter, Table 7 shows how the smaller droplets have
much less impact and, therefore, are less dangerous for erosion and the formation of surface
crust, both in terms of kinetic energy and landing angle.

3.6. Analytical Modeling and Droplet Evaporation

The analytical modeling summarized in Section 3.4 has, among the hypotheses, zero
evaporation of the droplets during the flight. How far is this hypothesis from reality?

The results shown in Table 4, where the total travel distance calculated with the
analytical modeling without evaporation are compared to the experimental one of Tompson
et al. [27,28], where the droplets evaporated, highlights that the zero-evaporation hypothesis
of the modeling is acceptable.

Confirmation can also be found in the experimentation and mathematical modeling
of Kincaid and Longley [34]. They showed the influence of the droplet diameter D and
environmental conditions (dry bulb temperature Tair and relative humidity RH%) on the
loss rate of water mass through evaporation [35] during the flight.

The loss rate increases with increasing temperature, decreasing humidity and droplet
diameter. The situation with the greatest loss rate occurred with the smallest droplet
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(D = 0.3 mm) and with the maximum temperature (Tair = 31 ◦C) and minimum humidity
(RH = 22%). The loss rate was almost 10% s−1, while, already with the droplet of 0.9 mm,
the loss rate dropped to around 1.5% s−1.

These are environmental conditions similar to those of the tests of Tompson et al. [27,28]
(Tair = 38 ◦C and RH = 20%). Considering the droplet diameter D = 0.3 mm, the ap-
plication of the loss rate of 10% s−1, assumed constant during the entire flight time,
which is approximately 1 s (Table 5), becomes a volume loss of the droplet of 10%. This
volume reduction corresponds to a droplet diameter at the end of the flight equal to
Dend = 3

√
0.9·D = 0.29 mm. With a constant loss rate, the average diameter during the

flight is Dave = (D + Dend)/2 = 0.295 mm. This is a reduction in diameter limited to
1.7%, which, applied to the mathematical modeling of paragraph 3.4, produces a new
travel distance xtot = 1.24 m compared to 1.27 m in Table 4. Clearly, this is an approximate
procedure compared to the exact one, which should have used a new equation of motion
with the presence of a dm/dt term.

The relative difference between 1.27 and 1.24 m is only −2.4%, which, with lower
air temperatures and, above all, with higher humidity and larger diameters, becomes
an imperceptible difference. It is concluded that the effects of evaporation on the travel
distance calculated by the analytical modeling proposed here can be neglected without this
worsening the predictive capacity of the modeling.

4. Conclusions

Starting from the differential equation of the flight of droplets emitted by sprinklers,
its closed-form solution was studied through a new formulation of the drag coefficient;
the projection of the vector equation onto two local axes, one tangent and one normal to
the trajectory and some linearization. The linearization coefficients were obtained with
multiple non-linear regressions as a function of the jet angle θ0 and the initial velocity v0.
The set of equations obtained, presented in Section 3.4, is, therefore, an analytical model for
droplet ballistics.

In a previous work from twenty years ago [20], the ballistics problem in terms of
closed-form solution had already been studied. However, considering the simplifying
hypotheses adopted at the time—particularly on the value of the drag coefficient and on
the choice to write the projections on the x and y axes of the flight equation by multiplying
the drag force by the cos2 θ and sin2 θ, respectively, instead of cos θ and sin θ—if, on the
one hand, they allowed an easy closed-form solution, on the other, they introduced a
mean relative error MRE that Yan et al. [21] calculated as equal to 42% compared to the
experimental values of Tompson et al. [27,28]. Similar errors can be expected from the
analytical integration proposal made by [22], in this case, due to the choice to formulate the
drag coefficient via the Stokes equation.

Other authors in the last twenty years have studied the problem of droplet ballistics;
however, they have always done so with the numerical solution of the differential equation
of flight. The exact numerical solution was also performed in the present work but only to
have a benchmark against which to evaluate the accuracy of the approximate closed-form
solution proposed here.

The result of this comparison regarding the total travel distance was highly satisfactory,
with a mean relative error MRE of 1.8% and a standard deviation SD of 1.4%.

Compared to the experimental data of Thompson et al. [27,28], the analytical model
proposed here showed an MRE of 2.5% and an SD of 1.1%, confirming its high accuracy.

The proposed analytical modeling did not consider the mass loss due to evaporation,
but the excellent fit with the experimental data of Thompson et al. [27,28], where the
droplets evaporated, confirms what emerged in the Kincaid and Langley experiment [34].
These authors, in fact, had demonstrated that only very small droplets, when in environ-
mental conditions of low humidity and high temperature, are subject to significant mass
losses during flight, with values which, for these extreme cases, are, in any case, no higher
than 10%.
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The analytical modeling was built for a range of jet angle values between 10◦ and 40◦;
therefore, outside of it, the use of the model could lead to important errors.

Ultimately, the proposed analytical modeling is reliable and can predict, in the absence
of wind, the travel distance, the maximum height of the trajectory, the landing angle and the
terminal velocity before impact on the ground. This is all useful information for controlling
water waste and the erosive effects on the soil due to the kinetic energy and landing angle
of the droplets.

Furthermore, the proposed analytical modeling contains only elementary functions
such as trigonometric ones, the logarithm and the exponential, which allow it to easily
become the software for PLC control systems to be applied to sprinklers. In the future, it
will, therefore, be interesting to verify the application to sprinkler irrigation systems of
PLC-based hardware implemented with software attributable to this analytical modeling,
which should also be expanded to consider the effects of the wind.
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Appendix A. Regression Equations for Linearization Coefficients

In Section 2.1.1, dedicated to the analytical modelling of the ascending portion of the
trajectory, some coefficients were introduced.

The first coefficient, α, was introduced to linearize Equation (12), obtaining (13) and,
therefore, its integral (14). With the non-linear multiple regression method (R2 = 0.98), the
following formula for α was obtained as follows:

α =
(

1.4677·10−6Re0θ0 + 7.7412·10−3θ0 + 1.1394·10−5Re0 + 0.7516
)
·
(

2.5
p

)0.01156·Re0.4
0

(A1)

where Re0 is the Reynolds number of the droplet at the nozzle exit; θ0 is the jet angle (◦); p
is the water pressure in the nozzle (bar).

The second coefficient, φ, was introduced to transform the differential Equation (21) into
an integrable equation, whose solution (26) provided the flight time of the ascending trajectory
ttop. Also, in this case, a non-linear multiple regression was carried out (R2 = 0.96):

φ = 1.247·(cos θ0)
−0.5865·Re−0.02691

0 (A2)

Also, in Section 2.1.2, dedicated to the mathematical modelling of the descending
portion of the trajectory, some coefficients were introduced. The first coefficient, ε, was
introduced to make Equation (32) integrable, transforming it into (33), whose integral is
Equation (34). The coefficient ε was found to be almost constant with respect to the initial
Reynolds number Retop of the descending trajectory and with respect to the jet angle θ0 and
the pressure p. Therefore, its value was defined solely by a number:

ε = 0.966 (A3)

The second and third coefficients, λ and η, were introduced with equation (41) to
linearize the differential Equation (40), obtaining (42) and, therefore, its integral (43), which
provides the travel distance xend along the descending trajectory of the droplet. With the
non-linear multiple regression method (R2 = 0.99), the formulas for λ and η were obtained
as follows:

λ = 8.748·θ0.3179
0 ·

(
ln Retop

)−1.3454 (A4)

η = 0.115·θ1.4321
0 ·Re−0.3646

top (A5)



Inventions 2024, 9, 73 25 of 26

The fourth and fifth coefficients, σ and ψ, were introduced with Equation (51) to
linearize the differential Equation (39), obtaining (52) and, therefore, its integral (53), which
provides the flight time tend of the descending trajectory. With the non-linear multiple
regression method (R2 = 0.92 for σ and R2 = 0.95 for ψ), the formulas for σ and ψ were
obtained as follows:

σ = 1.2762·θ−0.2312
0 Re0.001854

top (A6)

ψ = 0.0788·θ0.3443
0 ·Re0.05992

top (A7)
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