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Abstract: Software systems are often maintained by a group of experienced software developers
in order to ensure that faults that may bring the system down are less likely. Large turnover in
organizations such as CERN makes it important to think of ways of onboarding newcomers on a
technical project rapidly. This paper focuses on optimizing the way that people get up-to-speed
on the business logic and technologies used on the project by using a knowledge-imbued large
language model that is enhanced using domain-specific knowledge from the group or team’s internal
documentation. The novelty of this approach is the gathering of all of these different open-source
methods for developing a chatbot and using it in an industrial use-case.
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1. Introduction

Onboarding newcomers is always a difficult task in the context of enterprises and
makes them lose a lot of time and precious resources. This is especially true in cases in which
the organization has a large amount of turnover due to limited-duration contracts and
constraints from the policies of the organization. Large organizations such as the European
Laboratory for Nuclear Research (CERN) are no stranger to this problem, where software
engineering talent is hired for 2–3 years, and there needs to be a constant onboarding
process at the level that the teams are responsible for.

Millions of lines of code filed with legacy code or instructions that are outdated
make the endeavor even harder when it comes to a fresh graduate that joins a software
engineering team. Guidelines become outdated or they contain too much text, meaning
that the best solutions often can lie in creative and innovative proposals. In our case, the
innovative solution is a system that can be interacted with at a more fine-grained level
and that provides informed answers to newcomers based on existing documentation. This
allows for domain knowledge not to be lost, as well as for newcomers to more easily digest
the sudden rush of new knowledge [1,2].

The software being maintained features around-the-clock usage by CERN staff and
users across the globe. Downtime in this environment is expensive and can lead to delays in
the execution of work and experiments in the accelerator complex. One practical outcome
of providing an AI-based solution that can help with domain knowledge is the rapid
responses it can give in support cases wherein some part of the system does not work
and the person might not have in-depth knowledge about what the solution could be.
Additionally, it can save the time spent on very close mentorship and onboarding, as it
can unblock newcomers without the intervention of a human if it points them in the right
direction in the documentation pages.
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2. Materials and Methods
2.1. The Literature and the State of the Art

Large language models are a topic of significant interest in the research community
revolving around artificial intelligence, as they propose significantly better performance
than any other language model that has been presented before. This is in part due to
the amount of work put into bringing the field forward: for example, for models such as
transformers [3]. Significant issues are faced when training these large artificial neural
network models, such as the need for immense datasets and impressive amounts of GPU
time needed to get them to a useful state. Recently, work has been done towards making
their training process more efficient in terms of energy [4].

A few other papers, such as the one from Balfroid et al. [5], focus on the development
of LLM-based systems that can help through code examples, as they crawl through existing
code and suggest solutions to developers.

2.2. Materials Used

In order to develop a proof-of-concept implementation of such a system, an NVIDIA
A100 GPU was provided to the team in order to develop the software implementation of
the system.

Confluence is used as the main source of data, as it holds all of the documentation
that the group uses on a daily basis. Additionally, one of the constraints of the system was
to use something that does not send the data from internal documentation over the web, so
everything needed to be hosted locally. The following is a breakdown of the key aspects of
the solution.

Target Audience: group newcomers.
Goal: ease the onboarding process for newcomers by providing them with a central

source of information and support through a chat interface.
Features:

• Chat Interface: Users interact with a chatbot that uses a sophisticated conversational
model. This model is able to answer questions and address concerns in a natural and
engaging way.

• Confluence Integration: The chatbot is linked to Confluence, which is a popular
knowledge management platform. This allows the chatbot to access and retrieve a
vast amount of information relevant to newcomers.

• State-of-the-Art Model: The project promises to utilize a cutting-edge conversational
model, ensuring users receive the most up-to-date and accurate information.

• Internal Infrastructure: To guarantee data security, the entire system, including the
chatbot model, runs on CERN’s internal infrastructure. This means no data leave
CERN’s secure network.

• Simplified Access to Information: Newcomers will not need to search through various
resources. They can simply ask the chatbot their questions and receive answers directly.

• Improved Onboarding Experience: By providing a user-friendly and informative plat-
form, the chatbot can significantly improve the onboarding experience for newcomers
to BC.

3. Implementation Details
3.1. Technology Stack and Model Selection

The project aimed to be implemented using open-source reproducible technologies as
much as possible in order to be easily used and deployed by other teams.

Then, a qualitative analysis was performed in order to choose the best ML model
that could be served from the A100 powered machine without consuming more than
the available 40 GB of VRAM available to us. Essentially, the trade-off between a large
model that gives better answers and one that can fit in the memory had to be made. There
are many different variants of open-source models available on the platform known as
HuggingFace [6].
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Additionally, a helper platform known as AlpacaEval evaluates these open-source
language models in order to make sure that the best ones are known. As seen in Figure 1,
the best “small” model, at 7B parameters, was Zephyr at the time of the implementation of
the system. Consequently, it was chosen as the model to be used in the implementation of
the pipelines. Alpaca Eval is generally a platform that has been referenced in many paper
implementations, as seen in [7,8].

Figure 1. AlpacaEval rankings.

The figure of 7B parameters means the number of neurons present in the network
and each of the weights associated with it. The preferred architectures in the open-source
community seem to favor 7 billion and 13 billion parameters as the most common model
implementations. The issue of choosing 7B over 13B is based primarily on the memory
usage of the model when evaluating a prompt. Research suggests [9] that great effort needs
to be made in order to reduce the memory usage of a 7B model to under 30 GB. Our model
A100 graphics card had an internal memory of 40 GB, and even in these situations, there
were certain prompts that triggered the application to throw an out-of-memory error. One
way of mitigating this issue is loading part of the model in the computer’s RAM, but that
leads to slower responses from the model as the GPU memory needs to be loaded in chunks
in order to process the data. One of the goals of the project was to have a model with rapid
response times, so holding all of the state in memory is desirable.

The way the tool works is by evaluating the outputs the model gives on a series
of prompts automatically. The evaluation of the answers compares the cosine similarity
between the answers produced by the model and the ideal, human-curated answers that
are provided together with the prompts. While it is not an ideal metric, it is one of the
only viable options when conducting LLM evaluation experiments that involve human
participants, which are expensive and error-prone as well as not reproducible. Running
AlpacaEval on the same model should produce very similar result every time given the
same prompts.

There are no true figures used in classical machine learning techniques, such as
precision, recall, AUC, etc., that can be used to properly evaluate the answers produced by
a model. A model may have a score of 100% for producing output as close as possible to
the prompts given because it was trained like that, but its performance in overall answer
giving based on prompts might be very weak.
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3.2. Prompt Engineering

This part is dedicated to the emerging field of “prompt engineering”. One of the main
issues with LLM-based models is they are stateless: anything that is passed to them will
be “forgotten” once something else is passed to the model. There are many approaches to
efficient prompt engineering, with existing models on the internet, like ChatGTP [10].

In order to avoid these inconveniences, the input to the model is categorized as
“system”, “user”, and “chatbot” prompts in order to give information on how the bot
should treat it. User and chatbot prompts are used in order to show what has been
previously discussed so, e.g., the model does not repeat itself. Using system prompts, we
set the context for the chatbot so that it responds in a certain manner. We also want it to
respond with links to the internal documentation, so that is also specified in the prompt.
For a key overview on how this works, you can consult Figure 2.

Figure 2. Prompt engineering flow.

To break down the process, we have the following components in the prompt:

• The system prompt: gives context to the model in order for it to know in which fashion
it should answer. The model’s responses should only be affected stylistically by the
prompt and not be used to give information to the user.

• The context prompt: this is used to inject the pieces of data that the system uses
to provide answers. The process is described in a future section, but the idea is
that the user’s input is transformed into a query that is matched against the base
of documentation provided in the system. In this way, the model can give back
“informed answers” by consulting the essential bits of documentation.

• The user prompt: this is used to concentrate the model on the question or statement
given by the user and is given in red here.

• The assistant prompt: this prompt is left empty, as the model basically acts as a smart
completion tool, filling in the hole provided after the assistant prompt, which can then
be used to display the answer to the user in the interface.

3.3. Key Processes

In order to make sure that the chatbot can be useful for onboarding, the chat model
must be prepared with the required data and have a way to properly query it based on the
input from users.

3.3.1. Documentation Ingestion and Preparation

In order for everything to make sense, a high-level diagram of the entire process of
pre-processing the data is available in Figure 3.
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Figure 3. Tokenizing documents from the Confluence REST API and storing them in a local database
for future retrieval using similarity methods.

One popular way of handling third-party data that is then fed into the context (see
context in Figure 2) is by using retrieval-augmented generation (RAG) [11]. This method
can be implemented in several ways, but it enhances the information given in the context
of the messages to the LLM based on the prompts of the user.

These data usually lie in third-party systems and need to be ingested into a so-
called vector database. This database feature has been widely focused on in the software-
engineering community, and there are more than 20 different types of commercial and
open-source solutions available [12]. This specific type of database allows for fast querying
of similar pieces of information given a prompt, which is what is then used to feed into the
context available to the chatbot. The answers should be more specific and directly related
to the questions asked. A visual representation of this process can be seen in Figure 4.

Figure 4. Fetching similar documents based on user queries.

Our database of choice for the implementation of this project is Chroma: an open-
source in-memory database that stores embeddings at the level of the file system in order to
use them easily in the future. Together with the popular LangChain library integration that
it provides, it gives a simple method for developing an LLM-based solution rapidly [13].

However, the documentation of the group must first be obtained and processed at
the batch level. In order to simplify the ingestion process, a command line tool has been
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implemented such that each individual confluence space can be extracted, dumped in
memory, and stored as vector embeddings. The command line tool’s usage is explained in
Figure 5.

Figure 5. Confluence command line document extraction tool.

Once the documentation is transformed into the proper embedding structure for fast
lookups (we use TF-IDF as the method for searching in the document database), user
queries are transformed into the same representation. The top K documents retrieved
(where K is a configuration parameter for the application) are returned and are fed into the
context of the future prompt passed to the model. A visual explanation of the process is
provided in Figure 4.

3.3.2. Memory

As previously discussed, the model is a stateless entity, so nothing from previous
user conversations can be remembered. To this end, there was a need to implement a sort
of persistent storage for each of the users’ sessions. In order to rapidly implement this
solution, the output from each of the answers of a user is then passed as input using the
<assistant> or <user> prompts so that the model obtains some context.

When a new conversation begins, Redis is used as a fast in-memory backend that maps
from the unique key consisting of the concatenation of username:unique-conversation-id
to the list of messages that are produced as the conversation moves along. The number
of previous messages that are passed to the model as context is configurable in order to
avoid having a context window that is larger than what can fit in the memory of the GPU
at runtime.

3.3.3. Back-End and Deployment

The code uses the ray serve library in order to run the GPU application in a separate
container, which can be then deployed to any different machine in a cluster transparently
without any prior knowledge from the developers [14].

The library presents itself as a “model serving library”, which is a new concept in the
community, as generally applications have been the only kind of entities that have been
served. The back-end of the application is implemented using FastAPI [15], allowing for
rapid development of highly scalable asynchronous APIs that benefit from all the latest
developments in the Python programming language, such as type safety using typings.

The user interface is a small wrapper behind the CERN SSO that allows users to
interact with the back-end, which, in turn, talks to the Ray serve model. It is implemented
in React and Typescript using Tailwind CSS for the styling of the user interface, allowing
for such features as a dark/light mode.

An example of the entire flow from the perspective of a user interacting with the
application can be seen in Figure 6.
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Figure 6. Application code flow.

4. Results and Discussion

Once the prototype was populated with the ingested data and the user interface was
created, some tests were performed in order to be able to validate the actual performance
of the implementation and the retrieval abilities of the model used in the pipeline.

A few different model evaluation metrics are:

• Memory: Can the model recall bits and pieces from previous points in the conversation?
• Context: Does the model provide good information based on the queries? Are the

relevant articles retrieved so that the user is pointed to the right corner of the inter-
nal documentation?

• Accuracy: Is the correct information given back to the user? Does the response make
sense for a given query?

In order to address the point about context, a few different queries were used in order
to gauge the responses received from the model. An initial query is “can you tell me how
to install EDH?”. For context, this is an internal application specific to the CERN Business
Computing group that is complex to set up on a new developer’s machine. The visual
output in the tool can be seen in Figure 7.

Fortunately, the link provided by the chatbot linking to the internal documentation
was correct, which enabled us to validate the first point, where the context is properly
retrieved together with the URLs corresponding to the right part of the documentation
where the user should look.

Figure 7. Instructions for installing an internal software application.
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In order to evaluate the memory implementation, one needs to refer to previous
aspects of a conversation to see if the chatbot replies in the expected way by referencing the
context passed from the previous messages. In Figure 8, we see how a certain query is used
in order to ask for a naming convention.

Figure 8. Memory: providing a query.

Figure 9 then shows what happens when the model is asked again “based on the
previous information” to provide some more details. The expected outcome happens in
this case as well, where the model uses the chat history in order to respond properly, using
the additional context as well.

Figure 9. Memory: receiving answers based on previous context.

One of the main issues that these models face is the problem of hallucination. While it
can be mitigated in some ways [16], it is still a major problem and needs to be something to
be taken into account when newcomers use the tool in order to ask for various information
that the system has too little context information about. The prompt used is also an
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important aspect here, as it might “force” the model to not improvise answers when it does
not know them. The biggest danger here is that the information appears factual but has no
real basis.

A study on hallucination mitigation techniques by Tonmoy et al. [17] lays down some
possible approaches to mitigate situations in which a model hallucinates, including:

• Retrieval-augmented generation (RAG): This is a method that is already used in
the implementation of our chatbot, as one of the main goals of the implementation
was to help with domain-specific knowledge when newcomers onboard. However,
we use the method of searching in a database of existing knowledge to provide
context (knowledge retrieval), but there are a few more other techniques that could
be explored:

– LLM augumentor—small modules inside an LLM architecture are tuned for a
specific task.

– High-entropy word spotting and replacement—words that have a high entropy
(meaning they occur many times in the text) are replaced by synonyms in order
to get better answers from the model.

– Decompose and query—a technique in which the prompt is decomposed into
sub-queries that are each treated separately by the model in order to have more
pin-point answers.

• Self-reflection: This is a technique assessed by Renze and Guven [18] that tries to
use the same process that humans do when self-reflecting. A prompt such as “solve
this problem, walk me through the steps”, might have a more accurate response than
“solve this problem”, as it seems the model course-corrects in the middle of the text
generation process by using the previous steps it described.

• More advanced implementations like ChatProtect, which allow the identification of
the individual sentences where the model self-contradicts and re-generates those
sentences for the answer to be more consistent [19].

In the case of our implementation, the model’s biggest weakness is the hallucination
and fake responses it gives sometimes. Even with a “creativity” parameter of 0 passed to
the model, one can still randomly see some answers that contain fake links or data that are
wrong. This is why cross-checking any answers provided by a machine learning model like
an LLM is truly important. An example of a hallucination answer is shown in Figure 10.
We see that the model is inventing information about certain teams that do not exist (the
highest number it should show is PSS5).

Nevertheless, this solution provides a good starting point for newcomers based on our
needs and the feedback received from colleagues using the tool in their day-to-day work.
Our group consists of around 70 software engineers, and most of them have experimented
with the solution and did not raise any significant red flags or downsides to using it as an
onboarding assistant. Developers should use this as a secondary tool to ask questions about
certain processes or code that they are unfamiliar with in their journey towards becoming a
more productive developer through the group’s onboarding processes.

General product- or tool-related questions were answered with a reasonable degree of
accuracy, as were some more complex queries that required some reasoning, such as the
way of implementing a certain feature using an internally developed framework.

Some other questions such as “provide me with a starting point for monitoring a
new application I am developing” were answered with generic information that could be
found on the web but with correct links towards tutorials or guides written within the
documentation. The absolute accuracy of the answers is not an important metric for our
onboarding usage, as it is supposed to reply with links leading to documentation written
by human developers, avoiding the need to do as much back and forth between newcomers
and engineers who are investing their time on actively developing tools and products.
More is covered on this topic as well as the time that can be saved in the Potential Impact
Evaluation subsection.
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Figure 10. Hallucination in the context of not enough information.

In terms of raw numbers, CERN provides a personnel statistics report published every
year, which helps gauge the usefulness of such an LLM-based solution for onboarding.
Only around 33% of the staff population is on indefinite contracts, meaning that knowledge
could potentially be lost in the organization when the contracts of the other two-thirds of
the personnel end. See Figure 11 for an overview of the previous few years.

Figure 11. Evolution in the proportion of staff members by type of contract over the last 5 years.
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Potential Impact Evaluation

In order to have actionable KPIs within the group, developers working on various
features and projects are asked to log their time spent using Jira. This allows product
managers and product owners to track the state of a project at any given time, permitting
them to act on the data provided by Jira. Power BI is used as the underlying technology in
order to display the aggregated information based on the user filters.

However, not all work done by developers can be quantified as product work: there
are plenty of non-product activities to be done on a day-to-day basis, so even though the
trend is to log most of one’s time doing specific tasks, several “bucket tasks” are created in
order to accommodate this.

Onboarding, given the high turnover in the organization, uses a significant amount of
the time logged into bucket tasks. In their first months, newcomers take part in a buddy
system: meaning that another, more-experienced member of the team becomes the mentor
of the newcomer. This works quite well, but it means that complex questions need to be
answered in a dedicated manner by the mentor. They log all this time spent onboarding
into a category named, generically, “BC task”.

Looking at data collected in the Power BI report (in Figure 12) from the past quarter,
we can see that around 14% of the time spent during the quarter was logged as “BC task”,
while the rest was split between product work and learning, innovation, and development.

We estimate that around 25% to 30% of the time spent by a mentor will be spent on
helping with onboarding activities during the first few sprints of development. Naturally,
this kind of activity does not need to be performed every quarter, but if we remove these
estimates from the BC task, we are left with a large amount of days to be used.

Figure 12. Distribution of days worked across a quarter.

By taking into account the data computed in Table 1, we can see that there is a signifi-
cant potential for days of work gained over a quarter if most/all onboarding questions are
offloaded to the chat AI implementation: gaining almost an entire person-month of work
over a quarter.

Being a bit more conservative by saying that around 15% of the time spent (131 days)
will be offloaded to the chatbot, we still gain almost 20 days of productive work for the
mentor that is supposed to do this job.
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Table 1. Potential days gained by replacing mentorship tasks with a chatbot solution.

Time Spent Onboarding Potential Days Gained

30% 39.3
25% 32.75
15% 19.65

5. Conclusions

We feel that this system can be replicated safely using the instructions and technology
stack provided, allowing for various sources of data to be ingested and used for future
reference. Security is paramount to the solution, in our eyes. As such, none of the network
traffic for interacting with the model leaves the CERN network, eliminating fears of data
leaks or passwords being sent over the network.

Additionally, the work done for this manuscript can be used as a baseline for develop-
ing future LLM solutions, as it provides a summary of many techniques used to reduce
hallucination, what a pipeline of processing for the users’ prompts might look like, as well
as a proof of the usefulness of such a solution in an environment outside of academia.

Lastly, the potential gains in terms of person-hours obtained from this solution would
certainly ease the load on a team that is potentially overrun by requests or ad hoc changes
and does not have time to dedicate to onboarding a newcomer.
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