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Abstract: This study developed a risk assessment tool for contract capacity optimization problems
using the ant colony optimization and auto-regression model. Based on the historical data of demand
consumption, the Least Square algorithm, the Recursive Levinson–Durbin algorithm, and the Burg
algorithm were used to derive the auto-regression model. Then, ant colony optimization was used
to search for the auto-regression model’s best p-order parameters. To avoid the risk of setting the
contract capacity, this paper designed the risk tolerance parameter β to correct the predicted value of
the auto-regression model. Ant colony optimization was also used to search for the optimal contract
capacity with risk assessment under the two-stage time-of-use and three-stage time-of-use. This study
employed an industrial consumer with high voltage power in Taiwan as the research object, used
the AR model to estimate the contract capacity under the risk assessment, and cut back electricity
usage to reduce the operation cost. The results can be used as a basis to develop an efficient tool for
industrial customers to select contract capacities with risks to obtain the best economic benefits.

Keywords: ant colony optimization; auto-regression; contract capacity; risk assessment

1. Introduction

In Taiwan, the rapid economic growth and development of various industries have
resulted in high utility load demands [1,2]. A significant amount of investment is required
in utility power apparatus to consistently meet peak load demands. However, peak
demand periods often cause power outages in summer, especially when the demand
and supply are insufficient, thus resulting in serious economic losses. Investments in
utility power apparatus must be carefully planned to arrive at an acceptable solution. For
industrial customers, stable power supply and low electricity prices are important factors
for evaluating construction and expansion. Signing a contract capacity helps industrial
customers effectively control power consumption and reduce the electricity costs of their
enterprises [3,4].

The current electricity tariff structure of the Taiwan Power Company (TaiPower, Tai-
wan) in Taiwan is composed of a basic electricity charge, energy charge, over-contract
surcharge, and power factor adjustment plus or minus charge [5]. The contract capacity
is used as the basis for calculating the basic electricity charge. TPC prepares the supply
power according to the contract capacity and requires users to use power according to the
contract capacity in order to ensure the power supply security of the power system. Power
companies often propose a variety of different power consumption plans [6], allowing
users to maintain lower electricity costs. Signing contracts on capacity, where users pay
for electricity according to the contracted capacity, can help avoid penalty charges. It
must be noted, however, that customers need to obtain an economic tariff to reduce their
electricity charge and that they must carefully plan the contract capacity appropriated to
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avoid penalty charges or overestimated contracts. Therefore, forecasting contract capacities
plays a significant role in saving electricity costs [7].

Previous studies on optimal contract capacity have mostly focused on the histori-
cally high demand to obtain the optimal setting value of future contract capacity. In [8],
Evolutionary Programming (EP) was used to solve the optimal contract capacity of indus-
trial users during peak, semi-peak, and off-peak periods. Previous studies used particle
swarm optimization (PSO) to find the optimal contract capacity for time-of-use (TOU) rate
customers [9] and the stochastic search algorithm to optimize the contract capacities of
the TOU rate for industrial customers [10]. An optimized structure was also proposed to
predict contract capacities by combining an artificial bee colony and an artificial neural
network [11]. Moreover, statistical and optimization tools were used to obtain the cost opti-
mization of contract capacities for high-energy rate customers [12]. Linear programming
was proposed to determine electricity contract capacities while using lesser computation
time [13]. Planning power consumption schedules were utilized to ensure users’ optimal
contract capacity setting value [14]. Additionally, several loss functions were derived from
the asymmetric electricity pricing structure to determine the optimal capacity for indus-
trial users [15]. This paper presents an iteration particle swarm optimization to solve the
optimal contract capacities of a time-of-use (TOU) rate industrial customer [16]. Ref. [17]
proposed an improved Taguchi method that combined the existing Taguchi method and
particle swarm optimization (PSO) algorithm to solve the contract capacity setting for
industrial consumers. Ref. [18] provided several solutions for entrepreneurs based on
the implementation of two-stage and deep learning approaches to predict maximal load
values and the moments of exceeding the contracted capacity in the short term. Most of
the research data in the above studies were obtained from the evaluation of the optimal
contract capacity based on the highest demand. Since the power demand of industrial
users varies greatly, the prediction of future power demand information is often inaccurate.
The common disadvantage of the methods described includes profit changes due to power
demand uncertainties. Risk is introduced to the fixed commitment contract and the fore-
cast contract in the electricity supply chain [19,20]. With risks expected in setting relative
contract capacities, addressing uncertainties is a key issue in investigating this topic [21]
that merits a deeper discussion of both utilities and customers.

This paper intends to propose a risk assessment tool for the contract capacity optimiza-
tion problem using ant colony optimization (ACO) [22,23] and the auto-regression (AR)
model. Based on the historical data of demand consumption, the Least Square algorithm
(LS) [24], the Recursive Levinson-Durbin (RLD) [25] algorithm, and the Burg algorithm
(BA) [26] were used to derive the AR model. Then, ACO was used to search for the AR
model’s best p-order parameters. To avoid the risk of setting the contract capacity value,
this study designed the risk tolerance parameter β to regulate the predicted value of the
AR model. ACO was also used to search the optimal contract capacity with risk assess-
ment by considering the risk tolerance parameter β [27,28]. This study used an industrial
consumer as the research case, employed the AR model to estimate the contract capacity,
and considered the risk assessment when calculating the optimal contract capacity under
the two-stage TOU and three-stage TOU models. The proposed algorithm was tested by
a practical high-voltage consumer to prove its efficiency. The findings of this study can
serve as a basis for developing an efficient tool for industrial customers in selecting contract
capacities with risks in order to maximize economic benefits.

2. Problem Formulation

The electricity price announced by TaiPower [5] for industrial users applied the TOU
rate, which is divided into two-stage and three-stage types, as shown in Table 1. The total
electricity bill is the summation of the energy charge, contract capacity charge, and penalty
charge. In the case of over-contract capacity, the power company’s handling method is
composed of three levels [5].
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1. If the monthly electricity demand is equal to or less than the contracted capacity, the
charge will be based on the contracted capacity, which is called the demand charge.

2. If the monthly electricity demand is greater than the contracted capacity, and the
excess part is less than 10% of the contracted capacity, the excess part is penalized by
two times the demand charge.

3. If the monthly electricity demand is greater than the contracted capacity, and the
over-contract reaches more than 10% of the contracted capacity, the excess part is
penalized by three times the demand charge.

Table 1. The TOU rate structure of industrial users.

Type
Demand Charge (NT/KW)

Summer Month Non-Summer Month

Two-stage
TOU rate

Peak contract 223.6 166.9

Off-peak contract 44.7 33.3

Three-stage
TOU rate

Peak contract 223.6 166.9

Semi-peak contract 166.9 166.9

Off-peak contract 44.7 44.7

2.1. The Contract Capacity Optimization in the Three-Stage TOU

Contract capacity optimization in the three-stage TOU minimizes the sum of the
annual contract capacity charge and penalty charge under the load demand. The objective
function is described as follows.

Min. TDC =
12

∑
i=1

[BAS i(CP, CM, CO) + OVERi(DP i, DMi, DOi)] (1)

BASi(CP, CM, CO) = PBi × CP + MBi × CM + OBi × [CO − (CP + CM)× 0.5] (2)

OVERi(DP i, DMi, DOi) = ODPi + ODMi + ODOi (3)

The over-contract part must be calculated according to the over-contract amount of
each time period. Over-contracting for each time period is expressed as follows.

The formula when exceeding the contract during peak periods and exceeding the
contract penalty is described in Equation (4).

OCPi = DPi − CP if ODPi < 0 else OCPi = 0

ODPi =


0 when OCPi ≤ 0
2×OCPi × PBi when 0 < OCPi

CP ≤ 0.1
[2 × 0.1× CP + 3× (OCP i − 0.1× CP)]× PBi when OCPi

CP > 0.1

(4)

The formula when exceeding the contract during semi-peak periods and exceeding
the contract penalty is described in Equation (5).

ODMi =


0 when OCMi ≤ 0
2×OCMi ×MBi when 0 < OCMi

CM ≤ 0.1
{2 × 0.1× (CP + CM) + 3×
[OCM i − 0.1× (CP + CM)]} ×MBi when OCMi

CM > 0.1

(5)
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The formula when exceeding the contract during off-peak periods and exceeding the
contract penalty is described in Equation (6).

ODOi =


0 when P ≤ 0
2×Q×OBi when 0 < P ≤ 0.1
{2 × 0.1× R + 3× [Q − 0.1× R]} ×OBi when P > 0.1

P =
OCOi−max(OCP i,OCMi)

CP+CM+CO
Q = OCOi −max(OCP i, OCMi)
R = CP + CM + CO

(6)

BASi(CP, CM, CO) is the demand charge for the contracted capacity during the i− th
month (NT). OVERi(DP i, DMi, DOi) is the penalty charge for over-contract usage during
the i− th month (NT). CP, CM, CO are the contracted capacities for peak, half-peak, and off-
peak demands (kW). DPi, DMi, DOi are the peak, semi-peak, and off-peak peak demands
during the i− th month (kW). PBi, MBi, OBi are the peak, semi-peak, and off-peak contract
fees during the i− th month (kW). OCPi, OCMi, OCOi are the peak, semi-peak, and off-peak
capacities exceeding the contract during the i− th month (kW).ODPi, ODMi, ODOi are the
over-contracting penalties for peak, semi-peak, and off-peak demands during the i− th
month (NT).

2.2. Contract Capacity Optimization in the Two-Stage TOU

The contract capacity optimization in the two-stage TOU is described as follows:

Min. TDC =
12

∑
i=1

[BAS i(CP, CK, CO) + OVERi(DP i, DKi, DOi)] (7)

BASi(CP, CK, CO) = PBi × CP + OBi × [CO − (CP + CK)× 0.5] (8)

OVERi(DP i, DKi, DOi) = ODPi + ODKi + ODOi (9)

The calculation of the over-contract amount and over-contract penalty for each time
period is described as follows:

The formula when exceeding the contract during peak periods and exceeding the
contract penalty is described in Equation (10).

OCPi = DPi − CP if ODPi < 0 else OCPi = 0

ODPi =


0 when OCPi ≤ 0
2×OCPi × PBi when 0 < OCPi

CP ≤ 0.1
[2 × 0.1× CP+
3× (OCP i − 0.1× CP)]× PBi when OCPi

CP > 0.1

(10)

The formula when exceeding the contract during off-peak periods and exceeding the
contract penalty is described in Equation (10).

OCOi = DOi − (CP + CO) if OCOi < 0 else OCOi = 0

ODOi =



0 when A ≤ 0

2×A×OBi when 0 < A ≤ 0.1

{2 × 0.1× (CP + CO) + 3×
[B − 0.1× (CP + CO)]} ×OBi when A > 0.1

(11)

where BASi(CP, CK, CO) is the demand charge for the contracted capacity during the i− th
month (NT). OVERi(DP i, DKi, DOi) is the penalty charge for over-contract usage during
the i− th month (NT). CP, CK, CO are the contracted capacities for peak, half-peak, and
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off-peak demands (kW). DPi, DKi, DOi are the peak, semi-peak and off-peak peak demands
during the i− th month (kW). PBi, OBi are the peak and off-peak contract fees during
the i− th month (kW). OCPi, OCOi are the peak and off-peak capacities exceeding the
contract during the i− th month (kW). ODPi, ODOi are the over-contract penalties for peak,
semi-peak, and off-peak demands during the i− th (NT).

3. Solution Algorithm

This paper used the ant colony algorithm to find the best p-order parameter of the
AR model and designed the risk tolerance parameters to correct the predicted value of
the contract capacity. The uncertain value generated by the specified method ensures the
reliability of the optimal contract capacity.

3.1. AR Model

The AR model is one of the most employed time series models. When the series value
is composed of the time series value and noise, it is expressed as shown in Equation (12).

AR(P) = Xt = a1Xt−1 + a2Xt−2 + . . . + apXt−p + εt (12)

aj= [a1, a2, . . . , ap
]T is the Xt sequence value coefficient, and {εt} is the noise strength

of sequence values. AR(p) is the p-order autoregressive model. Three algorithms, including
LS, RLD, and BA, are used to construct the AR prediction model. The training error value
of the AR model is expressed as shown in Equation (13).

ARerror =
1

M×N

M

∑
j=1

N

∑
i=1

∣∣∣∣∣∣
Xi

j − xi
j

Xi,max
j − xi,min

j

∣∣∣∣∣∣ (13)

ARerror is the training error value of the AR model. M is the sequence data of the
electricity consumption type. N is the length of the electricity consumption sequence data.
X represents the original sequence data. x represents the regression data of the AR model,
and Xi,max

j is the maximum training value in the i-sequence data. xi,min
j is the minimum

value in the i-sequence training data. The test error value of the AR model is expressed as
shown in Equation (14).

Testerror =
1

m× n

m

∑
j=1

n

∑
i=1

∣∣∣∣∣∣
Xi

real,j − xi
ar,j

Xi,max
real,j − xi,min

real,j

∣∣∣∣∣∣ (14)

Testerror is the test error value of the AR model. m represents the sequence data of
the power consumption type. n is the length of power consumption sequence data. Xreal
represents the actual data, and xar represents the sequence data of the AR model prediction
data. Xi,max

real,j is the maximum value in the tested i-sequence data, and Xi,min
real,j is the minimum

value in the tested i-sequence data.

3.2. ACO Algorithm

ACO applies the activity characteristics of biotic populations to optimization
problems [17,18]. When ants forage, they refer to their own information and learn from
the best individual in the group. The information they learned is utilized to search for the
shortest route between their colony and food sources, and the information is also exchanged
within the colony until the entire population reaches a better condition. The advantages
of the ACO algorithm lie in the fact that individual solutions within a range of possible
solutions can converge to create a better solution through evolution iterations. ACO is
optimal for global search and has been applied to solve optimization problems. This paper
uses ACO to search for the best p-order parameter, allowing the AR model to predict more
accurately. The procedure of the ACO application is described as follows.
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1. Input historical data, including the highest demand, peak load, semi-peak load, off-
peak load, and power factor.

2. Set the parameters of ACO.

The parameters of ACO include the population of ants (k), the number of generations
(G), the initial pheromone (τ0 = 0.1), the relative influence of the pheromone trail (α = 1),
the relative influence of the heuristic information (β = 2), and the pheromone evaporation
rate (ρ = 0.5).

3. Initialize individuals.

Let <i
t =

{
Xi

t

}
be an individual, where i = 1, 2, . . ., k. k is the number of ants and is set

to 30 in this paper. s is the number of parameters. All individuals are set between the lower
and upper limits with a uniform distribution, as shown in Equation (15).

<i
t = <i

t, min + Rand∗(<i
t,max −<i

t,min

)
(15)

Rand: the uniform random number in (0,1).
The fitness score of each <i

t is obtained by calculating the fitness function. The fitness
function is calculated using Equation (16).

Min. Error = 0.5×ARerror + 0.5× Testerror (16)

4. Apply the state transition rule.

The ants’ generated state is based on the level of the pheromone and constrained
conditions. Based on the concept of this multi-stage process, the search space of the
operational dispatch problem can be established. The transition probability for k− th from
one state s to the next j is at the t− th interval given in Equation (17).

Pk
t,sj(g) =


[τt,sj(g)]

α×
[
ηt,sj

] β

∑
l∈Nk

t (s)
[τt,sl(g)]

α×[ηt,sl]
β , if j ∈ Nk

t (s)

0 , others

(17)

ηi,sj(g) and ηi,sl(g) are the inverse of the edge distance at the g− th generation, which
are expressed as Equations (18) and (19).

ηt,sj =
1∣∣Error(<t,s)− Error(<t,optimal)

∣∣ (18)

ηt,sl =
1

|Error(<t,s)− Error(<t,l)|
, l ∈ Nk

t (s) (19)

Error(<t,s) and Error(<t,l) are the scores of the s− th individual and l− th individual
at the t− th interval, while Error(<t,joptimal) is the optimal fitness score at the t− th interval.
Nk

t (s) is the number of feasible individuals at the t− th interval.
τt,sj(g) and τt,sl(g) are the pheromone intensities on edge (s, j) and edge (s, l) at the

g− th generation. Ant k positioned at state s chooses the next state to move, taking τt,sl
and ηt,sl into account. When the value of τt,sl increases, a lot of traffic occurs on this path;
thus, it is more desirable to reach the optimal solution. When the value of ηt,sl increases, it
implies that the current state should have a higher probability. Each stage contains several
states, while the order of state selected at each stage can be combined as an achievable path
that is deemed a feasible solution to the problem.
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5. Update the pheromone.

While building a solution to the problem, the pheromone of the visited path can
be dynamically adjusted by employing Equation (20). This process is called the “local
pheromone-updating rule”.

τk+1
t,sj = (1− ρ)τk

t,sj + ∆τk
t,sj (20)

ρ is the constant of pheromone intensity (0 ≤ ρ ≤ 1) and ∆τk
t,sj is the deviation of

pheromone intensity on the edge (s, j) at the t− th interval, as shown in Equation (21):

∆τk
t,sj =

{
Q/ek

t,sj , the path(s, j) for k− th ant
0 , other

(21)

Q is the released rate of the pheromone (0 ≤ Q ≤ 1) and ek
t,sj is the path error (s, j) for

the k− th ant.

6. If a pre-specified stopping condition is satisfied, stop the run and output the results;
otherwise, return to Step 4. In this study, the stopping rule is set to 100 generations.
Figure 1 shows the flow chart for searching the optimal p-order by ACO.
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This paper proposes the use of ACO to solve the best p-order of the AR model. ACO
is used to generate offspring in order to escape from the local optimum and to improve
searchability.

3.3. Optimal Contracts with Risk

According to the power consumption habits of general contract users, the electricity
bill in the three-stage TOU accounts for about 46.153% of the total electricity bill, and that
in the two-stage TOU accounts for more than 66.865% of the total electricity bill. Therefore,
it is an important decision-making factor to search for the optimal contract capacity in the
context of managing the risks of “monthly peak demand” and “peak power consumption”.
In this case, a strategy evaluation using risk assessment is expected to effectively reduce
the degree of risk.
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In this paper, the AR model prediction error of “monthly peak demand” and “peak
power consumption” was used as follows:

Verror,max = Xi
real,max − xi

ar,max (22)

Verror,p = Xi
real,p − xi

ar,p (23)

Verror,max is the error risk value of monthly peak demand, Verror,p is the error risk
of peak power consumption. xi

real,max represents the real data of monthly peak demand.
xi

ar,max represents the forecasting data of monthly peak demand. xi
real,p represents the real

data of peak power consumption and xi
ar,p represents the forecasting data of peak power

consumption. By considering the risk assessment, the AR model of monthly peak demand
and peak power consumption is corrected, as shown in Equations (24) and (25):

Vest_xi
AR,max = xi

AR,max + xi
AR,max ×Vi

error,max (24)

Vest_xi
AR,p = xi

AR,p + xi
AR,p ×Vi

error,p (25)

Vest_xi
AR,max and Vest_xi

AR,p are the monthly peak demand data and the peak power
consumption data predicted by the AR model, respectively. According to this model,
the risk tolerance parameter β is added to simulate and analyze the absolute error risk
assessment of the optimal contract capacity due to the forecast fluctuation of monthly peak
demand and peak power consumption, as shown in Equations (26) and (27).

Vest_xi
AR,max = xi

AR,max + β
∣∣∣xi

AR,max ×Vi
error,max

∣∣∣ (26)

Vest_xi
AR,p = xi

AR,p + β
∣∣∣xi

AR,p ×Vi
error,p

∣∣∣ (27)

As far as optimizing the contract capacity is concerned, users have to face the risk of
punishment if the contract capacity is too small or wasting basic electricity charges if the
contract capacity is too large. The size of the risk tolerance parameter β can be determined
according to the preferences of the electricity users. If they choose a smaller risk, the value
of the risk tolerance parameter β must be increased. On the other hand, if the electricity
consumers could accept high risks and seek the minimum total annual electricity fee, the
value of the risk tolerance parameter β could be reduced to a value close to zero. Therefore,
different β values were compared to different transaction expectations.

This study probed into whether the risk tolerance parameter β could allow electricity
companies to maximize the minimum annual contract capacity when the risk tolerance
parameter β is set in the range of [0 0.5 1 2]. The total electricity cost and risk value have a
specific assessment and create the best allocation between electricity consumption and risk.

4. Case Study

The proposed algorithm was tested for an industrial consumer with high voltage
power in Taiwan as the research object. Subsequently, historical data, including the monthly
peak demand and peak power consumption, were collected from 2013 to 2021. Several tests
in two-stage TOU and three-stage TOU were conducted. The simulation was implemented
with MATLAB on an Intel(R) Core(TM) i5-7300HQ CPU computer (Taipei, Taiwan) with 16
GB RAM.

4.1. The Best p-Order of the AR Model

Table 2 shows the results of different AR models. Based on the table, BA is used to
construct the AR model with the best 17th-order in the two-stage TOU. Its best fitness
function value is 0.1556 via ACO. In the three-stage TOU, the Burg algorithm is used
to construct the best 16th-order of the AR model, and its best fitness function value is
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0.124 via ACO. Regardless of whether it is the two-stage TOU or three-stage TOU, the
fitness value of the BA is the lowest.

Table 2. The results of different AR models.

AR Model LS RLD BA

Two-stage TOU
Best fitness value 0.2271 1.6794 0.1556

Best p-order 3 3 17

Three-stage TOU
Best fitness value 0.1564 1.4342 0.124

Best p-order 11 3 16
LS: Least Square algorithm RLD: Recursive Levinson–Durbin algorithm BA: Burg algorithm.

Table 3 shows the prediction errors of peak demand with the best p-order AR model.
As seen, BA has fewer errors when predicting peak demand; hence, it performs better than
other algorithms in different TOU stages. Figure 2 shows the curves of the predicting error
with the BA. Based on this figure, the predicted peak demand of BA is close to the real
values. It can be observed that BA has the capability to follow the spikes, as shown in
Figure 2.

Table 3. The predicting errors of peak demand.

LS RLD BA

Two-stage TOU 0.1835 0.1963 0.181

Three-stage TOU 0.188 0.2388 0.1753
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The test errors of the peak demand and peak power consumption in the two-stage
TOU and peak power consumption in the three-stage TOU are shown in Figure 3. Most of
the prediction errors are within ±15%. Some examples of peak power consumption are
higher than 30%, implying that the risk is relatively high.
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4.2. Optimal Contract Capacity with Risk Assessment

In this paper, the risk tolerance parameters β = 0, 0.5, 1, and 2 were used to carry out
the risk correction on the predicted values of peak demand and peak power consumption
using the ACO. According to the actual data of the industrial customer, the highest demand
was 2640 kW, the peak power consumption of the two-stage TOU was about 532,400 kWh,
and the peak power consumption of the three-stage TOU was about 256,800 kWh. As
indicated in Figure 3, there are several prediction errors, and the peak power consumption
is higher than 30%. Therefore, the predicted value can be corrected using the risk tolerance
parameter β to avoid the distortion of the evaluation of the optimal contract capacity,
as shown in Tables 4 and 5. Based on these tables, the peak demands of risk β in June
corresponding to 0, 0.5, 1, and 2 were 2479 kW, 2586 kW, 2693 kW, and 2907 kW, respectively.
This finding shows that a higher risk leads to a higher peak demand.

Table 4. The correct value for risk tolerance parameters β = 0 and 0.5.

Mon.

Risk Tolerance Parameter β = 0 Risk Tolerance Parameter β = 0.5

Peak
Demand

(kW)

Peak Power
Consumption in the

Two-Stage
TOU (kWh)

Peak Power
Consumption in the

Three-Stage
TOU (kWh)

Peak Demand
(kW)

Peak Power
Consumption in the

Two-Stage
TOU (kWh)

Peak Power
Consumption in the

Three-Stage
TOU (kWh)

1 2354 376,454 0 2480 444,500 0
2 2438 372,051 0 2441 393,710 0
3 2435 471,770 0 2470 493,438 0
4 2425 439,122 0 2432 442,707 0
5 2482 464,607 0 2501 497,444 0
6 2479 499,710 229,581 2586 584,304 271,157
7 2472 484,632 216,595 2475 517,506 232,573
8 2446 454,996 240,824 2468 484,832 245,495
9 2456 439,207 223,298 2471 475,202 233,492

10 2490 448,799 0 2516 453,654 0
11 2435 469,868 0 2437 508,964 0
12 2383 423,714 0 2444 437,563 0

Table 6 shows the optimal contract capacity, the annual electricity fee, and the risk
fee among the various risk tolerance parameters. When the risk tolerance parameter is
β = 0, the optimal contract capacity in the two-stage TOU is 2490 kW, and the annual
electricity fee is NT 30,628,554. In the three-stage TOU, the optimal contract capacity is
also 2490 kW, and the annual electricity fee is reduced to NT 26,921,278. Therefore, if the
industrial customer chooses to sign the three-stage TOU, the annual electricity bill would
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be cheaper, and the electricity bill expenditure of NT 3,707,276 could be reduced. When the
risk tolerance parameter β is larger, the optimal contract capacity, the annual electricity fee,
and the risk fee also relatively increase.

Table 5. The correct value for risk tolerance parameters β = 1 and 2.

Risk Tolerance Parameter β = 1 Risk Tolerance Parameter β = 2

Peak
Demand

(kW)

Peak Power
Consumption in the

Two-Stage
TOU (kWh)

Peak Power
Consumption in the

Three-Stage
TOU (kWh)

Peak Demand
(kW)

Peak Power
Consumption in the

Two-Stage
TOU (kWh)

Peak Power
Consumption in the

Three-Stage
TOU (kWh)

1 2606 512,546 0 2858 648,639 0
2 2444 415,368 0 2451 458,685 0
3 2505 515,106 0 2575 558,442 0
4 2439 446,292 0 2454 453,462 0
5 2521 530,282 0 2560 595,957 0
6 2693 668,897 312,732 2907 838,085 395,884
7 2478 550,380 248,551 2483 616,127 280,507
8 2489 514,668 250,167 2531 574,340 259,510
9 2487 511,198 243,687 2518 583,190 264,076

10 2542 458,510 0 2595 468,220 0
11 2440 548,059 0 2445 626,250 0
12 2505 451,412 0 2628 479,110 0

Table 6. The optimal contract capacity, the annual electricity fee, and the risk fee are among the
various risk tolerance parameters.

Risk Tolerance Parameter β 0 0.5 1 2

Two-stage TOU
Optimal contract capacity (kW) 2490 2517 2543 2629

Annual electricity fee (NT) 30,628,554 32,000,388 33,392,153 36,170,824
Risk fee (NT) 0 1,371,834 2,763,599 5,542,270

Three-stage TOU
Optimal contract capacity (kW) 2490 2517 2543 2596

Annual electricity fee (NT) 26,921,278 27,389,354 27,861,247 28,822,094
Risk fee (NT) 0 468,076 939,969 1,900,816

Table 6 provides the planners with a wider range of alternatives, showing the effects
of various risk tolerance parameters. Instead of using maximal allowable limits for risk
as constraints, an appropriate strategy can be chosen to meet the desired level of risk and
electricity fee.

4.3. Comparison of the Optimal Contract Capacity with/without Risk Tolerance

Table 7 shows the comparisons of the optimal contract capacity with/without risk
tolerance. Based on the table, the optimal contract capacity with the risk tolerance parameter
β = 1 is 2543 kW both in two-stage and three-stage time TOUs, which is closest to the
optimal contract capacity (2552 kW).

Table 7. Risk tolerance parameter β and optimal contract capacity.

Risk Tolerance Parameter β 0 0.5 1 2 Optimal
Contract

Two-stage
TOU

Optimal contract (kW) 2490 2517 2543 2629 2552
Annual electricity fee (NT) 30,628,554 32,000,388 33,392,153 36,170,824 24,663,585

Three-stage
TOU

Optimal contract (kW) 2490 2517 2543 2596 2552
Annual electricity fee (NT) 26,921,278 27,389,354 27,861,247 28,822,094 24,084,557

Building from the above methods and problem case tests, this paper recommends
the application of ACO to determine the BA with the best p-order parameters to predict
the optimal contract capacity and correct it with the risk tolerance parameter β = 1. The
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predicted value of the AR model is applied to the calculation of the contract capacity by
applying ACO, and the optimal contract capacity and the total electricity fee are obtained.

5. Conclusions

This paper integrated the ACO and the AR model to determine the contract capacity
optimization problem with risk assessment. Based on the historical data, three algorithms,
including LS, RLD, and BA, were used to derive the AR model. ACO was also used to
search for the best p-order parameters and optimal contract capacity. To avoid risks due to
the fluctuation in the contract capacity, this study designed the risk tolerance parameter β,
which was used to regulate the predicted value of the AR model. Subsequently, it employed
ACO to determine the optimal contract capacity in the two-stage TOU and three-stage
TOU. Furthermore, based on the electricity consumption data of industrial users, this
study conducted relevant case tests and simulations and predicted the annual best contract
capacity. The method proposed in this paper can assist factory managers of industrial
customers in planning, both early and accurately, the highest power demand and peak
power consumption for more efficient power usage.

This paper is developed to help regulate present contract capacities or plan their
contract capacities in the future by considering risk tolerance. Power companies can use
this study to supply services to their TOU customers, check their load management policies,
and finally make their power systems more efficient. Although this study was based on
the TPC rate structure, it can easily be modified to satisfy other TOU rate structures. If it
can integrate various types of electricity users, coordinate users’ electricity consumption
patterns, and implement demand response strategies, it is also one of the important future
research directions of demand side management (DSM) [29,30].
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