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Abstract: An integral part of laser powder bed fusion (LPBF) quality control is identifying optimal
process parameters tailored to each application, often achieved through time-consuming and costly
experiments. Melt pool dynamics further complicate LPBF quality control due to their influence on
product quality. Using machine learning and melt pool monitoring data collected with photodiode
sensors, the goal of this research was to efficiently customize LPBF process parameters. A novel aspect
of this study is the application of standard and off-size powder feedstocks. Ti6Al4V (Ti64) powder
was used in three size ranges of 15–53 µm, 15–106 µm, and 45–106 µm to print the samples. This
facilitated the development of a process parameters tailoring system capable of handling variations in
powder size ranges. Ultimately, per each part, the associated set of light intensity statistical signatures
along with the powder size range and the parts’ density, surface roughness, and hardness were used
as inputs for three regressors of Feed-Forward Neural Network (FFN), Random Forest (RF), and
Extreme Gradient Boosting (XGBoost). The laser power, laser velocity, hatch distance, and energy
density of the parts were predicted by the regressors. According to the results obtained on unseen
samples, RF demonstrated the best performance in the prediction of process parameters.

Keywords: laser powder bed fusion; machine learning; melt pool monitoring; process parameters
prediction

1. Introduction

Additive manufacturing (AM) has developed into one of the world’s most advanced
manufacturing technologies over recent years due to its ability to manufacture parts with
highly complex geometries with lightweight features [1]. Laser powder bed fusion (LPBF)
is one of the most prominent techniques in metal AM. LPBF involves spreading a thin
layer of powder on the build plate, which is then selectively melted with a laser beam [2]
according to an operator-defined digital model of the desired part and optimum process
parameters such as laser power, laser speed, hatch distance, etc. The subsequent layers of
parts are printed on top of each other similarly.

Although LPBF has achieved notable success in industrial applications in the aerospace,
health, and automobile fields, it still lacks a comprehensive quality assurance system to
satisfy the repeatability and reproductivity criteria of large-scale commercialization. The
development of a real-time comprehensive quality assurance system for LPBF is challeng-
ing due to the enormous number of quality-affecting factors involved in the process. For
instance, feedstock powder properties, process parameters, melt pool dynamics, powder
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bed smoothness feature, and environmental parameters are among these influential factors
that have a significant impact on part physical and mechanical properties such as density,
hardness, and surface roughness.

Current studies propose partially effective quality control methodologies that mainly
rely on experimental assessment and data-driven techniques such as machine learning
(ML) algorithms. The design of experiments (DoE) is usually developed in such studies
to print metal parts with various process parameter sets to obtain parts with different
levels of quality in terms of density and surface roughness. In data-driven analysis, the
obtained data from these designs are usually used to develop ML models for either predic-
tion/classification of part’s properties (output) based on given process parameters (input)
or vice-versa. This method has been adopted in many recent scientific studies for the
optimization of part properties such as hardness [3,4], density and surface roughness [5–7],
or dimensional accuracy control [3,8,9].

ML algorithms have also been practiced for quantitative materials analysis and op-
timization as well. In the studies carried out by Zhiwei Zheng et al., self-supervised
algorithms have been developed for segmentation of the microscopic images across various
materials enabling quantitative analysis of the materials [10]. The modified algorithm
was then applied to detect and analyze of helium bubbles in 304 L stainless steel printed
parts [11]. Estimation of the mechanical properties such as intrinsic strengths of the parts
has also been conducted using ML algorithms [12].

In more recent investigations, however, ML-based quality control techniques in LPBF
have seen a major shift toward the analysis of datasets collected from the melt pool by
different devices such as photodiodes or cameras. This method is referred to as melt
pool monitoring (MPM), recognized as one of the leading advanced techniques exten-
sively employed in LPBF [13]. The capability of MPM in capturing melt pool variations
which intensely alter the outcome quality of the parts and could signify the flaw forma-
tion during the print is an appealing factor for its usage. Accordingly, utilizing the MPM
data significantly aids in improving quality-controlling systems in defect detection and
process optimizations. Among the current sensor types widely employed in LPBF for
data collection (e.g., digital camera, thermal camera, photodiode, and acoustic), photo-
diodes provide valuable time-series datasets regarding the melt pool condition but in a
lower volume of data than imaging sensors. This is beneficial in terms of data processing
computation costs and the decision-making pace of ML algorithms [14]. A photodiode
records the light intensity irradiated from the melt pool, which is strongly correlated with
its temperature [14]. Thus, it can be used to monitor the melt pool variations that could
imply important information about the process such as hot spots and cold spots (indicators
of defects) and laser–powder interactions. The process’s MPM data can then be used to
control/adjust the process parameters to improve the quality of printed components. In
addition, the light intensity data recorded by photodiode sensors throughout the printing
could be adopted as a strong tool for effective and precise LPBF process optimization and
quality estimation. Many studies focused on the quality control of LPBF in recent years
have used photodiode-based MPM and ML. The main goal of the reviewed studies is
mostly defect detection based on MPM data alterations on which the ML model extracts
patterns to detect different types of defects. Taherkhani et al. used intensity signals and
a Self-Organizing Maps (SOMs) algorithm to detect and localize intentional/seeded and
random lack of fusion defects [15]. Zhuang Mao et al. also developed a Long Short-Term
Memory Network (LSTM) algorithm that surpassed other tested ML models in the clas-
sification of quality (defective or non-defective) based on photodiode signals [16]. Yadav
et al. applied photodiode signals and a Support Vector Machine (SVM) to detect the drift
anomaly in the powder bed [17].

Quality level estimation based on physical and mechanical properties is also another
region of exploration in MPM and ML-based LPBF quality control analysis. For instance,
Jayasinghe et al. adopted k-means and Gaussian Mixture models to cluster the photodiode
signals and developed a Gaussian Process Regression (GPR) to predict the density of
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parts [18]. Cao et al. classified the tracks’ melting classes using a Convolutional Neural
Network (CNN), based on process parameters and light intensity signals (inputs) [19].
Many similar investigations have also been published in which data fusion and the use
of other sensor types in addition to photodiodes are adopted [20–23]. However, in the
majority of these studies, either the classification/prediction of parts’ properties or the
detection and localization of defects were the subject.

Prediction of required process parameters given the user-determined part properties
(density, surface roughness, hardness, etc.) could provide an advanced alternative for
conventional experimental LPBF process parameter optimization methods. This gains ad-
vantages in terms of time and cost of design of the printing process. In a recent investigation,
Lapointe et al. used photodiode’s intensity signals during the print of tracks to develop a
Feed-Forward Neural Network (FFN) to predict the process parameters of tracks based on
intensity signal and geometrical features [24]. The results were validated by the improve-
ment of the dimensional accuracy of complex printed parts using the algorithm-predicted
process parameters.

In the context of the LPBF process optimization as reviewed in the relevant literature, it
is evident that most studies focusing on ML-based optimization systems typically integrate
part properties and other physical characteristics, ranging from geometric to mechanical
properties, alongside various process parameters. However, this study distinguishes
itself in two key aspects: (1) It incorporates a more comprehensive dataset, supported
by quantitative and qualitative studies, which have shown significant influence on the
LPBF outcome quality, including melt pool behavior and the size distribution of powder
feedstock. (2) Unlike similar studies that primarily focus on single or multi-track design
of experiments, this research extends the scope of process optimization to encompass a
part-scale design of experiments using MPM and ML methodologies.

AM and LPBF, even in their most recent advanced state, continue to encounter major
challenges, such as being highly cost-intensive in production, primarily due to the extensive
requirements for experimental design development and post-process quality inspection. On
a production scale, in these methods, major investments (e.g., USD 100,000+ per material
and product) would need to be invested in the process parameters development and
experimental post-process quality assessment. The integration of MPM and ML into process
optimization is still in its early stages; however, a comprehensive system based on these
techniques holds the potential to substantially reduce the costs and time associated with
optimization processes. By automating optimization through self-supervised algorithms
and real-time data integration in future advancements, such systems could streamline the
optimization process significantly. Therefore, although printers equipped with built-in
sensors for MPM may entail initial costs, the practicality and effectiveness of ML-based
systems are poised to surpass conventional methods.

Moreover, traditional process optimization techniques rely heavily on fully exper-
imental approaches, involving multiple cycles of design of experiments, printing, and
destructive quality assessments to address the complex and often nonlinearly intercon-
nected factors influencing quality outcomes. This iterative process demands a substantial
budget and time investment to achieve reliable optimization results.

These systems have also demonstrated limitations in incorporating comprehensive fac-
tors essential into the process optimization. For example, they often overlook considerations
such as melt pool stability, despite its significant impact on quality and the optimization of
process parameters. Moreover, traditional experimental and statistical-based techniques
struggle to effectively identify and integrate complex, nonlinear relationships between
factors influencing quality outcomes. When attempts are made to scale these methods, they
frequently result in prohibitively expensive large-scale prints.

These drawbacks stem from the inherent constraints of statistical optimization meth-
ods typically used for both optimization and experimental design. It is important to
note that ML and MPM-based techniques, including the approach proposed in this study,
can potentially be adapted into in situ, non-destructive process optimization systems. In
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contrast, traditional experimental methods are typically conducted off situ and involve
destructive testing.

Hence, the goal of this study is to develop an ML-based model that can identify
optimum process parameters (power, velocity, energy density, and hatch distance) using
MPM datasets collected during printing coupons and artifacts to expand on the previously
reviewed ML-based LPBF process parameter optimizations. Due to the fast-paced data
processing nature of ML algorithms and the availability of powerful yet low-cost platforms
for the development and execution of these algorithms, it is possible to offer solutions to the
time/cost-intensive process development tailored to regular coupons and complex shape
components. Furthermore, the post-process quality inspection of the printed products
could effectively be replaced by the effective recording and processing of in situ monitoring
datasets, considering the recent rise of LPBF printers with built-in monitoring setups.

Figure 1 shows the interconnected aims of this study where the trained algorithms/
regressors are employed to provide precise estimation of process parameters (power,
velocity, energy density, and hatch distance) as the output, based on the input variables of
the powder size range, part properties (density, hardness, and surface roughness), and melt
pool characteristics (light intensity signature variations). A comparative analysis is also
presented between various ML regressors to select the most accurate algorithm for the task.

1 
 

 
Figure 1. Graphical abstract highlighting the study workflow including application of ML
on MPM data, part properties, and different powder particle size distributions for process
parameters estimation.

2. Materials and Methods
2.1. Design of Experiment

A commercial LPBF system (EOS M290, EOS GmbH, Krailling, Germany) was utilized
for printing Ti64 parts. The powder bed recoating is handled by an in-chamber automatic
system. The machine has an Ytterbium (Yb) fiber laser with 400 W nominal power and a
laser wavelength of 1060 nm. Argon gas is employed in the chamber for Ti64 parts printing.
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Ti64 metal powder (AP&C, Boisbriand, QC, Canada) in three size ranges of 15–53 µm
(fine batch/batch A), 15–106 µm (broad batch/batch B), and 45–106 µm (coarse batch/off
size/batch C) is used as the feedstock material to print 10 mm × 10 mm × 10 mm cubical
and cylindrical samples with a height and diameter of 10 mm × 10 mm (a subset of printed
parts is shown in Figure 2) using the Full Factorial Design (FFD) technique.
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Figure 2. Printed cubical and cylindrical parts.

Three separate sets of prints were carried out for the printing of cuboid and cylin-
drical parts of 15–53 µm, 15–106 µm, and 45–106 µm powder batches, i.e., 54 cuboid and
54 cylindrical parts of each powder size range were printed in a single print.

Laser power (W), laser energy density (J/mm2), hatch distance (mm), and scanning
strategy are varied in the ranges listed in Table 1. The layer thickness of 40 µm is kept fixed
in all prints. Laser velocity (mm/s) was determined according to specified energy density
and hatch distance using Equation (1).

Energy density =
Laser Power

Laser Velocity × Hatch Distance
(1)

Parts geometry (cubical/cylindrical) and powder size range are the other changing
variables in the design of the experiment.

Table 1. Design of the experiment.

Tagging
Class

Power
(W)

Energy Density
(J/mm2)

Hatch Distance
(mm) Scan Strategy

Low 150 1.5 0.08
Stripe ChessMid 250 2.75 0.09

High 350 4 0.1

In total, 324 parts were printed which consists of 108 parts (54 cubical and 54 cylindrical
samples) printed with each of the three powder size ranges. The same variation of the
process parameters is repeated for each set of 108 parts, allowing for inspection of the
powder size range changes’ influence on the final parts’ quality and MPM data alterations.

The density, surface roughness, and hardness of the cuboid and cylindrical parts are
measured by Archimedes, Keyence laser profilometer, and Phase II Rockwell hardness
tester. The hardness and surface roughness are measured on the vertical sides. Nine points
across the side surface of the cuboid and cylindrical parts were measured, controlled for
potential noisy dataset elimination, and averaged to obtain the side surface roughness
measures per part. Regarding the hardness measurements, the hardness in five points on
the side surface of the parts were tested by the Phase II Rockwell equipment. The averaged
hardness over the five measured points per part was then used as the hardness input
feature of the algorithms.
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2.2. Melt Pool Monitoring

Light intensity signals irradiated from the melt pool area were collected by an on-axis
photodiode sensor during the printing of 108 parts of each powder batch (each single run
of print), as shown in Figure 3. The on-axis photodiode sensor records the visible to near-
infrared (NIR) range of light intensity reflected parallel to the laser radiation direction. The
on-axially recorded light intensity signals are gathered in the form of raw data containing
the laser x-y location on the build plate, the modulation of the laser (on-off logs of the lasers),
and the light intensity at each corresponding x-y location. Geometry and light intensity data
corrections were applied to the raw MPM data to compensate for the chromatic aberration
and position-related errors that appear in the light-intensity data recording due to the
placement of the sensor and the difference between the optical elements of monitoring and
the light wavelength (for more information about the melt pool monitoring technique and
the data corrections, refer to [25]).
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2.3. Machine Learning Algorithms
2.3.1. Self-Organizing Maps

Each part’s MPM data were then clustered into seven groups (other cluster numbers
were tested and results are shown in the following sections) based on the intensity level
using the unsupervised Self-Organizing Maps (SOMs) algorithm. As a result of changes in
heat conduction, heat accumulation, and emission rate across different regions of a part, this
technique was adopted to extract process signatures from multiple classes/clusters of light
intensity data of the parts rather than extracting one general measure (e.g., one average
intensity signature for the entire part) per each part. It also benefits the ML algorithms’
performance due to the larger feature set.

The SOMs algorithm offers several advantages over other clustering methods, such as
k-means clustering. The primary reason for its application in this study is its robustness to
noise. MPM datasets, i.e., the light intensity signals, are highly susceptible to noise. The
SOMs algorithm can effectively discern the true underlying patterns within noisy data. This
capability arises from the neural network nature of the algorithm, wherein learning occurs
through multiple iterations and continuous improvement. Moreover, a previous study
conducted by our team [15] has demonstrated that the SOMs algorithm can effectively
cluster in situ light intensity signals obtained using the same printer and sensor employed
in this study.

As illustrated in Figure 3, seven statistical metrics were chosen to be extracted from
each cluster of MPM signals (per part) as the printed part’s signatures.

As described in a study published by Taherkhani et al., SOMs training is based
on competition while other neural network algorithms’ optimization is based on back-
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propagating. The SOMs nodes with the same dimension as the input data have weight
vectors that are randomly initialized. In general, the SOMs training process could be
summarized in three steps: competition, cooperation, and adaptation. In the competition
step, the winning node for each of the input data points is identified based on the lowest
distance between the node weight values and the input data points. In the cooperation
step, the neighboring nodes to the winner node which have a high similarity with it (low
distance) are identified using the neighborhood kernel function. The last step of adaptation
consists of the modification of node weights regulated with a learning rate decay parameter.
For a detailed description of the method, see [15]. The weight optimization continues until
no further changes are seen in the winning nodes and then the final map of the clustered
data set can be generated using the final weight values of the nodes.

The processed MPM datasets, including the clustering, signature extraction, and
scaling, in addition to categorical input features such as powder size ranges and continuous
input features such as parts’ density, hardness, and surface roughness, are then fed to three
various supervised regression algorithms, FFN, RF, and XGBoost, to predict the process
parameters (algorithm outputs/targets), as shown in Figure 1.

Ultimately, the design of the study was planned on providing information regarding
the powder size range, the mechanical and roughness properties of the parts, and the
statistical representation of the light intensity signals (light intensity signatures) to feed the
regressor algorithms. The algorithms were intended to estimate the proper set of process
parameters associated to the given powder, part, and melt pool properties.

The MPM light intensity signals, recorded per layer, were initially clustered using
SOMs. This clustering step aimed to group signals obtained from the entire part into
multiple clusters, considering various underlying patterns influenced by factors such as
part geometry (e.g., cuboid/cylindrical), process parameters (e.g., power, hatch distance),
gas flow, and recoater direction. These factors affect light intensity differently based on the
location of the melt pool on the build surface and the height of the printed layer within
the part (layer number), making clustering essential for accurate representation of light
intensity signals. SOMs incorporates topological characteristics of the signals, generating
clusters with similar behavioral patterns in the data.

Subsequently, signals classified into each cluster were characterized using statistical
signatures. For each cluster, the average, standard deviation, mode, and median of light
intensity were computed. Additionally, the minimum and maximum intensity levels were
calculated by averaging the intensity over 10 melt pool points with the lowest and highest
intensities, respectively, to mitigate the impact of outlier points potentially affected by noise,
particularly in extreme intensity levels. This approach yielded seven statistical signatures
from each cluster of photodiode signals recorded in each part, effectively reducing the
dimensionality of the MPM data.

These seven light intensity signatures per cluster were combined with categorical indi-
cators of powder size and part properties (density, hardness, and side surface roughness)
to serve as input features for the algorithms. In total, 55 input features were utilized in
this study, comprising seven signatures from each of the seven clusters of MPM data, one-
hot-encoded indicators for three batches of powder sizes, and three features representing
part physical properties. The algorithms aimed to predict the four major quality-impacting
process parameters: laser power, scan velocity, hatch distance, and energy density, serving
as the outputs of the models.

2.3.2. Feed-Forward Neural Network

FFN is a supervised artificial neural network (ANN) that is comprised of the input
layer, hidden layers, and the output layer. Each layer is constructed from multiple infor-
mation processing units denoted as neurons/nodes. Information transfers between the
neurons of the subsequent layers by weight parameter. Weights connect the neurons, and
their value determines the importance of the information conveyed between each pair of
neurons to the accurate calculation of the known target of the network. FFN algorithm
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training operates using the back-propagation technique which optimizes the user-defined
error/loss functions (difference between network calculations and actual outputs) by mov-
ing along the steepest slope of error decrease in the loss function space at each training
iteration [26]. Training and loss function updating continue until no further improvement is
made in the calculations. In this study, the FFN regressor is developed and trained using the
tensor flow library and keras API on the Visual Studio Code interface. Hyper-parameters
such as the number of layers, neurons, drop-out rate, and initial learning rate (used in the
Adam model optimizer) are tuned in this study by the application of the keras-tuner tool in
keras API. Adam optimizer, tanh activation function, and the inverse time decay model op-
timization technique were chosen for the model based on error and trial attempts operated
on the train (0.8 fraction of initially selected train set) and validation data (0.2 fraction of
initially selected train set). The model’s final structure was derived from the tuner outcome
demonstrated in Table 2. The activation function of tanh was used in the input layer and
hidden layers. Linear activation was employed in the output layer for the regression task.

Table 2. FFN-tuned hyper-parameters and the final structure of the algorithm. L1 and L2 denote the
first hidden layer and the second hidden layer, respectively.

Algorithm Layers Nodes Drop Out Initial Learning Rate

FFN 2
L1 311 L1 0.2

0.01L2 119 L2 -

2.3.3. Random Forest

The RF regressor simultaneously generates several decision trees (DT) on the various
subsets of the dataset. Each tree starts with a parent node that splits into child nodes, which
contain subgroups of data points, based on a partitioning condition which is determined
at each node of the tree. The dataset splits according to whether each data point satisfies
the parent node’s partitioning condition or not. The impurity reduction between parent
and child nodes of the dataset at each tree is then measured based on the defined metrics
(e.g., variation and error). The partitioning of data continues (along the tree length) until
no further improvement is made on the impurity reduction in the last partitions of the
dataset. An ensemble (average) of random DT learners is then used to implement the final
prediction [27].

2.3.4. Extreme Gradient Boosting

XGBoost regressor is also a modified RF algorithm that generates DT learners on
random subsets of samples and features but in successive order. Each DT (weak learner)
is developed to predict the residual. The prediction of each weak learner is improved
compared to the previous weak learner by modification of features’ coefficients in the error
equation based on the previous learner’s results [28]. XGBoost enables a more powerful
model regularization by employing L1 and L2 methods and can avoid overfitting more
efficiently with the tree-pruning tool. The trained RF and XGBoost algorithms’ hyper-
parameters in this study are tuned by implementing the CV and grid search on the train
set. The main fine-tuned parameters are listed in Table 3.

Table 3. RF and XGBoost tuned hyper-parameters.

Algorithm Estimators Learning Rate Max Depth Max Leaf Nodes

RF 50 _ 9 50
XGBoost 200 0.1 4 _
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To summarize, according to the graphical abstract shown in Figure 3, three powder
size ranges (15–53 µm, 15–106 µm, and 45–106 µm), the melt pool signatures (mean,
mode, median, minimum, maximum, skewness, and standard deviation), and the printed
part physical properties (density, surface roughness, and hardness) comprise the input
features set of the algorithms. The categorical variables of powder size are transformed into
numerical variables through one-hot encoding. Ultimately, three algorithms of RF, FNN,
and XGBoost are then trained to predict the outputs which are the process parameters of
power, velocity, hatch distance, and energy density of the laser.

3. Results and Discussion
3.1. Experimental Data Analysis
3.1.1. Correlation between Powder Size Distribution and Part Properties

The alteration in part properties (surface roughness, density, and hardness) against the
powder batch shift from the finest size range (15–53 µm) to the widest (15–106 µm) and the
coarsest range (45–106 µm) are illustrated in Figure 4. According to Figure 4a, the surface
roughness of cylindrical parts (samples 54–108) exhibits a relative rise in comparison to
cubical parts (samples 0–53), particularly accentuated in the coarser batch ranging from
45 to 106 µm. For example, for the cubical sample 2 in this batch, the surface roughness is
~23.01 µm whereas for cylindrical sample 2 in the same batch, which is printed with the
same set of process parameters as the mentioned cubical sample, the surface roughness
increased to ~29.02 µm. Considering the same set of process parameters are used for the
cylindrical and cubical parts, this therefore implies the impact of geometry on the surface
roughness of parts. Meanwhile, this trend of variation was not observed in density and
hardness characteristics meaning the change of geometry in this design mainly affected the
surface roughness. For all three studied part properties (Figure 4a–c), it may be concluded
that parts in all three powder batches mostly behave the same in response to process
parameters variations and have similar fluctuations. As expected, Figure 4a shows that the
parts printed with the coarsest powder batch resulted in the highest roughness while parts
printed with the fine powder batch had the lowest roughness. According to Figure 4b,c,
the best quality of density and hardness are respectively obtained with parts printed with
the fine powder batch as well but much less difference is seen between the powder batches
for these characteristics (the least difference in density). Although the set of all influential
factors should be addressed in the inspection of LPBF parts quality, it could generally be
concluded that the fine powder tends to promote a higher density packing, powder bed
uniformity, and energy absorption, thus, less perturbation in the melt pool dynamics. This
could lead to improved part properties.

The mentioned features of the fine powder have led to the application of the finer
powders for higher quality production in the industry (15–53 µm is a standard size range
for LPBF applications). However, the optimization of LPBF for wider and coarser ranges
of powder is a vital requirement in LPBF since it is more cost-effective due to the notably
lower production cost of wider-range powder. The coarse/wider powder normally inherits
better flowability which can significantly alter the powder bed characteristics positively.
The process parameter optimization for unconventional/off-size powder sizes is a major
gap in the recent state of LPBF research which inspired this study to integrate the standard
and off-size powders into the ML-based design of process parameters. The results of this
study enable data-driven process parameters arrangement for wider adaptation of off-size
Ti64 powder in the LPBF applications.
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Figure 4. Variation of parts physical characteristics in cubical ([0–53] on x-axis) and cylindrical
([54–108] on x-axis) parts with change of powder size. The process parameters per each sample
in different powder batches are identical (to observe the impact of powder size change). The part
characteristics variations are shown in (a) surface roughness; (b) density; (c) hardness.

3.1.2. Correlation between Melt Pool Light Intensity, Process Parameters, and
Part Properties

Aside from the inspection of relationships between part properties and powder size
ranges, the correlation between the MPM data and these factors is also highly influential
in the LPBF process optimization. This inspection was also carried out in this study, and
it was observed that the MPM data were highly impacted by power and energy density
levels rather than powder size range. The correlations between part properties (density
and roughness), powder size, and MPM signatures (the average intensity per layer) are
demonstrated in 3D plots in Figure 5, for parts with the highest and the lowest surface
roughness as well as density in all three batches of powder. For clarification on the mapped
information in this figure refer to Figure A1 in Appendix A section. As seen in Figure 5a,d,
regardless of the powder batch used for the prints, higher power causes a higher level
of intensity in parts. In cases with equivalent power levels, energy density should be
inspected to interpret the intensity level. This means that either hatch distance or velocity
would influence the level of light intensity irradiated from the melt pool. In Figure 5b,
the highest and lowest density for cubical samples in batch A (pink square and diamond
markers) are both attributed to the laser power of 150 W; but the higher energy density
in the latter caused the higher level of intensity. Both laser velocity and hatch distance
also become relevant even when both power and energy density are equivalent. As such
condition could be seen in Figure 5b between the lowest density cubical samples in A and
B (pink and gray diamonds), the smaller hatch distance of the latter caused higher intensity
due to heat accumulation within a certain volume of process zone. The same applies to
the sample with the lowest surface roughness in batch A (pink circles shown in Figure 5c)
which has the highest light intensity compared to the two samples with the lowest surface
roughness in batch B and C (gray and blue circles) due to the smaller hatch distance. In the
same plot, the sample with the highest surface roughness in batch B (gray triangle) shows
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a lower intensity regardless of having an equivalent power but a higher energy density
due to a lower velocity. The significantly lower velocity and lower hatch distance in this
sample could generate a keyhole in the melted material causing light scattering within the
process zone, which in turn could decrease the intensity which also enables the detection
of potential flaws (keyhole in this case) based on the MPM data.
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Figure 5. The average intensity level per layer is plotted for cubical and cylindrical parts with the
highest and lowest surface roughness/density in three powder batches of 15–53 µm (A), 15–106 µm
(B), and 45–106 µm (C). The average intensity per layer in parts is plotted for (a) cubical parts with
highest and lowest surface roughness; (b) cubical parts with highest and lowest density; (c) cylindrical
parts with highest and lowest surface roughness; (d) cylindrical parts with highest and lowest density.

The light intensity data recorded in each layer, particularly at the edges of the parts,
directly links melt pool stability to the resulting roughness, including the side surfaces
where roughness measurements were taken. These light intensity signals are closely related
to the temperature and thermal distribution on the build surface. Instabilities in the melt
pool, caused by thermal variations, are reflected in the light intensity signals. Anomalies
such as spatter and balling manifest as perturbations in these signals. Since phenomena like
balling and spatter affect the roughness of the parts, the light intensity signal signatures can
approximate the resulting roughness in layers and, ultimately, the entire part. Similarly, the
melt pool condition in each layer is recorded by the light intensity, with the overall extracted
light intensity signatures (per part) statistically representing the light intensity across all
layers, correlating to the density and hardness of the final fabricated parts. Light intensity
can also indicate potential lack of fusion or keyhole defects based on signal perturbations
caused by thermal disturbances during these defects. These defects determine the quality
of fusion and ultimately define the part density. Lastly, the cooling rate and thermal history
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of the melt pool, which significantly impact the microstructure of the parts, can also be
captured by the light intensity data. This is due to the light intensity’s ability to reflect
temperature and thermal conditions within the melt pool, as previously discussed.

These analyses collectively underscore the importance of powder PSD, process param-
eters, and melt pool characteristics in shaping the physical properties of LPBF-made parts.
It should be also noted that these factors are intricately interconnected through complex and
nonlinear relationships, which often defy unraveling through simple statistical modeling
or experimental studies alone. The volume of informative data from these factors further
urges for leveraging advanced data processing tools capable of complex data learning and
modeling, such as ML and deep learning algorithms.

3.2. Machine Learning Analysis
3.2.1. Evaluation Metrics and Techniques

In the first approach of model assessments, the algorithms were trained and evaluated
using the repeated CV method. Twelve samples with optimum levels of surface roughness
and density were selected from the original dataset to be used as unseen samples. Therefore,
the train set on which CV was performed is comprised of the remaining 312 samples. It
should be noted that the targets of the analysis contain low variance. Hence, the regression
results analysis could not be solely based on the conventional error measuring metrics,
such as Mean Squared Error (MSE) or Mean Absolute Error (MAE). These metrics mainly
normally imply the difference between the actual and predicted values, where they are
highly sensitive to scale and outliers in data. Due to the low variance in the targets, the
study assessed regression performance using the MAPE metric. This metric, being scale-
independent, was employed for analyzing accuracy results in CV and predictions on unseen
samples. Furthermore, due to the low variance in the targets, the deviation span of the
errors in the CV analysis was also inspected to attain a reliable insight into the performance
of the models. By this approach, an estimation of the uncertainty in predictions could be
obtained. The coefficient of determination (R2 score) is reported in both CV and unseen
samples regression results to assess the extent to which the models explain variation in
the targets or how effectively a regressor can model the overall target data population
(goodness of fit). Additional statistical examinations, such as the Kolmogorov–Smirnov (KS)
test and comparison of probability density distributions of prediction and actual targets,
are conducted in the unseen samples regressions to provide a comprehensive assessment
of regressors’ generalization on the unseen samples. Integrating all these assessments helps
address the low variance in the targets and provides unbiased insight accordingly.

3.2.2. Self-Organizing Maps Clusters Optimization

The number of SOMs clusters on which the dataset was generated was also optimized
using the CV technique. Initially, seven clusters were chosen to be applied in SOMs
clustering and generation of the baseline dataset, according to the results of a previous
similar study involving a smaller dataset with similar DoE. Therefore, the initial dataset was
generated with seven SOMs clusters and was subsequently used for regressor algorithms
hyper-parameters tuning. For additional assessment, the tuned algorithms were then re-
examined with datasets derived from various SOMs cluster numbers, using cross-validation
(CV) with five folds. In CV, the data are divided into multiple folds to make predictions
once on each left-out fold while being trained on the rest of the folds. While there are no
strict rules regarding the number of folds and it is often dependent on the characteristics
of datasets and modeling requirements, five folds of CV were opted for in this study,
as this aligns with a common practice where 5 or 10 are typically chosen for the CV
implementation [29]. The overall mean absolute error percentage (MAPE) of prediction
obtained by the regressors in the CV results was averaged to choose an appropriate number
of clusters among 5, 7, and 10 clusters for this application.

The results of this test are illustrated in Figure 6, indicating that the dataset generated
using seven clusters of the SOMs led to a marginally better average performance in the
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regression models for all four targets, achieving an average MAPE of approximately 3.7%.
Although the difference in performance between using five and seven clusters was slight,
both configurations were deemed valid choices. However, based on previous preliminary
investigations with different datasets (cuboids and cylindrical parts), the seven-cluster
SOMs consistently yielded the best performance. This suggests better generalization of
algorithms with this clustering approach across various datasets, leading to the decision to
proceed with the seven-cluster SOM dataset.
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showed by average MAPE metric obtained in five-fold CV test implemented on train set samples.

3.2.3. Cross-Validation on Train Set Analysis
Regression Accuracy Evaluation

Five repeats of the five-fold CV were implemented on the train set meaning that the
iterative process of CV is repeated five times to randomly change the set of samples in each
fold, resulting in a total of 25 various validation sets. The FFN algorithm was trained here
with 50 epochs in each round of CV.

As shown in Figure 7a, the R2 score obtained by all three models in the regression
of validation folds indicates that the models can fit the dataset very well. The obtained
R2 scores show that above 90% of the target variance is explained by the models in all
25 configurations for power, velocity, and energy density targets. However, the results vary
for hatch distance, with XGBoost showing the best modeling with a ~0.57 R2 score, while RF
and FFN could not achieve meaningful modeling of the data. This shows that although the
XGBoost model exhibits relatively better capability in learning the hatch distance variance,
it could still lack a reliable level of fitness due to a low R2 score. It should also be considered
that low target variability of hatch distance (~9% coefficient of variability in the train set
while other targets have above 30%) impacted the R2 score, regardless of the level of error
in prediction. By inspecting the actual values and prediction values obtained in each CV, it
was observed that a low level of variability in hatch distance relative to cumulative error
significantly decreased the R2 score in each CV split compared to other targets with high
variability. R2 score mainly reflects how well a model fits the data and how effectively
it estimates the variation of the target based on inputs/predictors and low variability of
targets could cause bias in its result. On the other hand, error metrics, such as MAPE,
indicate the proximity of model predictions to actual data values on a point-by-point basis.
For a comprehensive inspection of regression performance, both aspects should then be
analyzed. The average MAPE (average of five iterations of random five-fold CV) of models
in the estimation of targets is shown in Figure 7b. The MAPE level obtained by the FFN
for all four targets exceeds those of the XGBoost and RF regressors. Comparing RF and
XGBoost, RF demonstrates marginally more accurate predictions in energy density and
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power. However, the difference in performance between the two regressors for hatch
distance and velocity predictions is minimal. It could also be interpreted from the hatch
distance results that, as it was expected by R2 scores, XGBoost resulted in a lower prediction
error. Additionally, although the R2 score was low, the model regressed with good accuracy
(MAPE of ~0.047). This again implies that low target variability could have influenced the
low R2 score.
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Statistical Evaluation

The accuracy of the models’ prediction is further assessed from a statistical perspective,
to identify which model exhibits more reliable regression accuracy. The notched box plot of
the yielded average MAPE of models in all 25 configurations of five-fold CV is illustrated
in Figure 8. Both XGBoost and RF regressors show favorable process parameters regression
results in the CV analysis for all four targets. The box plots in Figure 8a–d show that
RF, with small superiority to XGBoost, achieves the highest accuracy for all targets. This
marginal difference, compared to the RF model, is also seen in the prediction accuracy
results shown in Figure 7a. Additionally, considering the interquartile ranges and whiskers
caps, it can also be interpreted that RF exhibits a smaller range of variation in error levels
throughout the 25 CV combinations for all four targets, this underscores the reliability
of this regressor, suggesting its higher robustness to data perturbations and potential for
improved generalization. In contrast, the FFN regressor shows a wider range of errors in
the CV analysis for all four targets, indicating its less robustness to noise or any potential
data variation. Hence, it is anticipated to result in poorer generalization to new unseen
samples. The overlapping notches in the RF and XGBoost boxes illustrated in Figure 8b–d
show the median in these two populations is not significantly different, showing a similar
level of prediction accuracy, in contrast to FFN. In summary, it can be concluded that
XGBoost and RF are the better regressors, in the CV analysis focused on the training set, in
terms of goodness of fit and prediction accuracy.

However, it should be noted that RF and XGBoost achieved a low R2 score in hatch
distance modeling despite exhibiting good point-wise prediction accuracy. This may
suggest a potential issue of overfitting to the training samples. Accordingly, further in-
spection into model generalization was implemented relying on algorithms evaluation on
unseen samples.
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3.2.4. Train Set Size Impact

While CV allows for assessing the model performance based on variations in sample
set combination, the number of training samples remains fixed in each fold. However, the
size of the training set is one of the most influential factors in the performance of regressors,
necessitating an examination of the performance of the regressors across different training
set sizes. Limited training data sizes can result in overfitting and limited generalization
performance. Increasing the size of the training set typically enhances the accuracy of
regression models, especially those with strong generalization abilities.

The regressors’ overall prediction error (average error of all targets) was assessed in
various fractions of a train set in the [60%, 70%, 80%, 90%] range taken from the set of
312 samples. Therefore, in each train size fraction, models predicted the samples in the re-
mained fraction of 312 samples. As shown in Figure 9, it is observed that an increase in train
set samples mostly led to higher accuracy (except for a negligible increase from 70% to 80%
in RF and XGBoost models). This implies that there is no significant overfitting/sensitivity
to data which confirms the admissible level of generalization of the models.

Overall, FNN consistently resulted in higher errors in all target estimations, which
agrees with the previous analyses. However, it should be considered that none of these
error levels are considered major in LPBF applications and do not disqualify any of the
models. In conclusion, in a comparative study among the three regressors, FFN seems to
have lower accuracy and generalization. RF and XGBoost, in most cases, demonstrated
similar levels of performance and better generalization compared to FFN.
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3.2.5. Regression of Unseen Samples Analysis
Regression Accuracy Evaluation

The final evaluation of the models in terms of generalization performance involves
regression on unseen samples that were not included in previous analyses. The models
were subsequently reset and retrained on the entire training set (i.e., 312 samples) to make
predictions on a pre-selected set of 12 unseen samples. It should be noted that since these
12 samples were the optimum samples of the DoE in terms of surface roughness and density,
they count as extreme points compared to the utilized training set. Consequently, it enables
the analysis to evaluate the robustness of the models to outliers/extreme points too.

In addition, an epoch number examination was carried out separately to identify the
optimal epoch number that balances the overfitting and bias of the FFN model. In this test,
20% (from 312 samples) of the training set was used to evaluate the FFN performance in
various epoch numbers. Figure 10 illustrates a significant decrease in error within the initial
20 epochs, followed by a highly gradual decline in error from 20 to 100 epochs. The epoch
number of 50 was chosen since it promotes a good level of accuracy in estimations. The
model’s training had also reached stability in the learning process at this epoch number.
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The RF algorithms and XGBoost regressors used in the prediction of the unseen
samples are the same tuned models that were used in the previous analysis. In this step, all
three algorithms demonstrated good prediction accuracy for the majority of targets. Among
four targets, the lowest prediction accuracy was seen in the hatch distance estimations for
all three candidate models. This was expected according to the performance of the models
in the previously reported analysis. The total R2 score achieved by FFN in predicting
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unseen samples was ~0.84. The performance of FFN on unseen samples for each four
targets (R2 and MAPE) is shown in Figure 11a. FFN shows very accurate generalization for
power, velocity, and energy density estimations, yet achieved a lower R2 score in the hatch
distance prediction. However, the observed performance of FFN in the hatch distance
estimation for unseen samples is consistent with the results obtained in the CV analysis
(training samples).
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targets. Prediction accuracy of regressions is also shown by MAE and MAPE for (a) FFN regressor
(b) RF regressor, and (c) XGBoost regressor. Power, velocity, hatch distance, and energy density are
denoted by (P), (V), (HD), and (ED), respectively.

A great total R2 score of 0.94 was achieved by the RF regressor in predicting unseen
samples. As demonstrated in Figure 11b, RF achieved above 90% accuracy in power,
velocity, and energy density estimations, as well as FFN. However, RF showed more
reliable results than FFN in hatch distance estimations, considering both R2 and MAPE
measures. This suggests an overall good generalization and robustness in the RF regressor.

XGBoost regressor showed results slightly less accurate than RF and marginally better
than FFN on the unseen samples set, with a total R2 of 0.9. The R2 and MAPE obtained by
XGBoost regressor in unseen sample estimation are shown in Figure 11c. XGBoost yielded
results almost as accurate as RF across all targets, except in hatch distance estimations
where an R2 score of ~0.67 was obtained which explains that both FFN and XGBoost could
not provide accurate data fitting for this target. Meanwhile, RF resulted in robust hatch
distance modeling (R2 score ~0.8) and accurate predictions (lowest MAPE).
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Statistical Evaluation

As previously mentioned, due to the low variance of targets in the dataset, regression
performance needs to be assessed in various aspects using different techniques. The R2

score, error variability, and prediction accuracy were discussed and compared for the three
trained models. However, to further ensure the generalization of the models, the results
obtained by the three regressors in estimating the unseen samples were also examined
from a statistical perspective. This was implemented to examine the predictions in terms of
distribution. The Kolmogorov–Smirnov (KS) test, a non-parametric technique that does not
assume any distribution for the data, was applied to test the regression results. The test
results indicated that the predicted values by all three models are from the same population
distribution as the targets, further confirming the credibility of the models’ performance.

In addition, the Probability Density Function (PDF) was used to visualize the probabil-
ity density distribution of the predicted population and the target population in the unseen
samples tested by the KS tests. Based on the PDF in Figure 12a, it can be concluded that
FFN yields less overlap between predictions and actual target distribution in velocity, hatch
distance, and energy density targets. By comparing the PDF plots in Figure 12b,c, obtained
for each of the targets, it can be concluded that RF and XGBoost generally exhibit better
data learning, but RF achieves slightly more accurate data learning overall. This aligns
with the previous analysis and the fact that RF generates a density distribution closer to the
actual targets.
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The plot of hatch distance density distributions indicates that all three models fre-
quently estimated a hatch distance of 0.09 (instead of 0.08 and 0.1), suggesting that they
lacked accurate data variation learning concerning hatch distance changes at different
extents. This deviation, however, is very marginal when it comes to the optimization of
LPBF. Notably, the hatch distance variations in the DoE, ranging from 0.08 to 0.1, do not
have a major impact on the quality of the parts, unlike the other three target changes. In
addition, the prediction MAE of models in hatch distance fell within an acceptable small
range [0.003–0.005]. Therefore, the hatch distance estimation accuracy obtained by the
models could still be considered an admissible result for such a DoE in terms of the quality
and functionality of the LPBF-made product.

To select the final regressor as the best candidate for future studies, the overall MAPE
of FFN, RF, and XGBoost in the estimation of all four process parameters were reviewed,
yielding values of 0.05, 0.025, and 0.02, respectively. This, along with the R2 score levels
shown in Figure 11, state that both RF and XGBoost can achieve high prediction accuracy
in terms of overall performance (considering all targets simultaneously); however, RF
demonstrates higher goodness of fit and consequently better generalization.

4. Conclusions

In this paper, three distinct regression models, namely Feedforward Neural Network
(FFN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), were trained and
optimized to forecast process parameters, including power, velocity, hatch distance, and
energy density, utilizing light intensity signatures and physical properties of cubical and
cylindrical shape samples, made by laser powder bed fusion (LPBF), across standard
and off-size Ti64 powder size distributions. The efficacy of these regression models was
evaluated through metrics such as the coefficient of determination (R2 score), mean absolute
percentage error (MAPE), and a comprehensive analysis of error distribution within cross-
validation (CV) assessments. Additionally, the performance of these algorithms was
assessed through the prediction accuracy observed in evaluations of unseen samples.

According to the reported assessments of the regression results, the following conclu-
sion can be drawn:

• Overall, all three algorithms demonstrated satisfactory performance in estimating
process parameters, as evidenced by the magnitude of prediction errors. These errors,
within acceptable bounds, indicate the potential for maintaining high-quality parts
despite the inherent uncertainties associated with prediction in this application.

• In CV, although RF and XGBoost performed similarly closely, the lower deviation
observed in prediction errors underscores the greater robustness of RF compared to
XGBoost.

• Among four targets/process parameters, three regressors showed the lowest accuracy
and goodness of fit, in both the CV analysis and the unseen samples evaluation, in the
hatch distance estimation.

• In the CV analysis, while all three regressors achieved practically acceptable levels
of prediction errors for hatch distance estimation (ranging from 4% to 6% MAPE),
the highest goodness of fit (R2 score) was attained by XGBoost, approximately 0.57,
surpassing that of RF. This finding suggests that while acceptable results were achieved
in the unseen samples tested here, the regressors may not exhibit strong generalization
ability for other unseen samples. However, the predicted results fall within the range
of outcomes considered satisfactory for optimizing a typical LPBF process.

• Among all regressors, RF showed the most reliable results, showing promising gen-
eralization in unseen sample evaluation with an overall MAPE error of 2.5% and R2

score of 0.94 in the prediction of all four process parameters.
• Following RF, XGBoost emerged as the second-best performer in estimating process

parameters for unseen samples, albeit with marginally lower goodness of fit. XGBoost
achieved an overall MAPE of 2% and an R2 score of 0.9.
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• Despite exhibiting less precise model fitting and generalization, the FFN algorithm
still produced acceptable results, achieving an R2 score of 0.84 and a MAPE of 5% in
evaluations of unseen samples.

The discussed results of this study confirm the applicability of such ML-based pro-
cess parameters determination techniques for similar applications involving cubical and
cylindrical parts fabricated by LPBF using Ti64 powder in standard and off-size ranges.
Further evaluation of the proposed technique could be examined on more complex ge-
ometries of Ti64 parts, given initial light intensity data of printed parts. The practicality of
this technique could be extended by developing additional algorithms providing a rough
estimation of light intensity signatures in response to user-defined part physical properties.
The rough estimation could be fed to the developed algorithm in this study to provide the
proper process parameters costumed to the defined powder size range and part properties,
eliminating the need for available light intensity data. This methodology could serve as
a valuable tool for fast process optimization, reducing the number of labor-intensive and
costly experimental tasks, thanks to the integration of MPM into the ML platform.
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Appendix A

Two information graphs for 3D plots (Figure 5a–d) are provided which map the
information of 3D plots in (1) cubical parts and (2) cylindrical parts. The average intensity
level per layer is plotted for cubical and cylindrical parts with the highest and lowest
surface roughness/density in three powder batches of 15–53 µm (A), 15–106 µm (B), and
45–106 µm (C).
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