Exposing Data Leakage in Wi-Fi CSI-Based Human Action Recognition: A Critical Analysis
Abstract
:1. Introduction
- Healthcare monitoring: Wi-Fi signal-based systems can be deployed in healthcare settings to monitor the movements of patients, especially the elderly, providing valuable insights into their daily activities and well-being [7].
- Smart homes: Wi-Fi signal-based human action recognition can enhance automation systems by recognizing specific gestures to control devices, adjusting lighting, or regulating temperature based on occupants’ activities [8].
- Security and surveillance: Wi-Fi signals can be employed for unobtrusive surveillance, tracking suspicious movements in restricted areas or public spaces without compromising privacy [9].
- Retail analytics: Retailers can use Wi-Fi signal-based recognition to analyze customer movements within stores, gaining insights into shopping patterns and improving store layouts for a better customer experience [10].
- If the data are randomly partitioned, data from the same individuals could end up in both the training and test sets.
- The model may learn specific characteristics of those individuals, leading to high accuracy during testing.
- However, this performance might not translate to new users in country B, as the model has not learned to generalize beyond the specific subjects in country A.
- By using subject-based partitioning, the model is trained on one group of individuals and tested on a completely separate group.
- This ensures that the model learns to generalize patterns that apply broadly to different individuals, improving its performance when deployed in country B.
Contributions
- Identification and analysis of data leakage: We conduct an in-depth analysis of data leakage in three published Wi-Fi CSI-based human action recognition methods. Our study highlights how improper dataset partitioning, specifically, the failure to partition data with respect to individual subjects, can lead to artificially inflated performance metrics.
- Evaluation with proper dataset partitioning: We re-evaluate the aforementioned methods using subject-based partitioning strategies, demonstrating a significant decline in performance. This underscores the critical importance of proper dataset management in developing robust and generalizable models.
- Comparison of preprocessing techniques: Our study reveals that the impact of various preprocessing techniques, such as Canny, Sobel, Prewitt, and LoG filtering, is less significant when correct data partitioning is applied. This finding emphasizes the primacy of proper data splitting over preprocessing choices.
- Continuation of previous work: Building on our prior research where we analyzed data leakage in another published method [11], this paper extends our efforts to ensure the validity and reliability of Wi-Fi CSI-based human action recognition systems.
2. Preliminaries on RSSI and CSI
3. Related Works
3.1. Wi-Fi CSI-Based Human Action Recognition
3.2. Data Leakage in Machine Learning Research
4. Methods
4.1. An Efficient Human Activity Recognition System Using Wi-Fi Channel State Information
4.2. Human Activity and Gesture Recognition Based on Wi-Fi Using Deep Convolutional Neural Networks
4.3. Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques
4.4. Detected Data Leakage
5. Results
5.1. Results of the Reimplementation of “An Efficient Human Activity Recognition System Using Wi-Fi Channel State Information”
5.2. Results of the Reimplementation of “Human Activity and Gesture Recognition Based on Wi-Fi Using Deep Convolutional Neural Networks”
5.3. Results of the Reimplementation of “Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques”
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | convolutional neural network |
CSI | channel state information |
GADF | Gramian angular difference field |
GAF | Gramian angular field |
GASF | Gramian angulat summation field |
GPU | graphics processing unit |
HAR | human action recognition |
IEEE | Institute of Electrical and Electronics Engineers |
LDA | linear discriminant analysis |
LSTM | long short-term memory |
MIMO | multiple-input multiple-output |
PCA | principal component analysis |
ReLU | rectified linear unit |
RSSI | received signal strength indicator |
SGDM | stochastic gradient descent with momentum |
SVM | support vector machine |
References
- Yadav, S.K.; Sai, S.; Gundewar, A.; Rathore, H.; Tiwari, K.; Pandey, H.M.; Mathur, M. CSITime: Privacy-preserving human activity recognition using WiFi channel state information. Neural Netw. 2022, 146, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.B.; Zhang, Y.X.; Zhong, B.; Lei, Q.; Yang, L.; Du, J.X.; Chen, D.S. A comprehensive survey of vision-based human action recognition methods. Sensors 2019, 19, 1005. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhang, Y.; Wang, Y.; Xu, K. WiAct: A passive WiFi-based human activity recognition system. IEEE Sens. J. 2019, 20, 296–305. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, K.; Hou, Y.; Dou, W.; Zhang, C.; Huang, Z.; Guo, Y. A survey on human behavior recognition using channel state information. IEEE Access 2019, 7, 155986–156024. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, B.; Zong, J. Device-free human activity recognition based on GMM-HMM using channel state information. IEEE Access 2021, 9, 76592–76601. [Google Scholar] [CrossRef]
- Yousefi, S.; Narui, H.; Dayal, S.; Ermon, S.; Valaee, S. A survey on behavior recognition using WiFi channel state information. IEEE Commun. Mag. 2017, 55, 98–104. [Google Scholar] [CrossRef]
- Khan, U.M.; Kabir, Z.; Hassan, S.A. Wireless health monitoring using passive WiFi sensing. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 18–23 June 2017; pp. 1771–1776. [Google Scholar]
- Jiang, H.; Cai, C.; Ma, X.; Yang, Y.; Liu, J. Smart home based on WiFi sensing: A survey. IEEE Access 2018, 6, 13317–13325. [Google Scholar] [CrossRef]
- Sruthy, S.; George, S.N. WiFi enabled home security surveillance system using Raspberry Pi and IoT module. In Proceedings of the 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kollam, Kerala, India, 8–10 August 2017; pp. 1–6. [Google Scholar]
- Rallapalli, S.; Ganesan, A.; Chintalapudi, K.; Padmanabhan, V.N.; Qiu, L. Enabling physical analytics in retail stores using smart glasses. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 115–126. [Google Scholar]
- Varga, D. Critical Analysis of Data Leakage in WiFi CSI-Based Human Action Recognition Using CNNs. Sensors 2024, 24, 3159. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ke, Q.; Rahmani, H.; Bennamoun, M.; Wang, G.; Liu, J. Human action recognition from various data modalities: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3200–3225. [Google Scholar] [CrossRef]
- Wu, X.; Chu, Z.; Yang, P.; Xiang, C.; Zheng, X.; Huang, W. TW-See: Human activity recognition through the wall with commodity Wi-Fi devices. IEEE Trans. Veh. Technol. 2018, 68, 306–319. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Chen, Y.; Gruteser, M.; Yang, J.; Liu, H. E-eyes: Device-free location-oriented activity identification using fine-grained wifi signatures. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 617–628. [Google Scholar]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Device-free human activity recognition using commercial WiFi devices. IEEE J. Sel. Areas Commun. 2017, 35, 1118–1131. [Google Scholar] [CrossRef]
- Guo, L.; Wang, L.; Liu, J.; Zhou, W.; Lu, B. HuAc: Human activity recognition using crowdsourced WiFi signals and skeleton data. Wirel. Commun. Mob. Comput. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Zhang, Z. Microsoft kinect sensor and its effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef]
- Wang, F.; Feng, J.; Zhao, Y.; Zhang, X.; Zhang, S.; Han, J. Joint activity recognition and indoor localization with WiFi fingerprints. IEEE Access 2019, 7, 80058–80068. [Google Scholar] [CrossRef]
- Alazrai, R.; Awad, A.; Baha’A, A.; Hababeh, M.; Daoud, M.I. A dataset for Wi-Fi-based human-to-human interaction recognition. Data Brief 2020, 31, 105668. [Google Scholar] [CrossRef] [PubMed]
- Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Wang, G.; Zou, Y.; Zhou, Z.; Wu, K.; Ni, L.M. We can hear you with Wi-Fi! In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 593–604. [Google Scholar]
- Tan, S.; Yang, J. WiFinger: Leveraging commodity WiFi for fine-grained finger gesture recognition. In Proceedings of the 17th ACM International Symposium on Mobile ad hoc Networking and Computing, Athens, Greece, 14–17 October 2016; pp. 201–210. [Google Scholar]
- Pu, Q.; Gupta, S.; Gollakota, S.; Patel, S. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, Miami, FL, USA, 30 September–4 October 2013; pp. 27–38. [Google Scholar]
- Adib, F.; Kabelac, Z.; Katabi, D.; Miller, R.C. 3D tracking via body radio reflections. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), Seattle, WA, USA, 2–4 April 2014; pp. 317–329. [Google Scholar]
- Adib, F.; Katabi, D. See through walls with WiFi! In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, Hong Kong, China, 12–16 August 2013; pp. 75–86. [Google Scholar]
- Liu, X.; Cao, J.; Tang, S.; Wen, J. Wi-sleep: Contactless sleep monitoring via wifi signals. In Proceedings of the 2014 IEEE Real-Time Systems Symposium, Rome, Italy, 2–5 December 2014; pp. 346–355. [Google Scholar]
- Chen, C.; Shu, Y.; Shu, K.I.; Zhang, H. WiTT: Modeling and the evaluation of table tennis actions based on WIFI signals. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 3100–3107. [Google Scholar]
- Wang, Y.; Wu, K.; Ni, L.M. Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 2016, 16, 581–594. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Wang, Y.; Ma, J.; Wang, Y.; Li, S. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Trans. Mob. Comput. 2016, 16, 511–526. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, F.; Wu, C.; Wang, B.; Liu, K.R. DeFall: Environment-independent passive fall detection using WiFi. IEEE Internet Things J. 2021, 9, 8515–8530. [Google Scholar] [CrossRef]
- Duan, P.; Li, J.; Jiao, C.; Cao, Y.; Kong, J. WiBFall: A Device-Free Fall Detection Model for Bathroom. In Proceedings of the International Conference on Mobile Networks and Management, Chiba, Japan, 27–29 October 2021; pp. 182–193. [Google Scholar]
- Chen, S.; Yang, W.; Xu, Y.; Geng, Y.; Xin, B.; Huang, L. AFall: Wi-Fi-based device-free fall detection system using spatial angle of arrival. IEEE Trans. Mob. Comput. 2022, 22, 4471–4484. [Google Scholar] [CrossRef]
- Zhou, Q.; Xing, J.; Li, J.; Yang, Q. A device-free number gesture recognition approach based on deep learning. In Proceedings of the 2016 12th International Conference on Computational Intelligence and Security (CIS), Seville, Spain, 13–15 May 2016; pp. 57–63. [Google Scholar]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. DeepFi: Deep learning for indoor fingerprinting using channel state information. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015; pp. 1666–1671. [Google Scholar]
- Wang, X.; Gao, L.; Mao, S. PhaseFi: Phase fingerprinting for indoor localization with a deep learning approach. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Wang, F.; Gong, W.; Liu, J. On spatial diversity in WiFi-based human activity recognition: A deep learning-based approach. IEEE Internet Things J. 2018, 6, 2035–2047. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Wang, F.; Song, Y.; Zhang, J.; Han, J.; Huang, D. Temporal unet: Sample level human action recognition using wifi. arXiv 2019, arXiv:1904.11953. [Google Scholar]
- Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W. WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mob. Comput. 2018, 18, 2714–2724. [Google Scholar] [CrossRef]
- Huang, S.; Wang, D.; Zhao, R.; Zhang, Q. Wiga: A wifi-based contactless activity sequence recognition system based on deep learning. In Proceedings of the 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 11–13 December 2019; pp. 69–74. [Google Scholar]
- Sheng, B.; Xiao, F.; Sha, L.; Sun, L. Deep spatial–temporal model based cross-scene action recognition using commodity WiFi. IEEE Internet Things J. 2020, 7, 3592–3601. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Denil, M.; Bazzani, L.; Larochelle, H.; de Freitas, N. Learning where to attend with deep architectures for image tracking. Neural Comput. 2012, 24, 2151–2184. [Google Scholar] [CrossRef]
- Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification and recognition. In Proceedings of the International Conference on Artificial Neural Networks, Warsaw, Poland, 11–15 September 2005; pp. 799–804. [Google Scholar]
- Zou, H.; Yang, J.; Prasanna Das, H.; Liu, H.; Zhou, Y.; Spanos, C.J. WiFi and vision multimodal learning for accurate and robust device-free human activity recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Ye, H.; Wu, Z.; Zhao, R.W.; Wang, X.; Jiang, Y.G.; Xue, X. Evaluating two-stream CNN for video classification. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, China, 23–26 June 2015; pp. 435–442. [Google Scholar]
- Memmesheimer, R.; Theisen, N.; Paulus, D. Gimme signals: Discriminative signal encoding for multimodal activity recognition. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 10394–10401. [Google Scholar]
- Yue, R.; Tian, Z.; Du, S. Action recognition based on RGB and skeleton data sets: A survey. Neurocomputing 2022, 512, 287–306. [Google Scholar] [CrossRef]
- Zou, Q.; Ni, L.; Wang, Q.; Li, Q.; Wang, S. Robust gait recognition by integrating inertial and RGBD sensors. IEEE Trans. Cybern. 2017, 48, 1136–1150. [Google Scholar] [CrossRef] [PubMed]
- Vrigkas, M.; Nikou, C.; Kakadiaris, I.A. A review of human activity recognition methods. Front. Robot. AI 2015, 2, 28. [Google Scholar] [CrossRef]
- Pareek, P.; Thakkar, A. A survey on video-based human action recognition: Recent updates, datasets, challenges, and applications. Artif. Intell. Rev. 2021, 54, 2259–2322. [Google Scholar] [CrossRef]
- Kong, Y.; Fu, Y. Human action recognition and prediction: A survey. Int. J. Comput. Vis. 2022, 130, 1366–1401. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM Comput. Surv. (CSUR) 2021, 54, 1–40. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Chen, Y.; Wang, Y.; Wang, C. Wireless sensing for human activity: A survey. IEEE Commun. Surv. Tutorials 2019, 22, 1629–1645. [Google Scholar] [CrossRef]
- Hannun, A.; Guo, C.; van der Maaten, L. Measuring data leakage in machine-learning models with fisher information. In Proceedings of the Uncertainty in Artificial Intelligence, Online, 27–29 July 2021; pp. 760–770. [Google Scholar]
- Stock, A.; Gregr, E.J.; Chan, K.M. Data leakage jeopardizes ecological applications of machine learning. Nat. Ecol. Evol. 2023, 7, 1743–1745. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, J.J.; McGaughey, A.; Zheng, S.; Priestley, R.D.; Ren, Z.J. Predicting extraction selectivity of acetic acid in pervaporation by machine learning models with data leakage management. Environ. Sci. Technol. 2023, 57, 5934–5946. [Google Scholar] [CrossRef] [PubMed]
- Samala, R.K.; Chan, H.P.; Hadjiiski, L.; Koneru, S. Hazards of data leakage in machine learning: A study on classification of breast cancer using deep neural networks. In Proceedings of the Medical Imaging 2020: Computer-Aided Diagnosis, Houston, TX, USA, 16–19 February 2020; Volume 11314, pp. 279–284. [Google Scholar]
- Rosenblatt, M.; Tejavibulya, L.; Jiang, R.; Noble, S.; Scheinost, D. The effects of data leakage on connectome-based machine learning models. bioRxiv 2023. bioRxiv:2023.06.09.544383. [Google Scholar]
- Rosenblatt, M.; Tejavibulya, L.; Jiang, R.; Noble, S.; Scheinost, D. Data leakage inflates prediction performance in connectome-based machine learning models. Nat. Commun. 2024, 15, 1829. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q. Leakage prediction in machine learning models when using data from sports wearable sensors. Comput. Intell. Neurosci. 2022, 2022, 5314671. [Google Scholar] [CrossRef]
- Moghaddam, A.K.; Zincir-Heywood, N. Exploring data leakage in encrypted payload using supervised machine learning. In Proceedings of the 15th International Conference on Availability, Reliability and Security, virtual event, 25–28 August 2020; pp. 1–10. [Google Scholar]
- Poldrack, R.A.; Huckins, G.; Varoquaux, G. Establishment of best practices for evidence for prediction: A review. JAMA Psychiatry 2020, 77, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Narayanan, A. Leakage and the reproducibility crisis in ML-based science. arXiv 2022, arXiv:2207.07048. [Google Scholar]
- Kapoor, S.; Narayanan, A. Leakage and the reproducibility crisis in machine-learning-based science. Patterns 2023, 4. [Google Scholar] [CrossRef]
- Jiao, W.; Zhang, C. An Efficient Human Activity Recognition System Using WiFi Channel State Information. IEEE Syst. J. 2023, 17, 6687–6690. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, H. Quantum-Enhanced Forecasting: Leveraging Quantum Gramian Angular Field and CNNs for Stock Return Predictions. arXiv 2023, arXiv:2310.07427. [Google Scholar] [CrossRef]
- Wang, Z.; Oates, T. Imaging time-series to improve classification and imputation. arXiv 2015, arXiv:1506.00327. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Jawad, S.K.; Alaziz, M. Human Activity and Gesture Recognition Based on WiFi Using Deep Convolutional Neural Networks. Iraqi J. Electr. Electron. Eng. 2022, 18, 110–116. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Zhang, C.; Jiao, W. Imgfi: A high accuracy and lightweight human activity recognition framework using csi image. IEEE Sens. J. 2023, 23, 21966–21977. [Google Scholar] [CrossRef]
- Casdagli, M. Recurrence plots revisited. Phys. D Nonlinear Phenom. 1997, 108, 12–44. [Google Scholar] [CrossRef]
- Solomon, C.; Breckon, T. Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Shahverdi, H.; Nabati, M.; Fard Moshiri, P.; Asvadi, R.; Ghorashi, S.A. Enhancing CSI-based human activity recognition by edge detection techniques. Information 2023, 14, 404. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Balakrishnama, S.; Ganapathiraju, A. Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 1998, 18, 1–8. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Dubey, A.K.; Jain, V. Comparative study of convolution neural network’s relu and leaky-relu activation functions. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering: Proceedings of MARC 2018; Springer: Singapore, 2019; pp. 873–880. [Google Scholar]
- Ketkar, N.; Moolayil, J.; Ketkar, N.; Moolayil, J. Introduction to pytorch. In Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch; Apress: Berkeley, CA, USA, 2021; pp. 27–91. [Google Scholar]
- Oakden, T.; Kavakli, M. Performance Analysis of RTX Architecture in Virtual Production and Graphics Processing. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), Bologna, Italy, 10–13 July 2022; pp. 215–220. [Google Scholar]
- Guo, L.; Wang, L.; Lin, C.; Liu, J.; Lu, B.; Fang, J.; Liu, Z.; Shan, Z.; Yang, J.; Guo, S. Wiar: A public dataset for wifi-based activity recognition. IEEE Access 2019, 7, 154935–154945. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Qian, K.; Zhang, G.; Liu, Y.; Wu, C.; Yang, Z. Widar3.0: Zero-effort cross-domain gesture recognition with wi-fi. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 8671–8688. [Google Scholar] [CrossRef]
- Moshiri, P.F.; Shahbazian, R.; Nabati, M.; Ghorashi, S.A. A CSI-based human activity recognition using deep learning. Sensors 2021, 21, 7225. [Google Scholar] [CrossRef] [PubMed]
- Gringoli, F.; Schulz, M.; Link, J.; Hollick, M. Free your CSI: A channel state information extraction platform for modern Wi-Fi chipsets. In Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, Los Cabos, Mexico, 25 October 2019; pp. 21–28. [Google Scholar]
- Saupe, D.; Hahn, F.; Hosu, V.; Zingman, I.; Rana, M.; Li, S. Crowd workers proven useful: A comparative study of subjective video quality assessment. In Proceedings of the QoMEX 2016: 8th International Conference on Quality of Multimedia Experience, Lisbon, Portugal, 6–8 June 2016. [Google Scholar]
Parameter | Value |
---|---|
Loss function | Cross-entropy |
Optimizer | Adam [74] ( = 0.9, = 0.99, = 1 × ) |
Learning rate | 0.001 |
Decay rate | 0.8 |
Batch size | 128 |
Dropout rate | 0.5 |
Epochs | 20 |
AlexNet [70] | VGG19 [72] | SqueezeNet [76] | |
---|---|---|---|
Input image size | |||
Loss function | cross-entropy | cross-entropy | cross-entropy |
Learning rate | 0.0001 | 0.0002 | 0.0002 |
Batch size | 10 | 10 | 10 |
Epochs | 20 | 20 | 30 |
Optimizer | SGDM | SGDM | SGDM |
Dataset Name | Action Labels | Dataset Size |
---|---|---|
WiAR [88] | two hands wave, high throw, horizontal arm wave, draw tick, toss paper, walk, side kick, bend, forward kick, drink water, sit down, draw X, phone call, hand clap, high arm wave, squat | 62,415 images |
Widar3.0 [89] | push, sweep, clap, slide, draw-Z, draw-N | 80,000 images |
Reported in [67] | Retrained w/o.r.t. Humans | Retrained w.r.t. Humans | ||||
---|---|---|---|---|---|---|
Architecture | Acc. | F1 | Acc. | F1 | Acc. | F1 |
ResNet50 | 0.994 | 0.994 | 0.801 | 0.800 | 0.204 | 0.195 |
VGG19 | 0.993 | 0.994 | 0.932 | 0.931 | 0.229 | 0.218 |
ShuffleNet | 0.992 | 0.992 | 0.933 | 0.932 | 0.225 | 0.216 |
Proposed CNN | 0.994 | 0.994 | 0.955 | 0.955 | 0.231 | 0.220 |
Reported in [67] | Retrained w/o.r.t. Humans | Retrained w.r.t. Humans | ||||
---|---|---|---|---|---|---|
Architecture | Acc. | F1 | Acc. | F1 | Acc. | F1 |
ResNet50 | 0.993 | 0.993 | 0.990 | 0.990 | 0.390 | 0.382 |
VGG19 | 0.992 | 0.993 | 0.991 | 0.991 | 0.444 | 0.440 |
ShuffleNet | 0.991 | 0.991 | 0.991 | 0.991 | 0.443 | 0.439 |
Proposed CNN | 0.993 | 0.993 | 0.992 | 0.993 | 0.456 | 0.440 |
Reported in [75] | Retrained without Respec to Humans | Retrained with Respect to Humans | |
---|---|---|---|
Architecture | Acc. | Acc. | Acc. |
AlexNet | 0.9917 | 0.97 | 0.215 |
SqueezeNet | 1.0 | 0.98 | 0.215 |
VGG19 | 0.9625 | 0.94 | 0.201 |
Dataset Name | Action Labels | Dataset Size |
---|---|---|
CSI-HAR [90] | bend, fall, lie down, run, sit down, stand up, walk | 420 images |
Reported in [81] | Retrained w/o.r.t. Humans | Retrained w.r.t. Humans | |
---|---|---|---|
Architecture | Accuracy | Accuracy | Accuracy |
Plain RGB images | 0.912 | 0.901 | 0.586 |
Canny | 0.979 | 0.970 | 0.614 |
Sobel | 0.971 | 0.962 | 0.604 |
Prewitt | 0.961 | 0.954 | 0.597 |
LoG | 0.975 | 0.966 | 0.610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga, D. Exposing Data Leakage in Wi-Fi CSI-Based Human Action Recognition: A Critical Analysis. Inventions 2024, 9, 90. https://doi.org/10.3390/inventions9040090
Varga D. Exposing Data Leakage in Wi-Fi CSI-Based Human Action Recognition: A Critical Analysis. Inventions. 2024; 9(4):90. https://doi.org/10.3390/inventions9040090
Chicago/Turabian StyleVarga, Domonkos. 2024. "Exposing Data Leakage in Wi-Fi CSI-Based Human Action Recognition: A Critical Analysis" Inventions 9, no. 4: 90. https://doi.org/10.3390/inventions9040090
APA StyleVarga, D. (2024). Exposing Data Leakage in Wi-Fi CSI-Based Human Action Recognition: A Critical Analysis. Inventions, 9(4), 90. https://doi.org/10.3390/inventions9040090