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Abstract: Wi-Fi channel state information (CSI)-based human action recognition systems have
garnered significant interest for their non-intrusive monitoring capabilities. However, the integrity of
these systems can be compromised by data leakage, particularly when improper dataset partitioning
strategies are employed. This paper investigates the presence and impact of data leakage in three
published Wi-Fi CSI-based human action recognition methods that utilize deep learning techniques.
The original studies achieve precision rates of 95% or higher, attributed to the lack of human-based
dataset splitting. By re-evaluating these systems with proper subject-based partitioning, our analysis
reveals a substantial decline in performance, underscoring the prevalence of data leakage. This
study highlights the critical need for rigorous dataset management and evaluation protocols to
ensure the development of robust and reliable human action recognition systems. Our findings
advocate for standardized practices in dataset partitioning to mitigate data leakage and enhance the
generalizability of Wi-Fi CSI-based models.
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1. Introduction

In the ever-evolving landscape of technology, the intersection of wireless communi-
cation and human behavior analysis has given rise to an innovative field known as Wi-Fi
signal-based human action recognition. This paradigm exploits the ubiquitous Wi-Fi sig-
nals that permeate our surroundings to decipher and interpret human actions, providing
a non-intrusive and privacy-preserving approach to understanding and responding to
human behavior [1]. Wi-Fi signal-based human action recognition involves the utilization
of wireless communication signals, specifically Wi-Fi signals, to infer and understand
human actions in a given environment. Traditional methods of human action recognition
often rely on cameras and sensors [2], which may pose privacy concerns. Wi-Fi signals,
on the other hand, are omnipresent and can penetrate walls, allowing for non-intrusive
and remote monitoring of human actions [3]. This technology leverages the fluctuations in
the Wi-Fi signal’s channel state information (CSI) caused by human movements [4]. CSI
refers to the information about the wireless channel that the Wi-Fi signal travels through, in-
cluding phase, amplitude, and frequency characteristics [5]. By analyzing these variations,
algorithms can deduce intricate details about human actions such as walking, running,
sitting, or even gestures [6].

Wi-Fi signal-based human action recognition may find applications in the following areas:

1. Healthcare monitoring: Wi-Fi signal-based systems can be deployed in healthcare set-
tings to monitor the movements of patients, especially the elderly, providing valuable
insights into their daily activities and well-being [7].

2. Smart homes: Wi-Fi signal-based human action recognition can enhance automa-
tion systems by recognizing specific gestures to control devices, adjusting lighting,
or regulating temperature based on occupants’ activities [8].
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3. Security and surveillance: Wi-Fi signals can be employed for unobtrusive surveil-
lance, tracking suspicious movements in restricted areas or public spaces without
compromising privacy [9].

4. Retail analytics: Retailers can use Wi-Fi signal-based recognition to analyze customer
movements within stores, gaining insights into shopping patterns and improving
store layouts for a better customer experience [10].

The CSI is crucial in Wi-Fi signal-based human action recognition due to its sensitivity
to environmental changes caused by human movements. Namely, CSI captures subtle
variations in signal properties as a person moves, enabling the development of accurate
algorithms for action recognition. By examining phase shifts and amplitude changes,
it becomes possible to distinguish between different actions, even those involving intri-
cate gestures. Moreover, CSI provides a level of abstraction from the raw Wi-Fi signal,
allowing for more robust and generalized models. This abstraction aids in the creation
of machine learning models that can recognize actions across different Wi-Fi hardware
and environmental conditions. In summary, Wi-Fi signal-based human action recognition
represents a cutting-edge approach to understanding and interpreting human behavior
without compromising privacy. The utilization of CSI enables the development of accu-
rate and versatile models, paving the way for a wide array of applications in healthcare,
smart homes, security, and retail analytics. As technology continues to advance, Wi-Fi
signal-based human action recognition stands as a testament to the ingenuity of leveraging
everyday technologies for innovative solutions.

Wi-Fi CSI-based human action recognition systems have gained significant attention
in recent years due to their non-intrusive nature and wide range of applications, from smart
homes to healthcare monitoring. As already mentioned, these systems leverage the subtle
changes in Wi-Fi signals caused by human movements, which are then analyzed using
deep learning algorithms to classify various human actions. Despite the promising ad-
vancements, a critical issue undermines the reliability and generalizability of these systems:
data leakage.

Data leakage, a phenomenon where information from outside the training dataset
improperly influences the model, can severely distort the performance metrics of machine
learning models. In the context of Wi-Fi CSI-based human action recognition, data leakage
often occurs due to the absence of the subject-based partitioning of datasets. The subject-
based partitioning of a database in the context of machine learning refers to dividing the
dataset based on distinct subjects or individuals. This method ensures that all data related to
a specific subject are grouped together and used exclusively in one of the subsets (training,
validation, or test set). For example, in a dataset containing activity data from multiple
individuals, subject-based partitioning would involve assigning each person’s entire set
of data to either the training set, validation set, or test set, without mixing data from the
same person across these subsets. This approach helps in evaluating the generalization
capability of the model to new, unseen subjects, ensuring that the model is not merely
learning individual-specific patterns but can generalize to different subjects. The abundance
of subject-based partitioning involves splitting the dataset in a way that data from the
same individuals appear in both training and testing sets, leading to artificially inflated
accuracy scores. Such partitioning fails to reflect real-world scenarios where the system
must generalize to recognize actions from unseen individuals. To illustrate this, let us
consider a scenario where a company develops a health monitoring device in country A
using data from local participants. Namely, the device’s algorithm is trained to recognize
various health metrics and behaviors using these data. However, this device is intended to
be sold and used in country B, with a different population. The problems of partitioning
without respect to subjects (or humans) are the following:

• If the data are randomly partitioned, data from the same individuals could end up in
both the training and test sets.

• The model may learn specific characteristics of those individuals, leading to high
accuracy during testing.
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• However, this performance might not translate to new users in country B, as the model
has not learned to generalize beyond the specific subjects in country A.

In contrast, the advantages of subject-based partitioning of the database are the following:

• By using subject-based partitioning, the model is trained on one group of individuals
and tested on a completely separate group.

• This ensures that the model learns to generalize patterns that apply broadly to different
individuals, improving its performance when deployed in country B.

Based on the above considerations, we may say that partitioning without respect to
humans can lead to data leakage, where information from the test set influences the training
process, resulting in an overestimation of the model’s performance. On the other hand,
subject-based partitioning eliminates this risk by ensuring that no individual’s data appear
in both the training and test sets, providing a more accurate evaluation of the model’s
true performance.

This paper aims to systematically identify and analyze instances of data leakage in
published Wi-Fi CSI-based human action recognition systems that utilize deep learning.
By examining the dataset partitioning strategies employed, we demonstrate how subject-
based partitioning can lead to misleading performance evaluations. Furthermore, we
discuss the implications of these findings for the development of robust and reliable human
action recognition systems and propose best practices to mitigate data leakage. Our study
underscores the importance of rigorous dataset management and evaluation protocols to
ensure the integrity and applicability of deep learning models in real-world applications.
By addressing the issue of data leakage, we aim to pave the way for more accurate and
dependable human action recognition systems that can truly leverage the potential of Wi-Fi
CSI technology.

Contributions

This paper makes the following key contributions to the field of Wi-Fi CSI-based
human action recognition.

• Identification and analysis of data leakage: We conduct an in-depth analysis of data
leakage in three published Wi-Fi CSI-based human action recognition methods. Our
study highlights how improper dataset partitioning, specifically, the failure to parti-
tion data with respect to individual subjects, can lead to artificially inflated perfor-
mance metrics.

• Evaluation with proper dataset partitioning: We re-evaluate the aforementioned meth-
ods using subject-based partitioning strategies, demonstrating a significant decline in
performance. This underscores the critical importance of proper dataset management
in developing robust and generalizable models.

• Comparison of preprocessing techniques: Our study reveals that the impact of various
preprocessing techniques, such as Canny, Sobel, Prewitt, and LoG filtering, is less
significant when correct data partitioning is applied. This finding emphasizes the
primacy of proper data splitting over preprocessing choices.

• Continuation of previous work: Building on our prior research where we analyzed
data leakage in another published method [11], this paper extends our efforts to ensure
the validity and reliability of Wi-Fi CSI-based human action recognition systems.

By addressing these issues, we aim to improve the methodological rigor in the evalua-
tion of human action recognition systems and provide a foundation for future research to
build more trustworthy and generalizable models.

2. Preliminaries on RSSI and CSI

In the digital age, connectivity is the backbone of our daily lives, seamlessly integrating
into our routines. One of the most transformative innovations in this realm is Wi-Fi,
a wireless communication technology that has revolutionized the way we access and share
information. The received signal strength indicator (RSSI) is a measurement used in wireless
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communication systems, including Wi-Fi, to quantify the power level of the received signal.
RSSI represents the strength or intensity of the radio signal as it is received by a wireless
device, such as a Wi-Fi-enabled device or router. It is usually expressed in decibels. The
RSSI value provides an indication of the signal strength between a transmitting device (e.g.,
a Wi-Fi router) and a receiving device (e.g., a smartphone, laptop, or another Wi-Fi-enabled
device). A higher RSSI value typically indicates a stronger and more robust signal, while
a lower value suggests a weaker signal. It is important to note that RSSI alone may not
provide a comprehensive assessment of the overall quality of a wireless connection. The
signal quality can be affected by various factors, including interference, obstacles, and the
distance between the devices. Additionally, different manufacturers and devices may use
slightly different RSSI scales, making it advisable to interpret RSSI values in the context
of a specific device or system. Formally, RSSI can be expressed as based on the received
power (Pr)

RSSI = 10 · log10(
Pr

P0
), (1)

where Pr is the received power in milliwatts (mW) and P0 is a reference power, typically
1 mW. This formula can be simplified in practical applications where RSSI is measured
directly by Wi-Fi hardware. In many cases, RSSI values are provided in dBm (decibels
relative to one milliwatt), which inherently use a logarithmic scale.

CSI refers to a set of parameters that describe the characteristics of the wireless commu-
nication channel between a transmitter (e.g., Wi-Fi router) and a receiver (e.g., Wi-Fi-enabled
device). CSI provides detailed information about how the radio signals traverse the wire-
less medium, including phase, amplitude, and frequency information. CSI is valuable for
advanced signal processing techniques, beamforming, and fine-tuning of communication
protocols to optimize wireless performance in various conditions. Unlike RSSI, which pro-
vides a general indication of signal strength, CSI offers a more detailed and nuanced view
of the channel conditions. It is particularly useful for advanced applications in wireless
communications, such as multiple-input multiple-output (MIMO) systems, beamforming,
and other techniques that leverage the spatial and temporal characteristics of the channel
to enhance data rates and reliability. CSI contains amplitude and phase measurements as

h = |h| · ej·sin θ , (2)

where |h| and θ stand for the amplitude and the phase, respectively. In this paper, all
subcarriers of CSI are considered for Wi-Fi-based human action recognition (HAR).

3. Related Works

The following section reviews existing literature pertinent to our study, divided into
two key areas: human action recognition and data leakage. The first subsection provides an
overview of the methodologies and advancements in human action recognition, particularly
focusing on systems utilizing Wi-Fi CSI and deep learning. The second subsection explores
the concept of data leakage in machine learning, examining its causes, effects, and the
strategies proposed to detect and mitigate this issue across various domains.

3.1. Wi-Fi CSI-Based Human Action Recognition

In this subsection, a brief overview on existing CSI-based Wi-Fi HAR methods is given.
Specifically, publicly available databases related to Wi-Fi-based HAR are outlined first.
Subsequently, representative algorithms and architectures are discussed. Using Wi-Fi for
HAR has a number of advantages, such as convenience, simplicity, privacy protection,
and the low cost of Wi-Fi devices [12]. Further, human bodies can reflect Wi-Fi signals for
HAR well enough, even for through-wall scenarios [13]. In particular, the vast majority of
Wi-Fi-based methods for HAR have utilized CSI, since—as already mentioned—it is the
fine-grained information calculated from the raw signal and Wi-Fi signals reflected from a
moving person typically produce unique CSI on a receiver [14,15].
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In 2018, Guo et al. [16] published the Wi-Fi–activity recognition (WiAR) database
and the HuAc architecture, which is a combination of Wi-Fi-based and Kinect-based [17]
activity recognition systems. Specifically, the WiAR database was collected in three different
settings, i.e., empty room, meeting room with a desk, and office. Further, sixteen activities
were recorded, such as horizontal arm wave, high arm wave, two hands wave, high throw,
draw X, draw tick, toss paper, forward kick, side kick, bend, hand clap, walk, phone call,
drink water, sit down, and squat. In this database, the authors published the raw RSSI and
CSI signals related to each activity. A similar database was published by Wang et al. [18],
who collected CSI data for HAR and indoor localization, containing six different activities,
such as hand up, hand down, hand left, hand right, hand circle, and hand cross, which
may have significance for human–computer interaction. In contrast, the publishers of
StanWiFi dataset [6] asked six subjects to carry out six daily activities, i.e., sitting down,
standing up, lying down, running, walking, and falling, in an indoor environment. In this
environment, a transmitter (Wi-Fi router with one antenna) and a receiver (computer with
NIC 5300 and three antennas) were placed 3 m from each other. Unlike the other publicly
available datasets, Alazrai et al. [19] compiled Wi-Fi-based human-to-human interaction
datasets, where pairs of subjects perform different actions, such as approaching, departing,
handshaking, high fives, hugging, kicking with the left leg, kicking with the right leg,
pointing with the left hand, pointing with the right hand, punching with the left hand,
punching with the right hand, and pushing.

A time–frequency diagram, also known as a spectrogram, is a visual representation
of how the frequency content of a signal changes over time [20]. It is a two-dimensional
plot, where the x-axis represents time, the y-axis represents frequency, and the intensity of
each point or pixel in the plot represents the magnitude or power of the signal’s frequency
components at that particular time and frequency. Using energy changes at different
frequencies along time, time segments of actions and human actions can be detected
and identified. For instance, the E-eyes system [14] utilizes a matching algorithm to
compare the spectogram of a given CSI to already known profiles for human activity
identification. In [21,22], researchers demonstrated the potential of Wi-Fi signals for the
recognition of small scale human movements. Specifically, Wang et al. [21] introduced the
WiHear framework, where fine-grained radio reflections from the mouth were detected and
analyzed to reconstruct people’s speech. Similarly, Tan et al. [22] utilized fine-grained CSI
from a commodity Wi-Fi device, but the authors identified finger gestures, such as zoom out,
zoom in, circle left, circle right, swipe left, swipe right, flip up, and flip down. In contrast,
large-scale human movements were detected in the WiSee [23], WiTrack [24], and Wi-Vi [25]
projects. To be more specific, Pu et al. [23] detected nine large-scale movements, i.e., push,
dodge, strike, pull, drag, kick, circle, punch, and bowling, to create a Wi-Fi based human–
computer interface. In the WiTrack [24] project, the focus was on the tracking of the human
body and the human body parts using the Wi-Fi signal. In the Wi-Vi [25] project, researchers
demonstrated that Wi-Fi signals enable the detection of moving objects through walls. The
Wi-Sleep system [26] extracts rhythmic patterns from the CSI to monitor a person’s sleep. It
was demonstrated that movements during sleep, i.e., postures and rollovers, can be reliably
detected. Chen et al. [27] utilized discrete wavelet decomposition to extract features from
the CSI, and subsequently, a support vector machine (SVM) was trained to identify table
tennis human actions. In [28], researchers applied the time variability and diversity of
CSI to train a SVM [29] for human fall detection. Proposals for Wi-Fi-based human fall
detection systems can also be found in [30–33]. The advent of deep learning has also
changed the landscape in Wi-Fi-based HAR, recently. Zhou et al. [34] published a hybrid
system, where features from CSI were extracted using a deep CNN, and human actions
were classified with a trained SVM. In [35], a similar architecture was introduced for indoor
fingerprinting. Namely, a deep network with four hidden layers was trained in an offline
phase, and subsequently, a probabilistic method based on the radial basis function was
used in an online phase for location estimation. Similarly, a fingerprinting system was
discussed in [36], where a deep network with three hidden layers was trained on calibrated
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phase data. In [37], a deep spare autoencoder was introduced, which learned discriminative
features from CSI streams. Inspired by the success of UNet [38] in image segmentation,
Wang et al. [39] implemented and introduced temporal UNet to learn a mapping from CSI
data to action categories. In [40–42], long short-term memory (LSTM) networks [43] were
employed to predict human actions from CSI. Specifically, Chen et al. [40] implemented an
attention-based [44] bi-directional LSTM [45] to learn features from CSI in two directions.
In contrast, Huang et al. [41] extracted features from CSI with a CNN and predicted human
actions based on the extracted deep features and an LSTM. Similarly, Sheng et al. [42]
built their system on the exploitation of deep features, but a bi-directional LSTM predicted
human actions. Another line of works have focused on the fusion of Wi-Fi and other
modalities for HAR. For instance, Zou et al. [46] implemented a two-stream CNN [47],
which accepts CSI images at one stream and RGB images at the other stream, for HAR.
In contrast, Memmesheimer et al. [48] took skeleton [49], inertial [50], and Wi-Fi signals
and represented them as 2D images. Subsequently, these images were fed into a CNN to
predict human actions.

A comprehensive overview on HAR is out of the scope of this paper. In [12], HAR
algorithms were reviewed with respect to different data modalities, such as RGB image,
skeleton, depth, infrared, point cloud, event stream, audio, acceleration, radar, and Wi-Fi.
A similar but earlier study was written by Vrigkas et al. [51] In contrast, the studies of
Zhang et al. [2], Pareek et al. [52], and Kong et al. [53] placed the focus on vision-based
algorithms. In [54], Chen et al. summarized deep learning methods for sensor-based HAR.
In [4], a state-of-the-art study was presented on HAR utilizing CSI. A similar study was
published by Liu et al. [55], who reviewed the literature related to the wireless sensing of
human activity.

3.2. Data Leakage in Machine Learning Research

The concept of data leakage in machine learning research refers to situations where
information from outside the training dataset is inadvertently used to create the model,
leading to overly optimistic performance estimates that do not generalize well to unseen
data. This concern permeates various research domains, highlighting the complexity
and multifaceted nature of preventing data leakage and ensuring robust, generalizable
machine learning models. Data leakage poses several significant threats to the integrity
and reliability of machine learning models [56]. Primarily, it can lead to overestimated
performance metrics, giving a false sense of accuracy and robustness [57]. When a model
inadvertently learns from data it should not have access to during training, it can fail to
generalize to new, unseen data, thereby reducing its effectiveness in real-world applications.
Additionally, data leakage can undermine the trust in and credibility of the research
findings, potentially misleading stakeholders and decision-makers who rely on these
models for critical applications [58]. In security-sensitive areas, such as healthcare or
finance, data leakage can result in dire consequences, including compromised privacy and
erroneous decision-making, further emphasizing the necessity of stringent measures to
detect and prevent data leakage.

In the field of healthcare and particularly in cancer diagnosis, Samala et al. [59] un-
derscore the hazards of data leakage when classifying breast cancer using deep neural
networks, suggesting that validation set performance might be misleading compared to in-
dependent test set evaluations, possibly leading to overoptimistic assessments of a model’s
true predictive capability. Similar concerns were echoed by Rosenblatt et al. [60,61], who
examined the effects of data leakage on connectome-based machine learning models used
in neuroimaging data, indicating that prediction performance could be inflated through
feature selection and repeated subject data, thus stressing the importance of avoiding data
leakage to ensure model validity and reproducibility. Dong [62] highlighted a common
source of leakage, where variables used to train the algorithm may inadvertently contain
information about the outcome variable, resulting in unreliable and overly optimistic
predictive performance. Addressing the prevention of data leakage, Moghaddam and
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Zincir-Heywood [63] delved into the impact of stronger encryption algorithms on reducing
data leakage in encrypted payloads analyzed using supervised machine learning, showing
a technical approach to curtail data exposure risks. In [64], Poldrack et al. emphasized
the distinction between correlation and prediction, highlighting that many neuroimaging
studies erroneously claim predictive power based on correlations. It was pointed out
that to establish evidence for prediction, models must be tested on independent data,
not the same data used for parameter estimation. The authors recommended several
best practices for predictive modeling: not reporting in-sample model fit as predictive
accuracy, ensuring cross-validation includes all data operations, avoiding small samples,
examining and reporting multiple accuracy measures, computing the coefficient of de-
termination correctly, and using k-fold cross-validation over leave-one-out. Kapoor and
Narayanan [65,66] introduced a taxonomy of eight types of leakage—i.e., not having a
separate test set, preprocessing on the training and test sets, feature selection jointly on
the training and test sets, duplicate data points, illegitimate features, temporal leakage,
non-independence between the training and test sets, and sampling bias—ranging from
textbook errors to open research problems. They proposed the implementation of “model
info sheets” as a tool to help researchers identify and prevent leakage. These sheets consist
of 21 questions that guide researchers in ensuring the legitimacy of their models and the
correctness of their scientific claims.

4. Methods

In this section, we detail the methodologies employed in three different Wi-Fi CSI-
based human action recognition systems, where data leakage was detected by us. Each
subsection provides a comprehensive description of the respective method, focusing on
the implementation details, dataset partitioning strategies, and the training parameters
used. By examining these methods, we aim to illustrate how improper dataset partitioning,
particularly the absence of subject-based splits, leads to significant data leakage and inflated
performance metrics.

4.1. An Efficient Human Activity Recognition System Using Wi-Fi Channel State Information

Jiao and Zhang [67] presented a framework for HAR using Wi-Fi CSI in a paper entitled
“An efficient human activity recognition system using Wi-Fi channel state information” and
published in IEEE Systems Journal. The general workflow of this approach is depicted
in Figure 1. The framework utilizes Gramian angular fields (GAFs) to convert CSI into
images, which are then analyzed by a CNN to extract activity information. According to the
reported results, the proposed framework achieves excellent performance (accuracy rate
is 99.4% and F1 score is 99.4%), and it also exhibits low complexity compared to classical
deep learning models.

Figure 1. The general workflow of the method proposed by Jiao and Zhang [67]. First, CSI signals are
converted into images, which are then analyzed by a CNN to predict human actions, using Gramian
angular fields.

Since CSI data are given as time series of complex numbers, the goal of the CSI imaging
module is converting these time series to two-dimensional images, which can later be used
for fine-tuning CNN and transformer architectures. To this end, Gramian angular fields
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(GAFs) are applied, which are methods for transforming time series data into a matrix
format that can be used for various purposes, such as visualization, feature extraction,
or classification. Since CSI contains complex numbers, CSI amplitude is considered in the
imaging process. In the following, the amplitude values are meant if the term CSI data
is used.

The GAF is constructed as follows [68]. Let us suppose that we are given time series
X = {x1, x2, . . . , xn} of length n. The first step is the normalization of the time series to the
[−1; 1] range:

x̃i =
xi − max (X) + (xi − min (X))

max (X)− min (X)
. (3)

Subsequently, the time series is converted to polar coordinates:{
ϕi = arccos (x̃i), x̃i ∈ X̃,
ri =

ti
N , ti ∈ N,

(4)

where ti and N stand for the time step and the normalization factor, respectively. Further,
N is set to 1 according to [69]. Finally, GASF and GADF can be defined as follows:

GASF = cos (ϕi + ϕj), (5)

GASF =


cos (ϕ1 + ϕ1) . . . cos (ϕ1 + ϕN)
cos (ϕ2 + ϕ1) . . . cos (ϕ2 + ϕN)

...
. . .

...
cos (ϕN + ϕ1) . . . cos (ϕN + ϕN)

, (6)

GADF = sin (ϕi − ϕj), (7)

GADF =


sin (ϕ1 − ϕ1) . . . sin (ϕ1 − ϕN)
sin (ϕ2 − ϕ1) . . . sin (ϕ2 − ϕN)

...
. . .

...
sin (ϕN − ϕ1) . . . sin (ϕN − ϕN)

. (8)

Figure 2 illustrates the conversion of an example time series into GASF and GADF.
As described above, the time series is first normalized. Next, the normalized signal is
converted into polar coordinates. Finally, GASF and GADF can be obtained from the polar
coordinates using Equations (6) and (8), respectively.

GASF and GADF can also be expressed via matrix operations:

GASF = X̃TX̃ −
√

I − X̃2
T√

I − X̃2, (9)

GADF =
√

I − X̃2
T

X̃ − X̃T
√

I − X̃2, (10)

where X is the given time series, and X̃ is the normalized time series obtained from X
using Equation (3). Further, I stands for a vector containing only ones. According to the
authors’ results, GADF slightly outperforms GASF. This is why we opted to use GADF
in our reimplementation and experiments. Figure 3 illustrates the process of CSI imaging
through a series of subplots. The first subplot shows the raw CSI amplitude, capturing
the initial, unprocessed signal data. The second subplot presents the filtered CSI signal,
where noise and irrelevant variations have been reduced to highlight significant patterns.
The final subplots depict the GASF and GADF, which transform the filtered CSI signal into
visual representations suitable for 2D deep learning model input. These steps collectively
demonstrate the transformation of raw CSI data into structured forms that enhance the
capability of human action recognition systems.
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(a) (b)

(c) (d)

(e)
Figure 2. Illustration of GASF and GADF computation. (a) Example time series. (b) Normalized time
signal obtained using Equation (3). (c) Mapping to polar coordinates using Equation (4). (d) GASF
obtained using Equation (6). (e) GADF obtained using Equation (8).

As already mentioned, the proposed CNN analyzes the CSI images created with GADF
to obtain human activity information. The structure of the CNN is depicted in Figure 4.
Each convolutional layer has a kernel size of 3 × 3 and a varying number of channels (64,
128, 256, and 512). Batch normalization layers are employed after each convolutional layer
to increase convergence speed, followed by rectified linear units (ReLUs) as activation
functions. Additionally, the CNN utilizes maximum pooling and adaptive average pooling
layers. Finally, a classifier with a dropout layer, a linear layer, and a ReLU layer follows
the adaptive average pooling to obtain the activity information from the CSI images. The
hyperparameters used in this method are detailed in Table 1. Besides the proposed CNN
architecture, the authors fine-tuned three on ImageNet [70] database pretrained CNNs,
such as ResNet50 [71], VGG19 [72], and ShuffleNet [73], on the Wi-Fi CSI databases for
HAR. Although the process of fine-tuning was not explicitly described in the original
paper, we can reasonably assume that a standard fine-tuning procedure was employed.
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Namely, the final output layers of the pretrained networks were replaced to match the
number of classes in the new task. For example, if the pretrained model was designed
for 1000 classes—as in the case of ImageNet database—and the new task has 10 classes,
the final layer was modified to output 10 classes. Next, the modified model was trained
using the new dataset, and performance was monitored on a validation set to avoid
overfitting. The hyperparameters of fine-tuning are identical to those used in the training
of the proposed CNN structure and already given in Table 1.

(a) (b)

(c) (d)
Figure 3. Illustration of CSI signal conversion to RGB image applied in the method of Jiao and
Zhang [67]. (a) Raw CSI signal. (b) Filtered CSI signal. (c) GASF. (d) GADF.

Table 1. Hyperparameters used for the training of the CNN proposed by Jiao and Zhang [67].

Parameter Value

Loss function Cross-entropy
Optimizer Adam [74] (β1 = 0.9, β2 = 0.99, ϵ2 = 1 × 10−9)
Learning rate 0.001
Decay rate 0.8
Batch size 128
Dropout rate 0.5
Epochs 20
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Figure 4. Structure of the CNN proposed and implemented by Jiao and Zhang [67] for Wi-Fi CSI-
based HAR. Batch normalization layers were implemented after each convolutional layer to increase
convergence speed, followed by ReLU as activation functions.

4.2. Human Activity and Gesture Recognition Based on Wi-Fi Using Deep Convolutional
Neural Networks

The paper entitled “Human activity and gesture recognition based on Wi-Fi using
deep convolutional neural networks” published in Iraqi Journal for Electrical and Electronic
Engineering [75] proposed a similar Wi-Fi CSI-based HAR approach to those published by
Jiao and Zhang [67] and discussed in the previous subsection. The general overview of the
authors’ method is depicted in Figure 5. The main difference lie in the creation of CSI images
and the applied deep architectures. Namely, Jawad and Alaziz [75] employed deep learning
models such as AlexNet [70], VGG19 [72], and SqueezeNet [76] for classification and feature
extraction. Initially, outliers are removed from the amplitude of CSI stream using the
Hampel filter algorithm. This is essential, as noise and outliers can impact the classification
outcomes. The potential causes of noise and outliers include furniture, interference from
neighboring devices, and transmitter transmitting power adaption. As already mentioned,
the preprocessing stage involves using the Hampel algorithm to remove abnormal points
from the amplitude of the CSI. This algorithm identifies and eliminates outliers based
on a specified range. After preprocessing, the CSI data are converted to RGB images.
Unlike in [67,77], Jawad and Alaziz [75] did not utilize time series imaging techniques,
such as GADF, GASF, or recurrence plot transformation [78] but created an image from
30 subcarriers of CSI using MATLAB’s imagesc function [79]—as illustrated in Figure 6. Data
augmentation techniques were also implemented to reduce overfitting in deep learning
models. The data augmentation involves introducing additional, slightly altered copies
of the existing data or synthesizing new data to increase the amount of data available
for training the models. Specifically, Jawad and Alaziz [75] applied random rotation in
the range [−30◦,+30◦], horizontal reflection, and random translation. Finally, several on
ImageNet [80] database trained CNNs were fine-tuned for HAR-based Wi-Fi CSI. The
parameters used for the fine-tuning of CNNs are shown in Table 2. The process of fine-
tuning was as follows. First, the final output layers of the pretrained networks were
replaced to match the number of classes in the new task. For example, if the pretrained
model was designed for 1000 classes—as in the case of ImageNet database—and the new
task had 10 classes, the final layer was modified to output 10 classes. The hyperparameters
of fine-tuning are given in Table 2. The authors of this method applied a special evaluation
technique, wherein the dataset was split equally into a training set (50% of images) and a
validation set (50% of images). The performance results of the models were then assessed
using validation accuracies, which were reported as the evaluation metrics.
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Figure 5. The general workflow of the Wi-Fi CSI-based HAR method proposed by Jawad and
Alaziz [75].

Table 2. Hyperparameters used for the training (fine-tuning) of various on ImageNet [80] pre-
trained CNNs.

AlexNet [70] VGG19 [72] SqueezeNet [76]

Input image size 227 × 227 × 3 224 × 224 × 3 227 × 227 × 3
Loss function cross-entropy cross-entropy cross-entropy
Learning rate 0.0001 0.0002 0.0002
Batch size 10 10 10
Epochs 20 20 30
Optimizer SGDM SGDM SGDM

(a)

(b)
Figure 6. Illustration of CSI signal conversion to RGB image applied in Jawad et al.’s [75] method:
(a) 30 Hampel filtered CSI signals. (b) CSI signals converted to RGB image using MATLAB’s
imagesc function.

4.3. Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques

In [81], Shahverdi et al. also utilized CSI data converted into RGB images. Prior to
the conversion to RGB images, principal component analysis (PCA) [82], normalization,
and linear discriminant analysis (LDA) [83] were applied to the raw CSI to reduce dimen-
sionality and decrease noise. The authors’ main contribution was the application of edge
detection techniques on the RGB images as a preproceesing phase to improve the accuracy
of activity recognition. The study utilized a CNN as a classifier, whose structure is depicted
in Figure 7.
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Figure 7. Structure of the CNN proposed and implemented by Shahverdi et al. [81] for Wi-Fi CSI-
based HAR. To avoid overfitting, the authors implemented dropout with p = 0.25 parameter [84]
after each convolutional and dense layer. Further, batch normalization layers were also implemented
after each convolutional layer to further reduce overfitting. The authors used leaky ReLU [85] as the
activation function.

Unfortunately, Shahverdi et al. [81] did not disclose the parameters used for the train-
ing of their model, such as the optimizer or the learning rate. To maintain consistency and
ensure a fair comparison, we adopted the training parameters of Jiao and Zhang [67] (with
the exception of the number of epochs, which was set to 30 to achieve better performance)—
already given in Table 1—who implemented a similar CNN. This approach allowed us to
standardize the evaluation process and provide a reliable assessment of the impact of data
leakage on the performance of Wi-Fi CSI-based human action recognition systems.

4.4. Detected Data Leakage

Our analysis reveals a critical flaw in the data partitioning strategies employed by
several Wi-Fi CSI-based human action recognition systems. Specifically, these methods
partition the dataset without regard to individual subjects, leading to substantial data
leakage. This practice involves splitting the data into training and testing sets in a way that
allows data from the same individuals to appear in both sets.

Such an approach results in the model learning individual-specific features rather
than generalized patterns of human actions, thereby inflating the performance metrics.
When the same subjects are present in both the training and testing phases, the model can
achieve unnaturally high precision rates, often exceeding 95%. This is because the model
effectively memorizes the actions of specific individuals rather than learning to recognize
actions across different individuals.

To illustrate the impact of this flaw, we re-evaluated the systems using a subject-based
partitioning strategy, where data from certain individuals are entirely excluded from the
training set and only used for testing. This approach is more reflective of real-world
scenarios, where the system must generalize to recognize actions performed by unseen
individuals. Our results demonstrate a significant drop in performance when subject-based
partitioning is applied, highlighting the extent of data leakage in the original evaluations.

By ensuring that data from the same individuals are not simultaneously present in
both training and testing sets, we can better assess the true generalizability of human
action recognition models. This methodological correction is crucial for developing reliable
and robust Wi-Fi CSI-based systems capable of performing accurately in diverse real-
world applications.

5. Results

This section presents the results of our experiments, highlighting the impact of data
leakage on the performance of Wi-Fi CSI-based human action recognition systems. We
evaluate each method by retraining the models with and without subject-based dataset
partitioning. The subsections provide a detailed comparison of the performance metrics,
demonstrating how the absence of subject-based splits leads to artificially high precision
rates due to data leakage. By contrasting these results, we underscore the importance of
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rigorous dataset management to ensure the reliability and generalizability of these systems.
The considered methods are reimplemented in Python 3.12.3 programming language using
the PyTorch [86] deep learning library. Further, these methods are trained with the help of a
GPU (graphics processing unit) server containing eight NVidia GeForce RTX 3090 [87] cards.

5.1. Results of the Reimplementation of “An Efficient Human Activity Recognition System Using
Wi-Fi Channel State Information”

In this subsection, we compare the performance of Wi-Fi CSI-based HAR system
proposed by Jiao and Zhang [67] when retrained using two different dataset partitioning
strategies: with and without respect to individual subjects. To provide context for our
analysis, we first summarize the key characteristics of the databases in Table 3 used in the
original paper [67] and in this study. It can be seen in this table that WiAR [88] contains
CSI data grouped into 16 action categories, while the number of action categories is 6 in
Widar3.0 [89]. The original dataset partitioning strategy employed by the examined system
of Jiao and Zhang [67] allocated 70% of the data for training, 15% for validation, and 15%
for testing. However, to ensure that each partition contained an integer number of subjects
in the case of retraining with respect to humans, we adjusted the partitioning strategy to
60% for training, 20% for validation, and 20% for testing. This adjustment was necessary
to maintain the integrity of subject-based partitioning and avoid fractional allocations
of individual subjects because WiAR contains data from 10 volunteers, while Widar3.0
consists of data from 5 volunteers.

Table 3. Dataset’s details of WiAR [88] and Widar3.0 [89].

Dataset Name Action Labels Dataset Size

WiAR [88]
two hands wave, high throw, horizontal arm wave, draw tick,
toss paper, walk, side kick, bend, forward kick, drink water, sit
down, draw X, phone call, hand clap, high arm wave, squat

62,415 images

Widar3.0 [89] push, sweep, clap, slide, draw-Z, draw-N 80,000 images

The results from retraining with respect to humans and without respect to humans
on WiAR [88] database are presented in Table 4. From these results, it can be seen that the
obtained values from retraining with respect to humans are lower than those reported in
the original paper. We suspect that some kind of data augmentation technique was not
disclosed in the original study. Specifically, for the ResNet50 model, we can observe a
significant difference. We found that we could increase the performance of the ResNet50
model by increasing the number of epochs. However, we chose not to do this because we
wanted to adhere to the number of epochs used in the original study. In the case of retraining
with respect to humans, the performance drop to 20–25% of the reported metrics. While
this can be discouraging, it is essential to use the correct data partitioning method, which is
with respect to humans. The results from retraining with respect to humans and without
respect to humans on the Widar3.0 [89] database are presented in Table 5. In the case of
Widar3.0 [89], we were able to reproduce the reported results with good accuracy. However,
when applying the correct data partitioning with respect to humans, the performance drops
to 39–45% of the reported metrics. The higher performance compared to the previous
database can be attributed to the lower number of actions (5 vs. 16) and the potentially
higher distinctness of these actions.
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Table 4. Comparison of results on WiAR.

Reported in [67] Retrained w/o.r.t. Humans Retrained w.r.t. Humans

Architecture Acc. F1 Acc. F1 Acc. F1

ResNet50 0.994 0.994 0.801 0.800 0.204 0.195
VGG19 0.993 0.994 0.932 0.931 0.229 0.218

ShuffleNet 0.992 0.992 0.933 0.932 0.225 0.216

Proposed CNN 0.994 0.994 0.955 0.955 0.231 0.220

Table 5. Comparison of results on Widar3.0.

Reported in [67] Retrained w/o.r.t. Humans Retrained w.r.t. Humans

Architecture Acc. F1 Acc. F1 Acc. F1

ResNet50 0.993 0.993 0.990 0.990 0.390 0.382
VGG19 0.992 0.993 0.991 0.991 0.444 0.440

ShuffleNet 0.991 0.991 0.991 0.991 0.443 0.439

Proposed CNN 0.993 0.993 0.992 0.993 0.456 0.440

Figures 8 and 9 depict the training curves without respect to humans and with respect
to humans, respectively. This figure provides insightful conclusions. When the data split
is performed without respect to humans, there is a strong correlation between training
and validation accuracy. The validation accuracy closely follows the trends of the training
accuracy, with only a slight difference. This alignment indicates that the model is effectively
learning from the training data and generalizing well to the unseen validation data. On the
other hand, when the data are split according to human subjects, a noticeable difference
arises between the training and validation accuracy. While the training accuracy steadily
improves, validation accuracy plateaus, suggesting that the model struggles to generalize
effectively to unseen data.

Figure 8. Training of ResNet50 on WiAR [88] without respect to humans. In the upper figure,
the training accuracy is represented by the blue line, whereas the validation accuracy is depicted
in black. In the lower figure, the training loss is indicated in red, and the validation loss is shown
in black.
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Figure 9. Training of ResNet50 on WiAR [88] with respect to humans. In the upper figure, the training
accuracy is represented by the blue line, whereas the validation accuracy is depicted in black. In the
lower figure, the training loss is indicated in red, and the validation loss is shown in black.

The confusion matrices of fine-tuned ResNet50 in Figure 10 illustrate the results on
the WiAR test set from retraining without respect to humans and with respect to humans.
It can be clearly seen that the results of retraining with respect to humans are significantly
less favorable compared to those of retraining without respect to humans. The diagonal
elements of the confusion matrix illustrating the results of the data split without respect to
humans exhibit less variation than those of the data split with respect to humans, where
the diagonal elements vary in the range of 2.5–56.4%.

(a)
Figure 10. Cont.
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(b)
Figure 10. Confusion matrices of fine-tuned ResNet50 obtained on WiAR [88] test set. (a) Results
obtained from retraining without respect to humans. (b) Results obtained from retraining with respect
to humans.

5.2. Results of the Reimplementation of “Human Activity and Gesture Recognition Based on Wi-Fi
Using Deep Convolutional Neural Networks”

Similarly to the previously discussed paper, Jawad et al. [75] fine-tuned also sev-
eral on ImageNet [80] database pretrained CNNs on the WiAR database. As already
mentioned, the main difference lay in the CSI imaging method. The results reported by
Jawad et al. [75] and the results coming from our own reimplementation are summarized in
Table 6. From these results, it can be clearly seen that we were able to achieve the authors’
results with relatively good approximation when data split without respect to humans
was applied. Similarly to the previously discussed method, the performance drops to
approximately 20% of the reported performance if the correct data split—with respect to
humans—is applied.

Table 6. Comparison of results on WiAR.

Reported in [75] Retrained without
Respec to Humans

Retrained with
Respect to Humans

Architecture Acc. Acc. Acc.

AlexNet 0.9917 0.97 0.215
SqueezeNet 1.0 0.98 0.215

VGG19 0.9625 0.94 0.201

5.3. Results of the Reimplementation of “Enhancing CSI-Based Human Activity Recognition by
Edge Detection Techniques”

Shahverdi et al. [81] utilized the database of Moshiri et al. [90] for testing their HAR
framework based on Wi-Fi CSI signals. Specifically, Moshiri et al. [90] applied the Nexmon
Tool [91] and collected CSI data for seven daily human activities, such as walk, run, fall,
lie down, sit down, stand up, and bend. The collected CSI matrices have 52 columns
corresponding to the number of subcarriers and 600–1100 rows depending on the duration
of individual activities. Further, it is important to note that each activity of this dataset was
carried out 20 times by three users of different ages. The major details of the CSI-HAR [90]
database are summarized in Table 7. Several CSI matrices illustrated as RGB images can be
seen in Figure 11 as illustration. Furthermore, it is presumed that Shahverdi et al.’s [81]
method utilized a 80%/20% split for training and testing, respectively, although the original
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article unfortunately does not explicitly confirm this. In the case of training with respect to
humans, we allocated two individuals to the training set and one individual to the test set,
because—as already mentioned—the number of volunteers in CSI-HAR database [90] is
three. This partitioning ensured that the training and testing sets were mutually exclusive
with respect to the subjects involved.

Table 7. Dataset’s details of CSI-HAR [90].

Dataset Name Action Labels Dataset Size

CSI-HAR [90] bend, fall, lie down, run, sit down, stand up, walk 420 images

(a) (b)

(c) (d)
Figure 11. Illustration of RGB images in the CSI-HAR database [90]. (a) Run. (b) Sit down. (c) Stand
up. (d) Walk.

The results are summarized in Table 8, which presents the outcomes from the original
paper alongside the results from our retraining with and without respect to individual
subjects. The results are summarized in Table 8. As it can be seen, the results obtained from
retraining without respect to individual subjects are slightly lower than those reported in
the original study. This discrepancy could be attributed to potential techniques, such as data
augmentation, K-fold cross-validation, or regularization, which may have been employed
but were not explicitly mentioned in the original paper. Despite this difference, the presence
of data leakage was clearly demonstrated through this analysis. Retraining with respect to
individual subjects yielded results that were approximately two-thirds of those reported
in the original study. While this may seem discouraging, it underscores the importance
of using subject-based data splits, which is the correct and more rigorous approach to
ensure validity and generalizability of the model. Another important conclusion that can be
drawn from our experimental results presented in Table 8 is that the effect of preprocessing
techniques, such as Canny, Sobel, Prewitt, and LoG filtering, on the CSI matrices is less
significant when the correct data split—with respect to individual subjects—is employed.
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This also underscores that proper data partitioning plays a crucial role in achieving reliable
results. In Figure 12, the corresponding confusion matrices are depicted. It can be observed
that the diagonal elements show significantly greater variability in the case of data split
with respect to humans. Namely, the values vary from 5% to 85%. Moreover, the fall activity
is confused with run and stand up activities in half the cases. A similar conclusion can be
drawn for the sit-down activity, which is often confused with the lie-down activity. Further,
the run activity is confused with the walk activity with an extremely high probability (95%).
In summary, we can declare that the results are significantly less favorable if the correct
data split—with respect to humans—is applied, and several activities seem to be very
challenging for deep architectures to recognize correctly based on Wi-Fi CSI signals. As a
consequence, there is still a lot of space for future research. Figures 13 and 14 depict the
training curves of the two different data-split strategies.

(a) (b)
Figure 12. Confusion matrices of the deep architecture (RGB CSI images as input) proposed by
Shahverdi et al. [81] obtained on CSI-HAR [90] test set. (a) Results obtained from retraining without
respect to humans. (b) Results obtained from retraining with respect to humans.

Figure 13. Training of CNN architecture proposed by Shahverdi et al. [81] without respect to humans
on CSI-HAR [90] dataset. In the upper figure, the training accuracy is represented by the blue line,
whereas the test accuracy is depicted in black. In the lower figure, the training loss is indicated in red,
and the test loss is shown in black.
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Table 8. Comparison of results on CSI-HAR [90].

Reported in [81] Retrained w/o.r.t. Humans Retrained w.r.t. Humans

Architecture Accuracy Accuracy Accuracy

Plain RGB images 0.912 0.901 0.586
Canny 0.979 0.970 0.614
Sobel 0.971 0.962 0.604

Prewitt 0.961 0.954 0.597
LoG 0.975 0.966 0.610

Figure 14. Training of CNN architecture proposed by Shahverdi et al. [81] with respect to humans
on CSI-HAR [90] dataset. In the upper figure, the training accuracy is represented by the blue line,
whereas the test accuracy is depicted in black. In the lower figure, the training loss is indicated in red,
and the test loss is shown in black.

6. Discussion

The findings of this study underscore the critical importance of proper dataset parti-
tioning in the development and evaluation of Wi-Fi CSI-based human action recognition
systems. Through our analysis of three published methods, we have demonstrated that
data leakage can significantly inflate performance metrics when the dataset is not parti-
tioned with respect to individual subjects. This is particularly problematic, as it gives a
false impression of a model’s generalizability and robustness.

The results obtained from retraining without respect to individual subjects were
slightly lower than those reported in the original studies. This discrepancy may be at-
tributed to potential techniques such as data augmentation, K-fold cross-validation, or reg-
ularization that were not disclosed in the original papers. Despite this minor difference,
our analysis clearly demonstrated the presence of data leakage, which severely undermines
the reliability of the reported results.

Retraining with subject-based partitioning yielded results that were approximately
two-thirds of the original reported outcomes in the most favorable case. While these results
may appear discouraging, they reflect a more accurate assessment of the models’ ability to
generalize to new, unseen subjects. This highlights the necessity of employing correct data
splitting methods, even if it results in lower performance metrics, as it ensures the validity
and integrity of the evaluation process.

The insights gained from this study have several implications for future research. First,
researchers must adopt rigorous dataset partitioning strategies to prevent data leakage and
ensure the development of reliable and generalizable models. Transparency in reporting
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experimental setups, including training parameters and evaluation protocols, is essential
to enable the reproducibility and accurate comparison of results [92]. By addressing these
issues, we aim to contribute to the establishment of best practices in the field of Wi-Fi
CSI-based human action recognition, ultimately leading to the development of more robust
and trustworthy systems.

7. Conclusions

This study highlights the critical issue of data leakage in Wi-Fi CSI-based HAR systems.
By analyzing three published methods, we demonstrated how improper dataset partition-
ing, specifically, the failure to partition data with respect to individual subjects, can lead to
significantly inflated performance metrics. Our findings reveal that models evaluated with
data leakage present an unrealistically high accuracy, which is not reflective of their true
generalizability. Upon re-evaluating the methods with correct subject-based partitioning,
we observed a notable decline in performance, underscoring the importance of proper
dataset management. These results, approximately two-thirds of the originally reported
outcomes, provide a more accurate assessment of the models’ capabilities in real-world sce-
narios. Additionally, our study found that the impact of various preprocessing techniques,
such as Canny, Sobel, Prewitt, and LoG filtering, is less significant when appropriate data
splitting is applied. As a consequence, there is still a lot of space for future research despite
the high performance metrics found in the literature. Further, we pointed out that several
activities seem to be very challenging for deep architectures to correctly recognize based on
Wi-Fi CSI signals. In summary, the field still holds challenges that should be addressed by
researchers and engineers.

Our work builds on previous research, where we identified data leakage in another
method [11], further reinforcing the need for standardized evaluation practices in this
field. We advocate for greater transparency in reporting experimental setups and the
adoption of best practices in dataset partitioning to ensure the development of robust and
generalizable models. By addressing these methodological flaws, we aim to pave the way
for more reliable Wi-Fi CSI-based HAR systems. Future research should continue to focus
on eliminating data leakage and improving the reproducibility and comparability of results
across studies. Through these efforts, we can advance the field towards more trustworthy
and effective applications in various real-world contexts.
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The following abbreviations are used in this manuscript:

CNN convolutional neural network
CSI channel state information
GADF Gramian angular difference field
GAF Gramian angular field
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GASF Gramian angulat summation field
GPU graphics processing unit
HAR human action recognition
IEEE Institute of Electrical and Electronics Engineers
LDA linear discriminant analysis
LSTM long short-term memory
MIMO multiple-input multiple-output
PCA principal component analysis
ReLU rectified linear unit
RSSI received signal strength indicator
SGDM stochastic gradient descent with momentum
SVM support vector machine
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