Corrosion-Resistant Polymer Composite Tubes with Enhanced Thermal Conductivity for Heat Exchangers
Abstract
:1. Introduction
1.1. Advancements in Polymer-Based Heat Exchangers
1.2. Developments in Polymer Composites with Enhanced Thermal Conductivity
1.2.1. Matrix and Filler Materials
1.2.2. Processing and the Importance of Particle Alignment
2. Materials and Methods
2.1. Material Selection
2.2. Tube Extrusion
2.3. Analysis Methods
2.3.1. Particle Alignment
2.3.2. Thermophysical Properties
2.3.3. Mechanical Properties
2.3.4. Surface Roughness
3. Results
3.1. Extrusion and Particle Alignment
3.2. Thermophysical Properties
3.3. Mechanical Properties
3.4. Surface Roughness
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thulukkanam, K. Heat Exchanger Design Handbook; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Heins, W.; Schooley, K. Achieving zero liquid discharge in SAGD heavy oil recovery. J. Can. Petrol. Technol. 2004, 43. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Loizidou, M.; Haralambous, K.-J. Stainless steel in thermal desalination and brine treatment: Current status and prospects. Met. Mater. Int. 2020, 26, 1463–1482. [Google Scholar] [CrossRef]
- Müller-Steinhagen, H.; Malayeri, M.R.; Watkinson, A.P. Fouling of Heat Exchangers-New Approaches to Solve an Old Problem. Heat Transf. Eng. 2005, 26, 1–4. [Google Scholar] [CrossRef]
- Al Ismaili, R.; Lee, M.W.; Wilson, D.I.; Vassiliadis, V.S. Optimisation of heat exchanger network cleaning schedules: Incorporating uncertainty in fouling and cleaning model parameters. Comput. Chem. Eng. 2019, 121, 409–421. [Google Scholar] [CrossRef]
- Elwerfalli, A.; Alsadaie, S.; Mujtaba, I.M. Estimation of Shutdown Schedule to Remove Fouling Layers of Heat Exchangers Using Risk-Based Inspection (RBI). Processes 2021, 9, 2177. [Google Scholar] [CrossRef]
- El-Dessouky, H.T.; Ettouney, H.M. Plastic/compact heat exchangers for single-effect desalination systems. Desalination 1999, 122, 271–289. [Google Scholar] [CrossRef]
- Jamzad, P.; Kenna, J.; Bahrami, M. Development of novel plate heat exchanger using natural graphite sheet. Int. J. Heat Mass Transf. 2019, 131, 1205–1210. [Google Scholar] [CrossRef]
- Schou, G.; Deans, J.; Künzel, J.; Müller-Steinhagen, H. Thermal and hydraulic performance of a graphite block heat exchanger. Chem. Eng. Process. Process Intensif. 1997, 36, 371–384. [Google Scholar] [CrossRef]
- Meerovich, S.S.; Sapronov, A.G. Experimental study of heat transfer in the condensation of steam on the surfaces of graphite tubes. Chem. Pet. Eng. 1968, 4, 311–313. [Google Scholar] [CrossRef]
- Kirchner, G. O1 Hints on the construction of heat exchangers. In VDI Heat Atlas; VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1523–1552. [Google Scholar]
- Behbahani, R.M.; Müller-Steinhagen, H.; Jamialahmadi, M. Heat exchanger fouling in phosphoric acid evaporators. Heat Transf. Eng. 2007, 28, 292–298. [Google Scholar] [CrossRef]
- Glade, H.; Moses, D.; Orth, T. Polymer composite heat exchangers. In Innovative Heat Exchangers; Bart, H.-J., Scholl, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 53–116. [Google Scholar]
- Cevallos, J.G.; Bergles, A.E.; Bar-Cohen, A.; Rodgers, P.; Gupta, S.K. Polymer heat exchangers—History, opportunities, and challenges. Heat Transf. Eng. 2012, 33, 1075–1093. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Reay, D.; Riffat, S. Recent research developments in polymer heat exchangers—A review. Renew. Sustain. Energy Rev. 2016, 60, 1367–1386. [Google Scholar] [CrossRef]
- T’Joen, C.; Park, Y.; Wang, Q.; Sommers, A.; Han, X.; Jacobi, A. A review on polymer heat exchangers for HVAC&R applications. Int. J. Refrig. 2009, 32, 763–779. [Google Scholar]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Datasheet Titanium Ti 2 EN 3.7035. Available online: http://www.metalcor.de (accessed on 13 January 2023).
- Datasheet Stainless Steel Hyperduplex 2707 HD. Available online: https://www.alleima.com (accessed on 12 January 2023).
- CALORPLAST Wärmetechnik—Corrosion Resistant Heat Exchangers for Critical Media. Available online: https://www.calorplast-waermetechnik.de (accessed on 28 February 2017).
- Orth, T.; Moses, D.; Ossadnik, S.; Müller, P.; Scherer, N.; Dantziguian, A. A new class of materials for thermal desalination: High performance polymer compounds. In Proceedings of the IDA World Congress on Desalination and Water Reuse, San Diego, CA, USA, 31 August–4 September 2015. [Google Scholar]
- Moses, D.; Glade, H.; Joseph, D.B. Corrosion and scaling on polymer composite evaporator tubes for industrial water treatment. In Proceedings of the IDRA World Congress on Desalination and Water Reuse, Sao Paulo, Brazil, 15–20 October 2017. [Google Scholar]
- Tahir, F.; Mabrouk, A.; Al-Ghamdi, S.G.; Krupa, I.; Sedlacek, T.; Abdala, A.; Koc, M. Sustainability assessment and techno-economic analysis of thermally enhanced polymer tube for multi-effect distillation (MED) technology. Polymers 2021, 13, 681. [Google Scholar] [CrossRef]
- Zaheed, L.; Jachuck, R. Review of polymer compact heat exchangers, with special emphasis on a polymer film unit. Appl. Therm. Eng. 2004, 24, 2323–2358. [Google Scholar] [CrossRef]
- Park, Y.; Jacobi, A. Polymer-tube-bundle heat exchanger for liquid-to-gas applications. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2008. [Google Scholar]
- Scholz, F. Heat exchangers made of plastic pipes. In Heat Exchanger and Condenser Tubes: Tube Types—Materials—Attributes—Machining; Mitrovic, J., Ed.; Publico Publications: Essen, Germany, 2004. [Google Scholar]
- Song, L.; Li, B.; Zarkadas, D.; Christian, S.; Sirkar, K.K. Polymeric hollow-fiber heat exchangers for thermal desalination processes. Ind. Eng. Chem. Res. 2010, 49, 11961–11977. [Google Scholar] [CrossRef]
- Zarkadas, D.M.; Sirkar, K.K. Polymeric hollow fiber heat exchangers: An alternative for lower temperature applications. Ind. Eng. Chem. Res. 2004, 43, 8093–8106. [Google Scholar] [CrossRef]
- Bart, H.-J.; Dreiser, C.; Laaber, D. Polymer film heat exchangers. In Innovative Heat Exchangers; Bart, H.-J., Scholl, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–52. [Google Scholar]
- Bar-Cohen, A.; Rodgers, P.; Cevallos, J.G. Application of thermally enhanced thermoplastics to seawater-cooled liquid-liquid heat exchangers. In Proceedings of the 5th European Thermal Sciences Conference EUROTHERM, Eindhoven, The Netherlands, 18–22 May 2008. [Google Scholar]
- Luckow, P.; Bar-Cohen, A.; Rodgers, P. Minimum mass polymer seawater heat exchanger for LNG applications. J. Therm. Sci. Eng. Appl. 2009, 1, 031009. [Google Scholar] [CrossRef]
- Moses, D.; Orth, T.; Müller, P.; El-Dessouky, H. Characteristics of novel polymer composite heat transfer tubes. In Proceedings of the 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Pretoria, South Africa, 20–23 July 2015. [Google Scholar]
- Hussain, A.R.J.; Alahyari, A.A.; Eastman, S.A.; Thibaud-Erkey, C.; Johnston, S.; Sobkowicz, M.J. Review of polymers for heat exchanger applications: Factors concerning thermal conductivity. Appl. Therm. Eng. 2017, 113, 1118–1127. [Google Scholar] [CrossRef]
- Deisenroth, D.C.; Arie, M.A.; Dessiatoun, S.; Shooshtari, A.; Ohadi, M.; Bar-Cohen, A. Review of most recent progress on development of polymer heat exchangers for thermal management applications. In Proceedings of the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, CA, USA, 6–9 July 2015. [Google Scholar]
- Boeck, K. Zum Einsatz polymerbasierter Werkstoffe in Mehreffekt-Verdampfern für die Meerwasserentsalzung. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2011. [Google Scholar]
- Kiepfer, H.; Stannek, P.; Grundler, M.; Bart, H.-J. Thermally conductive polypropylene composites as corrosion-resistant materials for plate heat exchangers. Polym. Compos. 2023, 44, 7002–7016. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Chaudhry, A.U.; Mabrouk, A.N.; Abdala, A. Thermally enhanced polyolefin composites: Fundamentals, progress, challenges, and prospects. Sci. Technol. Adv. Mater. 2020, 21, 737–766. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134. [Google Scholar] [CrossRef]
- Bigg, D.M. Electrical properties of metal-filled polymer composites. In Metal-Filled Polymers—Properties and Applications; Duke, C.B., Bhattacharya, S.K., Eds.; Marcel Dekker: New York, NY, USA, 1986. [Google Scholar]
- Amesöder, S.; Heinle, C.; Ehrenstein, G.W.; Schmachtenberg, E. Injection moulding of thermally conducting polymers for mechatronic applications. In Proceedings of the Polymer Processing Society 23rd Annual Meeting, Salvador, Brazil, 27–31 May 2007. [Google Scholar]
- Heinle, C. Simulationsgestützte Entwicklung von Bauteilen aus wärmeleitenden Kunststoffen. Ph.D. Thesis, Universität Erlangen-Nürnberg, Erlangen, Germany, 2012. [Google Scholar]
- Halary, J.-L.; Lauprêtre, F.; Monnerie, L. Polymer Materials; Wiley: Oxford, UK, 2011. [Google Scholar]
- Osswald, T.A.; Baur, E.; Brinkmann, S.; Oberbach, K.; Schmachtenberg, E. International Plastics Handbook; Hanser: Munich, Germany, 2006. [Google Scholar]
- Mamunya, Y.; Davydenko, V.V.; Pissis, P.; Lebedev, E.V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
- Boudenne, A.; Ibos, L.; Fois, M.; Majesté, J.C.; Géhin, E. Electrical and thermal behavior of polypropylene filled with copper particles. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1545–1554. [Google Scholar] [CrossRef]
- Tekce, H.S.; Kumlutas, D.; Tavman, I.H. Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J. Reinf. Plast. Compos. 2007, 26, 113–121. [Google Scholar] [CrossRef]
- Veca, L.M.; Meziani, M.J.; Wang, W.; Wang, X.; Lu, F.; Zhang, P.; Lin, Y.; Fee, R.; Connell, J.W.; Sun, Y.-P. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 2009, 21, 2088–2092. [Google Scholar] [CrossRef]
- Tjong, S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 2013, 74, 281–350. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications; Noyes Publications: Park Ridge, NJ, USA, 1993. [Google Scholar]
- Park, J.G.; Cheng, Q.; Lu, J.; Bao, J.; Li, S.; Tian, Y.; Liang, Z.; Zhang, C.; Wang, B. Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 2012, 50, 2083–2090. [Google Scholar] [CrossRef]
- Kim, H.S.; Jang, J.; Yu, J.; Kim, S.Y. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos. Part B Eng. 2015, 79, 505–512. [Google Scholar] [CrossRef]
- Leung, S.N.; Khan, M.O.; Chan, E.; Naguib, H.; Dawson, F.; Adinkrah, V.; Lakatos-Hayward, L. Analytical modeling and characterization of heat transfer in thermally conductive polymer composites filled with spherical particulates. Compos. Part B Eng. 2013, 45, 43–49. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, D.; Mroz, C. Thermally conducting aluminum nitride polymer-matrix composites. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1749–1757. [Google Scholar] [CrossRef]
- Ishida, H.; Rimdusit, S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim. Acta 1998, 320, 177–186. [Google Scholar] [CrossRef]
- Yu, S.; Hing, P.; Hu, X. Thermal conductivity of polystyrene–aluminum nitride composite. Compos. Part A Appl. Sci. Manuf. 2002, 33, 289–292. [Google Scholar] [CrossRef]
- Übler, W. Erhöhung der thermischen Leitfähigkeit elektrisch isolierender Polymerwerkstoffe. Ph.D. Thesis, Universität Erlangen-Nürnberg, Erlangen, Germany, 2004. [Google Scholar]
- Amesöder, S. Wärmeleitende Kunststoffe für das Spritzgießen. Ph.D. Thesis, Universität Erlangen-Nürnberg, Erlangen, Germany, 2010. [Google Scholar]
- Öztürk, G. Hochgefüllte Graphit-Polymer-Compounds für Einsätze im Wärmemanagement. Ph.D. Thesis, TU Darmstadt, Darmstadt, Germany, 2012. [Google Scholar]
- Sobolčiak, P.; Abdulgader, A.; Mrlik, M.; Popelka, A.; Abdala, A.A.; Aboukhlewa, A.A.; Karkri, M.; Kiepfer, H.; Bart, H.-J.; Krupa, I. Thermally conductive polyethylene/expanded graphite composites as heat transfer surface: Mechanical, thermo-physical and surface behavior. Polymers 2020, 12, 2863. [Google Scholar] [CrossRef]
- Roy, M.; Tran, P.; Dickens, T.; Schrand, A. Composite reinforcement architectures: A review of field-assisted additive manufacturing for polymers. J. Compos. Sci. 2020, 4, 1–25. [Google Scholar] [CrossRef]
- Sierra-Romero, A.; Chen, B. Strategies for the preparation of polymer composites with complex alignment of the dispersed phase. Nanocomposites 2018, 4, 137–155. [Google Scholar] [CrossRef]
- Wu, S.; Peng, S.; Wang, C.H. Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. Polymers 2018, 10, 542. [Google Scholar] [CrossRef]
- Sulong, A.B.; Park, J. Alignment of multi-walled carbon nanotubes in a polyethylene matrix by extrusion shear flow: Mechanical properties enhancement. J. Compos. Mater. 2011, 45, 931–941. [Google Scholar] [CrossRef]
- Eken, A.E.; Tozzi, E.J.; Klingenberg, D.J.; Bauhofer, W. A simulation study on the effects of shear flow on the microstructure and electrical properties of carbon nanotube/polymer composites. Polymer 2011, 52, 5178–5185. [Google Scholar] [CrossRef]
- Eken, A.E.; Tozzi, E.J.; Klingenberg, D.J.; Bauhofer, W. Combined effects of nanotube aspect ratio and shear rate on the carbon nanotube/polymer composites. Polymer 2012, 53, 4493–4500. [Google Scholar] [CrossRef]
- Fan, Z.; Advani, S.G. Characterization of orientation state of carbon nanotubes in shear flow. Polymer 2005, 46, 5232–5240. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Polymers; Chemtec Publishing: Toronto, ON, Canada, 2012. [Google Scholar]
- Batch, G.L.; Macosko, C.W. Heat transfer and cure in pultrusion: Model and experimental verification. AIChE J. 1993, 39, 1228–1241. [Google Scholar] [CrossRef]
- Hammerschmidt, U.; Meier, V. New Transient Hot-Bridge Sensor to Measure Thermal Conductivity, Thermal Diffusivity, and Volumetric Specific Heat. Int. J. Thermophys. 2006, 27, 840–865. [Google Scholar] [CrossRef]
- Model, R.; Stosch, R.; Hammerschmidt, U. Virtual Experiment Design for the Transient Hot-Bridge Sensor. Int. J. Thermophys. 2007, 28, 1447–1460. [Google Scholar] [CrossRef]
- THB—Transient Hot Bridge—Thermal Conductivity Meter. Available online: https://www.linseis.com (accessed on 23 May 2022).
- Grundler, M.; Stannek, P.; Heinzel, A. Bestimmung der Wärmeleitfähigkeit an hochgefüllten Graphit-Polymer-Compounds mittels 3 verschiedener Messsysteme. In Proceedings of the 3. Niedersächsisches Symposium Materialtechnik, Clausthal, Germany, 14–15 February 2019; Shaker: Aachen, Germany, 2019. [Google Scholar]
- Lee, S.; Kim, D. The evaluation of cross-plane/in-plane thermal diffusivity using laser flash apparatus. Thermochim. Acta 2017, 653, 126–132. [Google Scholar] [CrossRef]
- DIN EN ISO 527-1:2019-12; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019.
- DIN EN ISO 527-2:2012-06; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- DIN EN ISO 178:2019-08; Plastics—Determination of Flexural Properties. ISO: Geneva, Switzerland, 2019.
- DIN EN ISO 21920-1:2022-12; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 1: Indication of Surface Texture. ISO: Geneva, Switzerland, 2022.
- Neubronner, M.; Bodmer, T.; Hübner, C.; Kempa, P.B.; Tsotsas, E.; Eschner, A.; Kasparek, G.; Ochs, F.; Müller-Steinhagen, H.; Werner, H.; et al. D6 Properties of solids and solid materials. In VDI Heat Atlas; VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 551–614. [Google Scholar]
- Choy, C.L. Thermal conductivity of polymers. Polymer 1977, 18, 984–1004. [Google Scholar] [CrossRef]
- Chaudhry, A.U.; Mabrouk, A.; Abdala, A. Thermally enhanced pristine polyolefins: Fundamentals, progress and prospective. J. Mater. Res. Technol. 2020, 9, 10796–10806. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, T. Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. J. Appl. Phys. 2012, 112, 094304. [Google Scholar] [CrossRef]
- Gaiser, J.; Stripf, M.; Henning, F. Enhanced Transient Hot Bridge Method Using a Finite Element Analysis. Int. J. Thermophys. 2019, 40, 12. [Google Scholar] [CrossRef]
Filler | Category | Thermal Conductivity k/W/(m K) |
---|---|---|
Aluminum | Metal | 234 |
Copper | Metal | 386 |
Graphite | Carbon-based | 100–400 |
Carbon fiber | Carbon-based | 300–1000 |
Carbon nanotube (CNT) | Carbon-based | 1000–4000 |
Graphene | Carbon-based | 2000–6000 |
Hexagonal boron nitride (h-BN) | Ceramics | 103–200 |
Aluminum nitride (AlN) | Ceramics | 100–300 |
Unit | PP | PPS | |
---|---|---|---|
Density | g/cm3 | 0.90–0.907 | 1.34 |
Tensile modulus | MPa | 1100–1300 | 3400 |
Tensile strength | MPa | 21–37 | 75 |
Elongation at break | % | 10–140 | 3–8 |
Flexural modulus | MPa | 1240–1600 | 3750–4200 |
Flexural strength | MPa | 41 | 125–145 |
Thermal conductivity | W/(m K) | 0.17–0.22 | 0.25 |
Linear coefficient of thermal expansion | 1/K | 110–170·10−6 | 55·10−6 |
Specific heat capacity | kJ/(kg K) | 2 | not spec. |
Heat deflection temperature HDT/A | °C | 55–70 | 135 |
Max. service temperature (short term) | °C | 140 | 260 |
Max. service temperature (long term) | °C | 100 | 200–240 |
Min. service temperature (long-term) | °C | 0 to −30 | not spec. |
Melting temperature | °C | 160–170 | 285 |
Glass transition temperature | °C | 0 to −10 | 85 |
Water absorption, equilibrium in water (23 °C) | % | 0.02–0.04 | 0.01–0.03 |
Material | Unit | Density ρ |
---|---|---|
PP | kg/m3 | 907 * |
PPS | kg/m3 | 1340 * |
PP-GR | kg/m3 | 1556 ± 10.6 |
PPS-GR | kg/m3 | 1782 ± 8.3 |
Material | Unit | Specific Heat Capacity | ||||
---|---|---|---|---|---|---|
25 °C | 40 °C | 60 °C | 80 °C | 100 °C | ||
PP | J/(kg K) | 1745 * | 1850 * | 1920 * | 2178 * | 2350 * |
GR | J/(kg K) | 894 * | 903 * | 909 * | 915 * | 927 * |
PP-GR | J/(kg K) | 1132 | 1168 | 1196 | 1277 | 1334 |
Material | Unit | Specific Heat Capacity | ||
---|---|---|---|---|
20 °C | 110 °C | 200 °C | ||
PPS-GR | J/(g K) | 0.844 ± 0.0391 | 1.1 ± 0.0304 | 1.34 ± 0.0390 |
Tube Material | Wall Thickness s/mm | Thermal Conductivity k/W/(m K) at 25 °C |
---|---|---|
PP-GR | 1.25 | 14.5 |
PP-GR | 1.5 | 13.1 |
PPS-GR | 1.5 | 14.1 |
Material | Mean Roughness Ra/μm | Roughness Depth Rz/μm |
---|---|---|
PP-GR | 0.37 ± 0.06 | 2.37 ± 0.52 |
PPS-GR | 0.45 ± 0.07 | 2.52 ± 0.31 |
316L | 0.42 ± 0.03 | 3.66 ± 0.31 |
Al brass | 0.62 ± 0.22 | 4.40 ± 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imholze, J.-H.; Glade, H. Corrosion-Resistant Polymer Composite Tubes with Enhanced Thermal Conductivity for Heat Exchangers. Inventions 2024, 9, 111. https://doi.org/10.3390/inventions9050111
Imholze J-H, Glade H. Corrosion-Resistant Polymer Composite Tubes with Enhanced Thermal Conductivity for Heat Exchangers. Inventions. 2024; 9(5):111. https://doi.org/10.3390/inventions9050111
Chicago/Turabian StyleImholze, Jan-Hendrik, and Heike Glade. 2024. "Corrosion-Resistant Polymer Composite Tubes with Enhanced Thermal Conductivity for Heat Exchangers" Inventions 9, no. 5: 111. https://doi.org/10.3390/inventions9050111
APA StyleImholze, J. -H., & Glade, H. (2024). Corrosion-Resistant Polymer Composite Tubes with Enhanced Thermal Conductivity for Heat Exchangers. Inventions, 9(5), 111. https://doi.org/10.3390/inventions9050111