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Abstract: As the decline of public transportation in rural areas becomes a growing concern, initiatives
to introduce attractive next-generation transportation systems to promote public transportation usage
are being considered across various regions. In Toyama City, Toyama Prefecture, where the next-
generation light rail transit (LRT) system has been introduced, the number of users has significantly
increased compared to before its introduction, with some users riding the LRT for the sake of the
experience itself. On the other hand, there is a demand for a more micro-level and quantitative
evaluation of the impact that the LRT has on the liveliness of areas along its route. Therefore, this
study uses inverse reinforcement learning (IRL), a type of machine learning, to build a model that
estimates route-choice behavior along the LRT lines based on behavioral trajectories generated from
smartphone location data. The model is capable of evaluating the characteristics of location data with
high accuracy. The findings indicate that routes along the LRT lines tend to be selected, suggesting
that both the appeal of the LRT itself and the attractiveness of the spaces along its route contribute to
this tendency.

Keywords: LRT; big data; machine learning; inverse reinforcement learning

1. Introduction
1.1. Background and Objectives

In recent years, various next-generation transportation systems have garnered atten-
tion, with many attractive transportation modes being developed and introduced across
different regions. One notable example is light rail transit (LRT), a next-generation tram
system, introduced in Toyama City, Toyama Prefecture, and Utsunomiya City, Tochigi
Prefecture, Japan. LRT is expected to improve not only transportation convenience but also
the overall appeal of public transport systems. Both cases have seen significant utilization,
and LRT is anticipated to serve as a potential solution to the ongoing challenges of declining
regional public transportation and the shrinking of local cities in Japan.

Focusing on LRT in Toyama (Toyama LRT), which replaced an existing railway line,
there has been a significant increase in the number of passengers compared to the period
before its introduction. Additionally, effects such as the emergence of trips made specifically
to ride the LRT and an increase in the outing rates of residents along the line have been
observed [1]. Various surveys and studies suggest that the introduction of LRT contributes
to the revitalization of the areas it serves.

On the other hand, challenges exist regarding the methods for evaluating the effects
of LRT. In traditional survey methods, respondents may overestimate the appeal of LRT,
which can lead to a discrepancy between their responses and actual behavior. Moreover,
simply counting the number of LRT users may not fully capture the effects that LRT brings
to the areas along the route.

This study therefore aims to achieve the following two objectives.
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1. To generate accurate behavioral trajectories based on personal mobility data.
2. To analyze route-choice behavior along LRT lines and to evaluate the factors that lead

to route choice.

For the first point, detailed and continuous behavioral trajectories along the LRT
route are estimated from actual movement data by utilizing smartphone location data,
which enables the acquisition of individual movements. It is hypothesized that behavioral
trajectories can be accurately generated by using inverse reinforcement learning (IRL), one
of the methods using artificial intelligence, and that when behavioral trajectories can be
generated with high accuracy, the micro-level behavior of each individual can be captured
continuously.

The second point is to estimate route-choice behavior along LRT/non-LRT routes
based on the behavioral trajectories generated by IRL: the hypothesis is that the choice
rate of LRT routes will be high because LRT itself is assumed to be attractive; it can be
said that LRT lines have the potential to attract people and that spatial development and
the implementation of events along LRT lines will be effective from the perspective of
improving the liveliness of the area.

1.2. Review of Existing Research

The existing studies can be broadly categorized into three main areas: research on the
evaluation of LRT characteristics, research on estimating travel behavior using smartphone
location data, and research on the modeling of travel behavior using IRL.

1.2.1. Research on Evaluation of Light Rail Transit (LRT) Characteristics

Various studies and reports have been conducted on the characteristics of LRT from
different perspectives. According to previous research [1], it has been shown that in the case
of Toyama LRT, there are trips where riding the LRT itself is the purpose of the journey, a
factor not typically considered in traditional transportation-mode choice studies. Addition-
ally, a review of existing research that compiles LRT characteristics from cases introduced
around the world reveals that LRT has contributed to commercial revitalization [2], re-
duction in urban environmental impact [3], and improvement in landscape quality [4]. It
has also been pointed out that demonstrating the effects LRT brings to the areas along its
route is essential for gaining public consensus on its introduction [5]. Furthermore, a report
by the Ministry of Land, Infrastructure, Transport, and Tourism [6] highlights the need
for new approaches and methods that integrate city planning with LRT. The report also
summarizes that designing vehicles and stations as city symbols can contribute to creating
a lively urban environment [6]. From a practical policy perspective, it can be said that LRT
has a more significant impact on cities compared to other transportation modes.

These points suggest that the unique characteristic of LRT lies in its ability to influence
the landscape and vibrancy of the areas along its route. However, quantitative evaluations
of the impact LRT has on these areas have not been sufficiently conducted in existing
research, particularly from a micro-level perspective that focuses on individual behaviors
generated along the route.

1.2.2. Research on Estimating Travel Behavior Using Smartphone Location Data

In recent years, the widespread use of ICT devices such as smartphones has made it
possible to obtain detailed, real-time movement data on an individual basis as big data. This
section reviews studies that estimate travel behavior using smartphone location data. Ishii
et al. [7] compared smartphone location data with traditional survey results and examined
their reliability. The location data showed a high correlation with traditional survey results,
demonstrating the usefulness of smartphone location data in urban transportation surveys.
Furthermore, Yoshiba et al. [8] constructed a model to identify bus usage using location
data and conducted demand forecasts.

Similar to the present study, there are many studies estimating behavioral trajectories
from observed location data; Lima et al. [9] estimated the travel routes of each individual
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from the location data of private cars and clarified the characteristics of individual route
choice based on the frequency of use. Similarly, Xu et al. [10] estimated the travel routes
of private cars from personal application data and combined them with data from other
surveys to understand their characteristics.

Although various estimation methods have been used to estimate travel behavior
utilizing smartphone location data, each method and dataset has its strengths and weak-
nesses, and research is still in progress. Moreover, most studies have focused on accuracy
verification, with few studies accumulating results that connect to actual transportation
policy proposals.

1.2.3. Research on Modeling Travel Behavior Using Inverse Reinforcement Learning (IRL)

This study aims to model route-choice behavior along LRT routes using an IRL model
and quantitatively evaluate it. This section reviews studies that have modeled travel behav-
ior using IRL. Hirakawa et al. [11] quantitatively evaluated the behavioral characteristics
of seabirds using an IRL model, while Alsaleh and Sayed [12] did the same for cyclists’
behavioral characteristics. Both studies demonstrated that IRL models offer higher accuracy
compared to traditional methods. Additionally, the authors [13] proposed a travel behavior
estimation model using IRL and showed that IRL can evaluate human movement with high
accuracy even with a low sampling rate. It was also shown that the model has a certain
degree of applicability to different times and spaces.

Some studies have also used IRL to construct route-choice models; Zhao and Liang [14]
constructed a route-choice model with IRL incorporating deep learning and were able
to estimate route choice with higher accuracy than conventional methods under certain
conditions. Oßwald et al. [15] similarly constructed a route-choice model using IRL and
showed that it was able to estimate routes in line with the subject’s personal and cultural
preferences.

Although IRL can evaluate behavioral characteristics with high accuracy across various
subjects, the majority of studies are limited to verifying the accuracy of the method, and
few studies have examined the estimation and factors of route selection in urban areas as
in this study.

1.3. Positioning of the Study

While various studies have examined the effects of LRT from different perspectives,
there has been insufficient evaluation at the micro level, such as analyzing the behavior
generated along the route. On the other hand, the use of big data, including smartphone
location data, is expanding, and analyses using AI methods like IRL have provided valuable
insights. Therefore, this study aims to model and quantify the effects of LRT on areas along
its route by using IRL based on actual movement data from smartphone users. The novelty
of this study lies in the fact that IRL was used to generate behavioral trajectories from
smartphone location data, and in the fact that the effect of LRT introduction along LRT lines
was quantitatively evaluated in the form of route-choice rates from actual movement data.

1.4. Overview of the Study

In this study, the impact of LRT on route-choice behavior is quantitatively evaluated
using smartphone location data and IRL by following the steps below:

1. Organize the characteristics of Toyama City, Toyama Prefecture, and the Toyama LRT,
which are the target of this study, and the details of the smartphone location data used
in the analysis.

2. Construct an IRL model to quantitatively evaluate behavioral trajectories from a vast
amount of smartphone location data.

3. Estimate route-choice behavior for trips between the central station and the city center,
and calculate the selection rate of routes along the LRT vs. non-LRT routes.
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4. Compare the service levels of the LRT and other transportation modes, as well as the
environment along the routes, to examine the factors influencing the selection of LRT
routes.

2. Target of the Study and Overview of the Data Used
2.1. Overview of the Toyama LRT

This study focuses on analyzing the Toyama LRT in Toyama City, Toyama Prefecture.
Toyama Prefecture is located in the Chubu region of Japan, and its capital, Toyama City, is
the largest city in the prefecture, with a population of approximately 400,000 and an area of
about 1200 square kilometers. Toyama City has implemented various public transportation
revitalization policies, including the introduction of the LRT. As part of these policies, the
Toyama LRT was launched in 2006, following the renovation of existing rail lines and
some route modifications, with services operating between Toyama Station and Iwasehama.
After its opening, ridership increased, with a particularly notable rise in usage and outdoor
activity rates among elderly residents. In 2009, the tram network was transformed into a
loop line, improving circulation within the city center. Furthermore, on 21 March 2020, the
northern line running towards Iwasehama was connected with the southern line, which
runs through the city center, allowing for through services (referred to as the “North–South
Connection”). The expansion of the above routes is organized in Figure 1. The color is
changed for each year of opening. Through the expansion of the route network shown
in the figure, the LRT’s role as a mode of urban transportation within the city is expected
to grow.
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2.2. Overview of the Data Used

Table 1 provides an overview of the data used in this study. The smartphone location
data utilized in this research were collected by KDDI Corporation with the consent of its
customers. The location information was determined by smartphone devices based on
GPS and other methods, and, similar to existing research [16], it was estimated through
a four-step process: determining movement and stay locations, extracting trip data, es-
timating movement volume from all trip data, and performing expansion estimations.
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The distribution of the aggregated trips was confirmed to align with trends observed in
previous research [7].

Table 1. Overview of the data used.

Target Toyama City, Toyama Prefecture

Data Acquisition Range Within a 3 km radius from Toyama Station

Data of Acquisition 14 March 2020~26 April 2020

Spatial Resolution 100 m mesh

This study focuses on the period before and after the North–South connection project,
which commenced on 21 March 2020. The analysis used data spanning 44 days, covering the
period before and after the connection. In terms of spatial resolution, a 100 m mesh was set,
considering the road widths in the target area and the errors in the location data obtained.
It should be noted that the positioning intervals vary depending on the smartphone device,
with differences ranging from several minutes to several tens of minutes.

As shown in Figure 2, the number of data samples, including the number of observers
(i.e., the number of smartphones being tracked) and the average number of observations
per person, remained relatively consistent throughout the target period, and there were
limited changes in data characteristics due to the observation period. It should also be
noted that the number of observations in March remained constant because some of the
data were aggregated after a certain period, following privacy protection procedures.
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For the analysis in this study, point cloud data, which are linked to trip units by ID
(with each point holding latitude, longitude, and observation time), were used. How-
ever, due to the non-uniformity of the positioning intervals mentioned earlier, behavioral
trajectories estimated through simple linear interpolation of the point cloud may differ
from actual movements. Therefore, a method to complement the behavioral trajectories is
necessary to accurately understand the movements.

3. Construction of a Transportation Behavior Estimation Model Using IRL

This chapter describes the construction of an IRL model focused on Toyama City in
order to estimate behavioral trajectories more accurately from location data and conducts
model accuracy verification.

3.1. Overview of IRL

In recent years, reinforcement learning (RL) has been widely used in AI research.
However, for subjects where it is difficult to clearly define the optimal state, such as the
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route selection, the application of RL is challenging due to the difficulty in setting rewards.
To address this, IRL was developed as a method to estimate unknown rewards through
the iteration of RL. In IRL, it is assumed that the observed behavioral trajectory maximizes
rewards, and the reward function (which calculates the optimal reward) is estimated.

In the model used in this study, a grid space is set up in which the virtual agent moves
through a 100 m mesh of the target area, and continuous action trajectories are generated
by IRL based on actual positional observations according to the steps mentioned below.
The flow of IRL is shown in Figure 3. Each letter in the figure corresponds to the equations
described later.

Inventions 2024, 9, x FOR PEER REVIEW 6 of 16 
 

3. Construction of a Transportation Behavior Estimation Model Using IRL 
This chapter describes the construction of an IRL model focused on Toyama City in 

order to estimate behavioral trajectories more accurately from location data and conducts 
model accuracy verification. 

3.1. Overview of IRL 
In recent years, reinforcement learning (RL) has been widely used in AI research. 

However, for subjects where it is difficult to clearly define the optimal state, such as the 
route selection, the application of RL is challenging due to the difficulty in setting rewards. 
To address this, IRL was developed as a method to estimate unknown rewards through 
the iteration of RL. In IRL, it is assumed that the observed behavioral trajectory maximizes 
rewards, and the reward function (which calculates the optimal reward) is estimated. 

In the model used in this study, a grid space is set up in which the virtual agent moves 
through a 100 m mesh of the target area, and continuous action trajectories are generated 
by IRL based on actual positional observations according to the steps mentioned below. 
The flow of IRL is shown in Figure 3. Each letter in the figure corresponds to the equations 
described later. 

 
Figure 3. Flow of IRL. 

After setting up the model environment, input trajectories are generated. This is a set 
of one-hot encodings, with observed meshes set to 1 and all other meshes set to 0, accord-
ing to the observed data. Moreover, initial values are set for each function used for IRL. 
As shown in Equation (1), the reward function R is assumed based on the behavioral tra-
jectory ζ, and 𝜃 is the parameter. The reward values for each state are estimated by the 
reward function R. Rሺζ|𝜃ሻ = 𝜃்𝒇ζ (1) 

In addition, policy 𝜋 is the behavior in each state and is a function of the action value 
function 𝑄, as expressed in Equation (2), and the action value function 𝑄 and state value 
function 𝑉 are expressed as Equations (3) and (4), respectively, where 𝛾 is a parameter 
and 𝑃′ is the transition probability. 

Figure 3. Flow of IRL.

After setting up the model environment, input trajectories are generated. This is a set
of one-hot encodings, with observed meshes set to 1 and all other meshes set to 0, according
to the observed data. Moreover, initial values are set for each function used for IRL. As
shown in Equation (1), the reward function R is assumed based on the behavioral trajectory
ζ, and θ is the parameter. The reward values for each state are estimated by the reward
function R.

R(ζ|θ ) = θTfζ (1)

In addition, policy π is the behavior in each state and is a function of the action value
function Q, as expressed in Equation (2), and the action value function Q and state value
function V are expressed as Equations (3) and (4), respectively, where γ is a parameter and
P′ is the transition probability.

π(a|s) ∝ exp(Q(s, a)) (2)

Q(s, a) = R(ζ|θ ) + γ∑
s′

P′(s′
∣∣s, a

)
V
(
s′
)

(3)

V(s) = log ∑
a

exp(Q(s, a)) (4)

Iterative calculations on these functions are used to generate continuous action trajec-
tories that most accurately represent the characteristics of the input trajectories. This study
adopts the maximum entropy (ME) method for the iterative calculation. The ME method
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can calculate the optimal reward function by inputting the behavioral trajectory even if the
optimal behavior for each state is unknown. In the iterative calculation, the parameter θ is
optimized through repeated calculations so that the likelihood P(ζi|θ) satisfies the following
Equation (5).

M

∑
i=1

P(ζi|θ)fζi
=

1
M

M

∑
i=1

fζi
(5)

In the maximum entropy method, a uniform probability is assigned to unobserved behav-
ioral trajectories, and θ is expressed by the following Equation (6). Here, M represents the
number of observed behavioral trajectories.

θ = arg maxθ

{
1
M

M

∑
i=1

θTfζi
− log

M

∑
i=1

exp
(

θTfζi

)}
(6)

Using the above equation, the gradient of the log-likelihood L(θ) is expressed as shown
in Equation (7), and iterative calculations are performed until this gradient falls below a
certain value.

∇L(θ) =
1
M

M

∑
i=1

fsi
−

M

∑
i=1

P(si|θ)fsi
(7)

When the elements of the reward function are replaced with actual location data, the
rewards can be represented by the number of observations in each mesh (state), and the
behavioral trajectories can be represented as the movement paths of smartphone users.

3.2. Flow of the Transportation Behavior Estimation Model

In this study, a model combining IRL and RL is constructed to quantitatively evaluate
behavioral characteristics. The flow of the model is as follows:

1. Split and obtain location data on a daily basis.
2. Use IRL to quantitatively evaluate behavioral trajectories and estimate the state values,

which are the feature quantities for each state.
3. Perform RL using the obtained state values as rewards, and generate behavioral

trajectories that satisfy specific conditions based on the behavior value function.
4. Use the generated behavioral trajectories to quantitatively evaluate route choices.

In this study, IRL is used to generate behavioral trajectories from smartphone location
data. These location data are discrete point cloud data, which are a collection of points
where smartphone location information is observed, and because these data do not dis-
criminate between moving and staying, it is not possible to directly grasp the number
of people staying or the duration of their stay. Therefore, it is necessary to determine
whether a person moves or stays when generating a behavioral trajectory. In this case,
movement/staying is determined based on the observed position and time, but in many
existing studies (e.g., [9,10]), discrimination is based on detailed location data obtained
from specific samples in which special applications have been installed. This provides
location information with high accuracy and the positioning intervals are generally the
same. However, unlike the above, the data used in this study are heterogeneous in terms
of positioning interval and positioning error, which may lead to estimation errors due to
missing values when existing methods are applied. Specifically, as shown in Figure 4, the
presence of areas where data have not been obtained may cause a discrepancy between the
actual trajectory and the interpolated trajectory. In this study, therefore, an IRL model that
can interpolate the behavioral trajectories of each individual by learning the data of others
as well is considered effective.
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3.3. Model Accuracy Verification

An IRL model was constructed following the process outlined in the previous section.
As examples of the aggregated observation counts per mesh and the distribution of state
values estimated by the model, the estimates for March 14 are shown in Figures 5 and 6.
It is evident that higher state values are estimated around Toyama Station, the city center,
and along major arterial roads with high traffic, suggesting that the model can generally
evaluate the characteristics of actual human flows.
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IRL has the characteristic of outputting behavior as continuous trajectories from point
clouds. As a result, higher state values are estimated around meshes with a higher number
of observations. Considering the continuity of movement, it can be inferred that the model
estimates trend closer to the actual movement.

Next, the accuracy of the estimates is quantitatively evaluated. If a high correlation
is found between the magnitude of the observed values and the estimated state values, it
can be said that the model has successfully estimated human flows. Therefore, the model’s
accuracy was verified by comparing the correlation between the estimated state values
and the observed values. The coefficient of determination (R2) for each day is shown in
Figure 7. On all days, the coefficient of determination exceeded 0.9, suggesting that the
characteristics of the location data were estimated with very high accuracy.
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4. Analysis of Route-Choice Behavior Along the LRT Line
4.1. Overview of the Route-Choice Model

The model constructed in the previous chapter can estimate and generate movement
trajectories. Using these movement trajectories, route choices are estimated. This study
aims to compare routes along the LRT line (LRT routes) with those not along the LRT line
(non-LRT routes). Therefore, in the route-choice estimation, the selection rates of routes
that pass through the LRT line and those that do not are calculated. To account for potential
positioning errors, a route is considered to pass through the LRT line if 70% or more of the
total meshes it passes through are determined to be on an LRT route.

In this context, “LRT route” refers to meshes within 100 m of the LRT lines, while
“non-LRT route” refers to meshes beyond this 100 m range. According to the Ministry
of Land, Infrastructure, Transport, and Tourism, public transportation corridor areas are
defined as being within an 800 m walking distance of railway stations and within a 300 m
walking distance of bus stops. Although the 100 m range set in this study is considerably
shorter from that perspective, the aim of this study is to analyze behavior in areas in close
physical proximity to the LRT, rather than simply considering access to the LRT stops. The
LRT line meshes (292 in total) account for 12.8% of the entire target area (2288 meshes).
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Non-LRT lines include areas such as arterial roads without the LRT and shopping streets
that are narrow or do not face the LRT. This study examines the liveliness by comparing
LRT lines and non-LRT lines. In the subsequent Figure 8, the LRT route refers to the
red-colored area, while the non-LRT route refers to the remaining blue-colored area.
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4.2. Analysis of Route Choice from the Central Station to the City Center

This section evaluates the route-selection rate from a specific departure point to a
specific destination. In this study, the analysis focuses on the movement from Toyama
Station, the central station, to the city center, which is assumed to be a frequently traveled
route. The model constructed in the previous chapter is used to estimate the route-selection
rates for LRT routes and non-LRT routes.

The positions of the departure and arrival mesh areas, along with the mesh areas along
the LRT line, are shown in Figure 8. The destination mesh is located in an area where large
commercial facilities and other businesses are concentrated in the city center. From the
map, it is evident that the shortest route is via the road heading south from Toyama Station.
In this case, it is assumed that private cars or buses, rather than the LRT, would be used.
Figure 9 shows the route-selection rates for LRT routes and non-LRT routes.
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From Figure 9, it is shown that the route-selection probability for LRT routes is ap-
proximately 20–40% higher than for non-LRT routes, even though the LRT route is a detour.



Inventions 2024, 9, 118 11 of 14

This suggests that for trips from Toyama Station to the city center, the rate of selecting the
LRT as a transportation mode is higher than that of private cars or buses.

To clarify the factors influencing route selection, comparisons are made between the
LRT and other transportation modes, as well as an evaluation of the unique value that the
LRT offers. To ensure the validity and comprehensiveness of the comparison criteria, the
derived and primary elements shown in the hierarchical structure of Figure 10, proposed
in previous research [17], are used to organize the analysis at each stage. The left axis
represents the utility of movement, and for the fundamental elements, positive utility is
obtained—meaning that the more relevant factors there are, the higher the probability of
selecting that behavior.
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4.3. Comparison of Selection Factors Between the LRT and Other Transportation Modes

In this section, the selection factors for LRT use, bus use, and private car use are
compared, primarily from the perspective of the derived elements shown in Figure 10.

When comparing LRT and buses, the fares were the same. When making comparisons
regarding journey times, the time-reliability perspective was also taken into account and
the journey times were estimated including the time of delays. Therefore, with regard to
the delay times of LRT and buses, the delay times for each transportation mode on a certain
day were obtained from the published GTFS-R data for each public transport system in
Toyama City [18], and the expected delay per use was calculated based on the number of
observations. The distribution of the obtained delay times is shown in Figure 11.
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From the distribution of delay times, it can be seen that buses consistently have longer
delay times compared to the LRT. To quantitatively evaluate the delay times, the expected
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delay time was calculated using Equation (8), shown below. Here, the expected delay time
D(m) for a transportation mode is represented as the sum of the products of the delay time
d(t) at class t and the observed proportion (relative frequency) E(t) in that class.

D(m) = ∑t=T d(t)× E(t) (8)

By organizing the travel times that take delays into account using the above process,
the result still shows that buses have shorter travel times, even considering the delay time.
Focusing solely on travel time, buses are more likely to be chosen. However, since bus delay
times vary depending on the time of day, it is possible that the choice of transportation
mode is evaluated based on factors such as the maximum delay or the mode of delays at
specific times, rather than the daily average as considered in this study. It should also be
noted that the evaluation of travel time may differ depending on each user.

When comparing the LRT with private cars, especially in terms of speed, private cars
can arrive in about one-third of the time it takes the LRT. The time required by private cars
was estimated using Google Maps [19] between Toyama Station and the bus stop in the city
center. No significant changes in estimated journey times were found between weekdays
and holidays or at different times of day. From the result, even considering factors such as
being unable to use a car when drinking alcohol or not possessing a driver’s license, and
slightly lower punctuality, private cars remain a strong alternative.

The comparison results based on the above analysis are summarized in Table 2. Cate-
gories where each transportation mode excels are marked with #, while categories where
it is inferior to other modes are marked with △ or ×.

Table 2. Comparison of derived elements for each transportation mode.

Introjected regulation LRT Bus Private vehicle

Cost (fare) # (210 yen) # (210 yen) -
Speed (Required time) × (14 min) △ (10 min) # (5 min)

Punctuality (Estimated
average delay)

#
(Estimated delay:

1.4 min)

△
(Estimated delay:

3.6 min)
△

Required time
considering delay △ (15.4 min) # (13.6 min) -

Safety # # △
External regulation LRT Bus Private vehicle

Drinking alcohol # # × (Not allowed)
No driver’s license # # × (Not allowed)

Based on the estimates and considerations of the derived elements, it cannot be said
that the LRT is necessarily superior when choosing a transportation mode from Toyama
Station to the city center. In other words, it is unlikely that routes along the LRT are more
likely to be chosen. Therefore, it is assumed that other factors may encourage route choices
along the LRT. In the next section, the fundamental elements contributing to these factors
will be examined.

4.4. Consideration of LRT Route Selection Factors

In this section, the factors that contribute to the selection of LRT routes are examined
from the perspective of the fundamental elements presented earlier.

First, from the perspective of integrated regulation, it is assumed that people are
attracted to the LRT vehicles themselves, leading to the use of the LRT. Specifically, at
Toyama Station, the LRT platform is located right in front of the ticket gate, making it easily
recognizable to visitors exiting the station, which likely leads to increased use. On the other
hand, buses require movement to the bus stop in front of the station, and since there are
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no tracks like the LRT, it is unclear which bus to take, which is likely why the selection
probability for buses is lower.

Additionally, from the perspective of identification regulation, the attractiveness of
spaces along the LRT line is considered a contributing factor. Along the Toyama LRT line,
attractive spaces have been developed, including the design of the LRT stops, the display of
monuments along the route, and the installation of street furniture that allows for resting. It
is assumed that people feel more comfortable moving through and lingering in the spaces
along the LRT line compared to bus routes, which are congested with heavy traffic, leading
to the selection of LRT routes. In this context, the desire to enjoy the journey itself, a factor
of higher-level internal regulation, may also contribute to the route selection.

5. Conclusions
5.1. Key Findings

In this study, with the aim of quantifying the impact of the LRT on the railway lines,
the analysis focused on route-choice behavior. Using IRL, behavioral trajectories could be
generated with high accuracy from smartphone location data, and the estimated behavioral
trajectories were used to tabulate route-choice behavior in two categories: LRT routes/non-
LRT routes. The results show that the proportion of journeys from Toyama Station to the
city center via the LRT line is high. Through comparison with other transportation modes,
it was suggested that the unique value of the LRT led to the selection of routes along the
LRT line.

Through the analysis in this study, it was shown that there are factors that appeal to
the desire to use and visit the LRT and LRT lines. The results suggest that LRT lines have
the potential to attract people and can contribute to regional revitalization through the
utilization of the space along the lines. In Toyama City, which was the subject of this study,
measures have been implemented to utilize the space along the line, such as the installation
of benches where people can stay, the expansion of pedestrian space, the introduction
of a transit mall, and the implementation of events along the line, creating a bustling
atmosphere along the line. Through the total design of destinations and transportation
modes, it will be effective to implement measures to revitalize the LRT line by making use
of the synergy between the attractiveness of the destination facilities and the attractiveness
of the LRT itself.

5.2. Future Challenges

In this study, route-choice behavior was analyzed using actual movement data from
smartphone location data. To estimate more clearly the factors that contribute to route
choice, it is necessary to analyze not only location information, but also information on
personal attributes such as age and place of residence. Furthermore, in order to gain a more
detailed understanding of the behavior along the route and the specific factors that lead
to route choices, more detailed surveys, such as questionnaires for visitors and residents
along the LRT line, are needed.

Further research on the effects of LRT will contribute to the realization of urban
transportation policies that utilize LRT not merely as a transportation mode but as a tool
for urban development.
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