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Abstract: Background: This study describes a novel biomaterial consisting of a mixture of biphasic
bioceramic obtained from waste generated by the sugar industry (Carbocal) and a medical-grade
epoxy resin adhesive called LOCTITE® M31 CLTM. The objective was to demonstrate the possibility
of coating non-bioactive and non-biodegradable metallic surfaces on implantable elements. Methods:
After preparation, the mixture was applied to the surfaces of hip prostheses composed of two
distinct materials: polyetherimide and grade 5 titanium. In both cases, adhesion tests produced
favourable results. Additionally, cell cultures were conducted using human foetal osteoblastic cell
lines (hFOB 1.19). Results: It was observed that the mixture did not affect the proliferation of
bone cells. Conclusions: This composite material was found to promote the growth of bone cells,
suggesting its potential for fostering bone tissue development.

Keywords: biphasic bioceramic adhesive; Carbocal; epoxy resin; cell viability; bone tissue engineer-
ing; biocompatible coating

1. Introduction

Bone tissue engineering is a multidisciplinary field that combines regenerative
medicine, biomechanics, and materials engineering [1–3]. The complexity of bone tis-
sues and their limited capacity for natural regeneration make bone tissue engineering a
crucial area of research in medicine [1–3].

Regeneration and the repair of bone defects are central goals in this evolving field [4,5].
Scaffolds, used for bone repair or replacement, play a crucial role in this biomedical disci-
pline [6–8]. In this context, the selection of materials for scaffolds represents a significant
challenge [9–11]. The introduction of biomaterials in bone tissue repair has revolutionised
therapeutic approaches [12–14]. These materials not only act as structural supports but can
also modulate cellular and tissue response to promote bone regeneration [12–14].

In this context, hydroxyapatite (HA)-based scaffolds have shown promise for bone
regeneration [15–20]. HA, being a natural component of bone tissues, it exhibits excellent
biocompatibility [21–23]. However, improving its mechanical and adhesion properties
remains a major challenge in bone tissue engineering [15–20].

Obtaining HA from traditional natural sources presents ethical and environmental
concerns [24]. Therefore, the exploration of new sources for HA synthesis has become
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crucial. One promising approach is the use of waste from the sugar industry, in line with
circular economy and sustainability principles [25–27].

A recent study has described the production of a biphasic bioceramic from Carbocal®,
a by-product of the sugar industry [27]. This bioceramic shows similar properties to
commercial HA, suggesting its potential for biomedical applications. In addition, it is
composed of 24% TCP (tricalcium phosphate, Ca3(PO4)2), known for its osteoconductivity
and biodegradability. Using Carbocal® instead of animal bones for the production of
bioceramics can reduce waste and promote the circular bioeconomy [27].

The processing of sugar beet to produce sugar generates three types of by-products:
sugar beet leaves, dry pulp, and Carbocal®. These by-products are used as fertilisers,
animal feed, and even in the production of cement for the construction sector. However, the
production of these by-products is very high, reaching 80% of the raw material, amounting
to 250,000 tonnes per year, so a large fraction of them usually go to landfills or become
incinerated, resulting in a consequent imbalance of CO2 production. This is why the
availability of this by-product would not generate a bottleneck in its application. Specifically,
Carbocal®, due to its CaCO3 content and its physico-chemical characteristics, is very
interesting as a hydroxyapatite precursor. It is a product consisting of more than 80%
CaCO3, 7% organic matter, oligo-elements, and assimilable organic acids.

In addition to advances in materials, surface modification and coating techniques for
metallic implants are fundamental in bone tissue engineering [28–35]. However, some
of these techniques have limitations, such as weak bonding between implants and coat-
ings [28–35].

The development of adhesive hybrid biomaterials and biocomposites offers a promis-
ing alternative [28–35]. These materials can avoid problems associated with metal-based
implants, such as corrosion and the need for subsequent removal [28–35].

Additionally, a comparison of the bonding performance of some commercial adhe-
sives for medical use in dental applications was established [36], where it was concluded
that the adhesive called LOCTITE M31CL had the best performance, in terms of bond
strength on materials used in additive manufacturing (3D printing). Since the 1960s, acrylic
cements and those based on polymethylmethacrylate (PMMA) mixtures that polymerise
quickly and are applied directly on the implant itself have been used. Unfortunately, bone
removal processes are common in areas where prostheses made from these materials were
previously implanted, mainly due to corrosion phenomena. The biomaterials and adhe-
sive hybrid biocomposites resulting from the processing described in this work avoid the
main problems that arise with implants based on metallic materials. Materials such as
stainless steel, titanium alloys or chromium–cobalt–nickel alloys do not guarantee bone
formation and cause problems in the vicinity of surgery and, and most importantly, give
rise to corrosion phenomena. The work presented here demonstrates the possibility of
coating non-bioactive and non-biodegradable metallic surfaces on implantable elements
with elements of these specific characteristics, which have the additional guarantee of not
suffering detachment or cracks due to corrosion.

This study describes the synthesis of a biomaterial consisting of a mixture of bipha-
sic bioceramic and an epoxy-resin-based adhesive for the priming of implantable sur-
faces [28–35]. This biomaterial could have bioactive potential, inducing cell nucleation and
growth on the implant surface, regardless of its metallic or non-metallic composition.

The literature consulted does not report cases of obtaining a biomaterial for the
priming of metallic or non-metallic implantable surfaces, consisting of a mixture of BBC
and an epoxy-resin-based adhesive, such as the one described in this work, except the
patent applied for by the authors [37]. This biomaterial could potentially play a bioactive
role, having the ability to induce cell nucleation and growth on the biomaterial surface,
regardless of whether it is metal or non-metal.
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2. Materials and Methods

For this study, Carbocal® waste was acquired from the sugar industry in the province
of Cadiz (Andalusia, Spain) in 2021. Carbocal® was obtained from AB Azucarera Iberia S.L.
(Jerez de la Frontera, Cádiz) directly, as it results from sugar refining, which is a suitable
by-product due to its natural characteristics, annual production volume, and consideration
as a waste, without guaranteed valorisation. Table 1 summarises its chemical properties
and the generation process.

Table 1. Characteristics of Carbocal® (CB) [38].

Morphology Powder

Genesis Purification process of juice sweetened with lime hydroxide and CO2

Chemical
composition

>80% CaCO3; 7% organic matter; oligo-elements (N, K2O, P2O5 and Mg);
assimilable organic acids

Humidity <35%

Volume 20,000 average annual tonnes

The adhesive used is a medical grade epoxy called LOCTITE® M31 from the manufac-
turer HENKEL IBÉRICA, S.A. (Alcalá de Guadaíra, Seville, Spain), and it was selected from
5 products, based on the results obtained from the adhesion test previously carried out in
another study [39]. It is a two-component adhesive based on a resin (R) and a hardener (H)
(ratio R/H = 2/1), whose mixture is almost transparent in colour; it has low viscosity and a
specific gravity of 1.07 kg/cm3 at 25 ◦C.

The BBC powder was obtained by hydrothermal phosphatization of Carbocal® [16,34],
using NaH2PO4 as potassium source and respecting the molar ratio Ca/P = 5/3. The
complete process of obtaining BBC is described in a previous publication [27].

Next, the BBC was mixed manually with the biocompatible epoxy adhesive until a
greenish-brown biomaterial with a homogeneous texture was obtained. The mixing with
the adhesive was carried out in different proportions in order to study the influence of this
parameter on the behaviour of the resulting material. The prepared ratios are shown in
Table 2.

Table 2. Mass (milligrams) of each component and % composition of the different mixtures pre-pared.

Components
Mix (mg)

I II III IV V VI VII

H 135.5 133.5 133 138.2 275 345.3 H 310

R 276.7 275.4 264 266.1 566.1 720 R 740

BBC 100 199.7 300.4 40.9 843.6 1300.5 BBC-SBP 871

Total 512.2 608.6 697.4 445.2 1684.7 2365.8 Total 1921

% Composition

BBC (%) 19.52 32.81 43.07 9.19 50.07 54.97 BBC-SBP 45.34

Epoxy (%) 80.48 67.19 56.93 90.81 49.93 45.03 Epoxy 54.66

In addition, a sample (VII) was prepared with BBC powder previously combined with
SBP (Sugar Beet Pulp) and then mixed with epoxy in the proportion indicated in Table 2.
These mixtures were cured for 90 min at 30 ◦C and withstood the autoclave sterilisation
process in up to 80 ◦C without deformation or phase changes (Figure 1a).
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Figure 1. Sample preparation: (a) composite materials formed before coating the samples. Nomen-
clature I–VII corresponds to the compositions indicated in Table 2; (b) samples after coating 3 im-
plantable surfaces (PEI-ULTEM1010®  from the manufacturer Sabic (Riyadh, Saudi Arabia), Vi-
talium® from the manufacturer Dentsply Sirona (Charlotte, North Carolina, USA), and Ti-6Al-4V); 
(c) implantable surfaces with adhesion test coatings: 1a—on femoral head on Vitalium material; 
1b—different concentrations on small samples of Vitalium; 2a—epoxy only on flat surface of the 
intermediate part of the femoral stem of a hip prosthesis, manufactured in fused deposition (FDM) 
in material U1010; 2b—mixture VII on flat surface of the intermediate part of the femoral stem of a 
hip prosthesis, manufactured in FDM in material U1010; 2c—mixture VII on flat surface of the distal 
part of the femoral stem of a hip prosthesis, on loan from Stryker Iberia S.L. (Alcobendas, Madrid, 
Spain) in Ti-6Al-4V material. 

To test the adhesion, on the implantable surfaces, 3 types of hip prostheses surfaces 
were used. Figure 1c shows a femoral stem piece made in Ti-6Al-4V (Ti5) and a femoral 
head made in Vitalium material (Co: 60,6; Cr: 31,5; Mo: 6,0; rest: Si, Mn, C), in accordance 

Figure 1. Sample preparation: (a) composite materials formed before coating the samples. Nomencla-
ture I–VII corresponds to the compositions indicated in Table 2; (b) samples after coating 3 implantable
surfaces (PEI-ULTEM1010® from the manufacturer Sabic (Riyadh, Saudi Arabia), Vitalium® from
the manufacturer Dentsply Sirona (Charlotte, NC, USA), and Ti-6Al-4V); (c) implantable surfaces
with adhesion test coatings: 1a—on femoral head on Vitalium material; 1b—different concentrations
on small samples of Vitalium; 2a—epoxy only on flat surface of the intermediate part of the femoral
stem of a hip prosthesis, manufactured in fused deposition (FDM) in material U1010; 2b—mixture
VII on flat surface of the intermediate part of the femoral stem of a hip prosthesis, manufactured in
FDM in material U1010; 2c—mixture VII on flat surface of the distal part of the femoral stem of a hip
prosthesis, on loan from Stryker Iberia S.L. (Alcobendas, Madrid, Spain) in Ti-6Al-4V material.

To test the adhesion, on the implantable surfaces, 3 types of hip prostheses surfaces
were used. Figure 1c shows a femoral stem piece made in Ti-6Al-4V (Ti5) and a femoral
head made in Vitalium material (Co: 60,6; Cr: 31,5; Mo: 6,0; rest: Si, Mn, C), in accor-
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dance with commercial Accolade II prosthesis by Stryker® Orthopedics (Stryker Iberia,
Alcobendas, Spain) [40]. The third implantable surface used to study the coating is a
commercial polyetherimide (PEI ULTEM1010®, U1010 in abbreviated form) with ther-
moplastic behaviour, with the following molecular formula: [C37H24O6N2]; molecular
weight—592.61 g/g-mol; and density—1275 kg/m3. U1010 was supplied by Sabic and
optimised for a Fortus 450 MC machine by Stratasys (Eden Prairie, MN, USA) in the XY
orientation (flat), as described in references [40–42]. Once the coatings were applied with a
brush, both prostheses were kept in an oven at 37 ◦C for 12 h.

Grid-Cut Testing [43] was performed to ensure adhesion of the coating to the biomate-
rial, one based on the UNE-EN ISO 2409:2021 standard [44]. For this, once the coating was
applied on a series of prosthesis surfaces, 6 perpendicular incisions were made between
them, 3 to 3. The incisions were made with a V-shaped blade at 30◦, spaced evenly at 3 mm.
Figure 2 shows the instrument fitted with the blades for carrying out the test. This test was
applied to the comparative materials studied (PEI, Ti-6Al-4V “Ti 5”, Vitalium®) to select the
most stable adhesion. After the test, the results are classified with Table 1 of the UNE-EN
ISO 2409 standard based on grades 0 to 5, with 0 being optimal.
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Figure 2. Instrument with V-shaped blades at 30◦ used for the grating in the adhesion test.

Cell cultures were performed with human foetal osteoblastic cell lines (hFOB 1.19), in
the presence of the generated biomaterials, to determine whether the materials affected
cell viability. For this cell viability study, hFOB cells were cultured in osteogenic media,
and viability assays were performed at 24 h, 48 h, 72 h, and 7 days. In this assay, cells were
incubated with MTS, and absorbance was subsequently quantified. Before the process, as a
negative control, hFOB cultures were incubated with 70% methanol for 30 min. As a positive
control, hFOB cultures without any treatment were used. The bio-compatibility of the
materials was tested with primary human hFOB osteoblastic cell cultures. Normal human
foetal osteoblasts were acquired from ATTC (hFOB cell line 1.19, CRL-11372TM). The hFOB
cultures were grown in osteogenic media, containing Dulbecco’s modified Eagle’s culture
(DMEM) with 10% foetal bovine serum (FBS) and an antibiotic (G480 30 mg/uL). Cells
were expanded by incubation at 35 ◦C in 75 cm2 flasks with 5% CO2. Viability assays were
performed for 7 days. As a negative control, prior to the labelling process, hFOB cultures
were incubated with 70% methanol for 30 min. As a positive control, hFOB cultures without
any treatment were used. Prior to the test, the materials were sterilised using an autoclave
at 120 ◦C for 20 min. For the viability assay, cells were grown in a complete medium in
96-well plates at a concentration of 2 × 104 cells/well. These plates were incubated at 35 ◦C
with 5% CO2 for 24 h. In the case of the positive control (PC) and negative control (NC),
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the wells were left to grow without adding anything, while in the test wells, the different
biomaterials were added.

To measure viability, the MTS assay was used. Before labelling, as a negative control,
the cells were incubated with 70% methanol for 30 min. Twenty uL of MTS was added to all
wells and incubated at 34 ◦C for 1 h, after which absorbance was measured at 490 nm using
the Varioskan LUX plate reader (Fisher Scientific S.L., Alcobendas, Spain). This process
was carried out at 24 h, 48 h, 72 h, and 7 days of incubation, with the different BBC/Epoxy
sample solutions. The test was performed in n = 3 replicates.

In addition, a LIVE/DEAD assay was carried out to determine whether the cells
showed growth adhering to the surface of the tested biomaterials. For this, cells were
grown on the surface of the materials under the same conditions as described above, for 24
h, after which the reagents Calcein (3.5 µM) and EthD-1 (7 µM) were added and incubated
for 1 h at 37 ◦C. For the positive control, cells were grown without the presence of any
biomaterial. For the negative control, the same materials were used, treated with the
reagents, without cell culture. The biomaterials, as well as the controls, were observed
under a fluorescence microscope to determine if there had been growth of adherent cells on
the surface.

3. Results and Discussion

In view of the results obtained in the MTS assay (Figure 3), none of the BBC/epoxy
ratios were cytotoxic to the cell line studied. The positive control, culture medium in the
absence of biomaterial, was taken as 100% viability, so no significant differences were found
with any of the BBC/epoxy ratios tested. The negative control, 70% methanol for 30 min
prior to the test, did not exceed 40% viability in any of the cases. All tests were repeated
a minimum of three times (n = 3). The ANOVA test showed that there were significant
differences between samples (F = 4.202, p < 0.005).
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Figure 3. Viability of human osteoblasts after 24 h, 48 h, 72 h, and 7 days of incubation with the
different biomaterials tested. Culture medium in the absence of any biomaterial was used as a positive
control, while 70% methanol was used as a negative control. X: sample tested; Y: viability (%).

The LIVE/DEAD test, which tests the adhesion of the growing cells on the surface of
the biomaterials, showed that only in the proportion in which 50% of BBC was reached was
there cell growth in adhesion on the surface of the biomaterial. These results are presented
in Figure 4, which shows the growth of cells on the surface of biomaterial VI, both with
cells fixed with 70% methanol (a) and with live cells (b).
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In addition, sample VII, enriched with SBP, was also tested with the LIVE/DEAD test,
showing that the cells also grew attached to the surface of the sample, the results of which
are shown in Figure 5.
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Figure 5. Growth of cells adhered to the surface of the biomaterial VII; (a) cells fixed with 70%
methanol; (b) live cells.

Given that the best BBC/epoxy ratio was shown to be the one corresponding to
mixture VI, a comparison of the viability results of this mixture with the sample in which
SBP was included was drawn. Figure 6 shows the comparative results of both samples (VI
and VII), evidencing that there were no significant differences between them. This result
indicates that the addition of beet fiber to the sample, as an enrichment of the scaffold, did
not affect the cell viability of osteoblasts in vitro.

These results are in line with others where natural fibres were added to HA scaffolds
to improve them, showing that the composite had good cell biocompatibility and that they
could be used as biomedical materials [20,45].

Figure 7 shows the results obtained from the adhesion tests of the biomaterial to the
three implantable surface types. The results indicated that although all materials showed
similar initial adhesion strength, U1010 maintains its adhesion over time. Ti-6Al-4V and
Vitalium® experienced slight losses in adhesion.
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made of Vitalium; (c) coating applied on the intermediate area of the femoral stem of the hip prosthesis,
manufactured in FDM 3D printing in U1010 material. In the enlarged view, two coatings can be seen,
type I on the left and type VII on the right.

As seen in Figure 7a,b, Ti5 and Vitalium cause the coating to peel off more easily due
to their hardness. However, as seen in Figure 7c U1010 behaves with more resilience, the
thermoplastic shows greater adhesion when tested. As can be observed on the surface of
the intermediate zone of the hip prosthesis, the cross-cut test makes the traces of the blades
visible, with no discernible detachment to the naked eye. For this reason, it obtained a
result of 0 on a scale from 0 to 5, with 0 being the optimal result according to UNE-EN ISO
16276-2:2008 [46], while coatings on metal surfaces did not exceed Level 1 due to irregular
peeling of the coating along either side of the incisions, equal to or less than 1.5 mm.

4. Conclusions

Nowadays, an increasing number of surgical operations where it is necessary to
use bone filler (bone cement) are performed. This commercial material is composed of
This commercial material is composed of a resin- and mineral-based composite of bovine
origin. This study conducted on the mixture of BBC and an epoxy-resin-based adhesive
yielded promising outcomes regarding its interaction with bone cells. In our research,
we observed that the mixture did not affect the proliferation of bone cells. Furthermore,
it was determined that the surface of this mixture served as a surface for the growth of
bone cells, indicating its potential for fostering bone tissue development. These findings
suggest favourable biocompatibility between the BBC/Epoxy resin mixture and bone
cells, highlighting its promising role in promoting bone cell proliferation and growth.
This could have significant implications for various biomedical applications, particularly
in bone tissue engineering and regenerative medicine. The adhesion test performed on
three different implantable surfaces, U1010, Vitallium, and Ti5, showed that there was no
significant detachment, thus highlighting the result obtained by U1010 compared to the
other two, having used the coating based on the BBC/SBP VII hybrid sample. The method
of application for implantable elements is suggested in the form of a single vial, in which
the compound is already mixed in the appropriate proportions.
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