Testing the Motor Competence and Health-Related Variable Conceptual Model: A Path Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Activity Assessment
2.3. Perceived Competence Assessment
2.4. Gross motor Skill Assessment
2.5. Health-related Fitness Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cools, W.; DeMartelaer, K.; Samaey, C.; Andries, C. Movement skill assessment of typically developing preschool children: A review of seven movement skill assessment tools. J. Sports Sci. Med. 2009, 8, 154–168. [Google Scholar] [PubMed]
- Deflandre, A.; Lorant, J.; Gavarry, O.; Falgairette, G. Determinants of physical activity and physical and sports activities in French school children. Percept. Mot. Skills 2001, 92, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Davis, W.E.; Burton, A.W. Ecological task analysis: Translating movement behavior theory into practice. Adapt. Phys. Act. Q. 1991, 8, 154–177. [Google Scholar] [CrossRef]
- Burton, A.W.; Miller, D.E. Movement Skill Assessment; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Sheldrick, M.P.R.; Tyler, R.; Mackintosh, K.A.; Stratton, G. Relationship between sedentary time, physical activity and multiple lifestyle factors in children. J. Funct. Morphol. Kinesiol. 2018, 3, 15. [Google Scholar] [CrossRef]
- Condello, G.; Puggina, A.; Aleksovska, K.; Buck, C.; Burns, C.; Cardon, G.; Carlin, A.; Simon, C.; Ciarapica, D.; Coppinger, T.; et al. Behavioral determinants of physical activity across the life course: A “Determinants of Diet and Physical Activity” (DEDIPAC) umbrella systematic literature review. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Cortis, C.; Puggina, A.; Pesce, C.; Aleksovska, K.; Buck, C.; Burns, C.; Cardon, G.; Carlin, A.; Simon, C.; Ciarapica, D.; et al. Psychological determinants of physical activity across the life course: A “Determinants of Diet and Physical Activity” (DEDIPAC) umbrella systematic literature review. PLoS ONE 2017, 12, e0182709. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.J.; Barnett, L.M.; Cliff, D.P.; Okely, A.D.; Scott, H.A.; Cohen, K.E.; Lubans, D.R. Fundamental movement skill interventions in youth: A systematic review and meta-analysis. Pediatrics 2013, 132, 1361–1383. [Google Scholar] [CrossRef] [PubMed]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Barnett, L.M.; Morgan, P.J.; Van Beurden, E.; Ball, K.; Lubans, D.R. A reverse pathway? Actual and perceived skill proficiency and physical activity. Med. Sci. Sports Exerc. 2011, 43, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.; Morgan, P.J.; Van Beurden, E.; Beard, J.R. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: A longitudinal assessment. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.D.; Brusseau, T.A.; Hannon, J.C. Multivariate associations among health-related fitness, physical activity, and TGMD-3 test items in disadvantaged children from low-income families. Percept. Mot. Skills 2017, 124, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.D.; Brusseau, T.A.; Fu, Y.; Hannon, J.C. Gross motor skills and cardio-metabolic risk in children: A mediation analysis. Med. Sci. Sports Exerc. 2017, 49, 746–751. [Google Scholar] [CrossRef] [PubMed]
- De Meester, A.; Stodden, D.; Brian, A.; True, L.; Cardon, G.; Tallir, I.; Haerens, L. Associations among elementary school children’s actual motor competence, perceived motor competence, physical activity and BMI: A cross-sectional study. PLoS ONE 2016, 11, e0164600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stodden, D.F.; Gao, Z.; Goodway, J.D.; Langendorfer, S.J. Dynamic relationships between motor skill competence and health-related fitness in youth. Pediatr. Exerc. Sci. 2014, 26, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Burns, R.D. Gross motor skills and school day physical activity: Mediating effect of perceived competence. J. Mot. Learn. Dev. 2018. [Google Scholar] [CrossRef]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 1998. [Google Scholar]
- Crouter, S.E.; Schneider, P.L.; Karabulut, M.; Bassett, D.R. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med. Sci. Sports Exerc. 2003, 35, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.L.; Crouter, S.E.; Lukajic, O.; Bassett, D.R. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med. Sci. Sports Exerc. 2003, 35, 1770–1784. [Google Scholar] [CrossRef] [PubMed]
- Harter, S. Effectance motivation reconsidered. Toward a developmental model. Hum. Dev. 1978, 21, 34–64. [Google Scholar] [CrossRef]
- Estevan, I.; Molina-García, J.; Queralt, A.; Álvarez, O.; Castillo, I.; Barnett, L. Validity and Reliability of the Spanish Version of the Test of Gross Motor Development–3. J. Mot. Learn. Dev. 2017, 5, 69–81. [Google Scholar] [CrossRef]
- Webster, E.K.; Ulrich, D.A. Evaluation of the psychometric properties of the Test of Gross Motor Development-Third Edition. J. Mot. Learn. Dev. 2017, 5, 45–58. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Hillsdale, NJ, USA, 1998. [Google Scholar]
- Mayorga-Vega, D.; Aguilar-Soto, P.; Viciana, J. Criterion-related validity of the 20-M shuttle run test for estimating cardiorespiratory fitness: A meta-analysis. J. Sports Sci. Med. 2015, 14, 536–547. [Google Scholar] [PubMed]
- Beets, M.W.; Pitetti, K.H. Criterion-refenced reliability and equivalency between the PACER and 1-Mile Run/Walk for high school students. J. Phys. Act. Health 2006, 3, S21–S33. [Google Scholar] [CrossRef]
- Barrett, P. Structural Equation Modelling: Adjudging Model Fit. Pers. Individ. Differ. 2007, 42, 815–824. [Google Scholar] [CrossRef]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equat. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Chen, A. Motor skills matter to physical activity-At least for children. J. Sport Health Sci. 2013, 2, 58–59. [Google Scholar] [CrossRef]
- Harter, S. The Construction of the Self: A Developmental Perspective; Guilford Press: New York, NY, USA, 1999. [Google Scholar]
- Marsh, H.W. A multidimensional, hierarchical model of self-concept: Theoretical and empirical justification. Educ. Psychol. Rev. 1990, 2, 77–172. [Google Scholar] [CrossRef]
- Wang, C.K.J.; Chatzisarantis, N.L.D.; Spray, C.M.; Biddle, S.J.H. Achievement goal profiles in school physical education: Differences in self-determination, sport ability beliefs, and physical activity. Br. J. Educ. Psychol. 2002, 72, 433–445. [Google Scholar] [CrossRef]
- Davison, K.K.; Downs, D.S.; Birch, L.L. Pathways linking perceived athletic competence and parental support at age 9 years to girls’ physical activity at age 11 years. Res. Q. Exerc. Sport 2006, 77, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Logan, S.W.; Webster, E.K.; Getchell, N.; Pfeiffer, K.A.; Robinson, L.E. Relationship between fundamental motor skill competence and physical activity during childhood and adolescence: A systematic review. Kinesiol. Rev. 2015, 4, 416–426. [Google Scholar] [CrossRef]
- D’Hondt, E.; Deforche, B.; Gentier, I.; Verstuyf, J.; Vaeyens, R.; De Bourdeaudhuij, I.; Philippaerts, R.; Lenoir, M. A longitudinal study of gross motor coordination and weight status in children. Obesity 2014, 22, 1505–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drenowatz, C. A focus on motor competence as alternative strategy for weight management. J. Obes. Chronic Dis. 2017, 1, 31–38. [Google Scholar] [CrossRef]
- Cheng, J.; East, P.; Blanco, E.; Sim, E.K.; Castillo, M.; Lozoff, B.; Gahagan, S. Obesity leads to declines in motor skills across childhood. Child Care Health Dev. 2016, 42, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.C.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D.; et al. Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef] [PubMed]
- Gentier, I.; D’Hondt, E.; Deforche, B.; Augustijn, M.; Hoorne, S.; Verlaecke, K.; De Bourdeaudhuij, I.; Lenoir, M. Fine and gross motor skills differ between healthy-weight and obese children. Res. Dev. Dis. 2013, 34, 4043–4051. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.E.; Rudsill, M.E.; Goodway, J. Instructional climates in preschool children who are at-risk. Part II: Perceived physical competence. Res. Q. Exerc. Sport 2009, 80, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.E. The relationship between perceived physical competence and fundamental motor skills in preschool children. Child Care Health Dev. 2010, 37, 589–596. [Google Scholar] [CrossRef] [PubMed]
Girls (n = 40) | Boys (n = 44) | Total Sample (n = 84) | |
---|---|---|---|
BMI (kg/m2) | 23.7 † (5.9) | 21.1 (4.3) | 22.7 (5.5) |
School Steps | 3376 (1579) | 4214 (1435) | 3681 (1577) |
PACER Laps | 22.0 (19.4) | 35.3 † (20.9) | 26.4 (19.3) |
Perceived Competence | 3.0 (0.7) | 3.4 (0.6) | 3.3 (0.7) |
Locomotor Skills | 36.1 (5.8) | 39.0 (6.3) | 37.9 (6.1) |
Ball Skills | 39.4 (5.2) | 48.9 † (6.2) | 41.2 (7.2) |
TGMD-3 Total Score | 74.9 (7.8) | 88.1 † (10.9) | 80.5 (10.9) |
Outcome Variables | Fitted Variance | Predicted Variance | Residual Variance | R | R2 |
---|---|---|---|---|---|
Perceived Competence | 0.481 | 0.035 | 0.446 | 0.271 | 0.073 |
TGMD-3 Scores | 119.722 | 27.880 | 91.841 | 0.483 | 0.233 |
PACER Laps | 457.200 | 113.483 | 343.717 | 0.498 | 0.248 |
BMI (kg/m2) | 28.103 | 6.247 | 21.857 | 0.471 | 0.222 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, R.D.; Fu, Y. Testing the Motor Competence and Health-Related Variable Conceptual Model: A Path Analysis. J. Funct. Morphol. Kinesiol. 2018, 3, 61. https://doi.org/10.3390/jfmk3040061
Burns RD, Fu Y. Testing the Motor Competence and Health-Related Variable Conceptual Model: A Path Analysis. Journal of Functional Morphology and Kinesiology. 2018; 3(4):61. https://doi.org/10.3390/jfmk3040061
Chicago/Turabian StyleBurns, Ryan Donald, and You Fu. 2018. "Testing the Motor Competence and Health-Related Variable Conceptual Model: A Path Analysis" Journal of Functional Morphology and Kinesiology 3, no. 4: 61. https://doi.org/10.3390/jfmk3040061
APA StyleBurns, R. D., & Fu, Y. (2018). Testing the Motor Competence and Health-Related Variable Conceptual Model: A Path Analysis. Journal of Functional Morphology and Kinesiology, 3(4), 61. https://doi.org/10.3390/jfmk3040061