Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Visceral Adipose Tissue (VAT) Thickness
2.3. Oral Glucose Tolerance Testing
2.4. Experimental Protocol
2.5. Data Reduction
2.6. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Glucose Tolerance in SCI versus Non-SCI
3.3. Glucose Tolerance in Lean versus Non-Lean
3.4. Glucose Tolerance and Mobility
4. Discussion
4.1. BMI vs. VAT Classification
4.2. SCI vs. Non-SCI Glucose Response
4.3. Lean vs. Non-Lean Glucose Response
4.4. Mobility and Glucose Tolerance in SCI
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltran-Sanchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J. Am. Coll. Cardiol. 2013, 62, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Or, B.; Tsoi, M.F.; Cheung, C.L.; Cheung, B.M.Y. Prevalence of metabolic syndrome in the United States National Health and Nutrition Examination Survey 2011–18. Postgrad. Med. J. 2023, qgad008. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity among Adults and Youth: United States, 2015–2016; NCHS Data Brief; NCHS: Hyattsville, MD, USA, 2017; pp. 1–8. [Google Scholar]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity among Adults: United States, 2017–2018; NCHS Data Brief; NCHS: Hyattsville, MD, USA, 2020; pp. 1–8. [Google Scholar]
- Vidra, N.; Trias-Llimós, S.; Janssen, F. Impact of obesity on life expectancy among different European countries: Secondary analysis of population-level data over the 1975–2012 period. BMJ Open 2019, 9, e028086. [Google Scholar] [CrossRef] [PubMed]
- Ion, R.M.; Sibianu, M.; Hutanu, A.; Beresescu, F.G.; Sala, D.T.; Flavius, M.; Rosca, A.; Constantin, C.; Scurtu, A.; Moriczi, R.; et al. A Comprehensive Summary of the Current Understanding of the Relationship between Severe Obesity, Metabolic Syndrome, and Inflammatory Status. J. Clin. Med. 2023, 12, 3818. [Google Scholar] [CrossRef]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of Obesity in the United States, 2009–2010; NCHS Data Brief; NCHS: Hyattsville, MD, USA, 2012; pp. 1–8. [Google Scholar]
- Gater, D.R., Jr. Obesity after spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 2007, 18, 333–351. [Google Scholar] [CrossRef]
- Gater, D.R., Jr.; Farkas, G.J.; Tiozzo, E. Pathophysiology of Neurogenic Obesity After Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 57–67. [Google Scholar] [CrossRef]
- Petrie, M.A.; Suneja, M.; Faidley, E.; Shields, R.K. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS ONE 2014, 9, e115791. [Google Scholar] [CrossRef]
- Dudley-Javoroski, S.; Shields, R.K. Regional cortical and trabecular bone loss after spinal cord injury. J. Rehabil. Res. Dev. 2012, 49, 1365–1376. [Google Scholar] [CrossRef]
- Jorgensen, S.; Iwarsson, S.; Lexell, J. Secondary Health Conditions, Activity Limitations, and Life Satisfaction in Older Adults with Long-Term Spinal Cord Injury. PM R J. Inj. Funct. Rehabil. 2017, 9, 356–366. [Google Scholar] [CrossRef]
- The All of Us Research Program Investigators; Denny, J.C.; Rutter, J.L.; Goldstein, D.B.; Philippakis, A.; Smoller, J.W.; Jenkins, G.; Dishman, E. The “All of Us” Research Program. N. Engl. J. Med. 2019, 381, 668–676. [Google Scholar] [CrossRef]
- Edwards, L.A.; Bugaresti, J.M.; Buchholz, A.C. Visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue are greater in adults with than in those without spinal cord injury, despite matching waist circumferences. Am. J. Clin. Nutr. 2008, 87, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Teasell, R.W.; Arnold, J.M.; Krassioukov, A.; Delaney, G.A. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch. Phys. Med. Rehabil. 2000, 81, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Garstang, S.V.; Miller-Smith, S.A. Autonomic nervous system dysfunction after spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 2007, 18, 275–296, vi–vii. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.C.; McGillivray, C.F.; Pencharz, P.B. Physical activity levels are low in free-living adults with chronic paraplegia. Obes. Res. 2003, 11, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Petrie, M.A.; Suneja, M.; Faidley, E.; Shields, R.K. Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury. Physiol. Rep. 2014, 2, e00248. [Google Scholar] [CrossRef]
- Petrie, M.A.; Kimball, A.L.; Shields, R.K. Acute Low Force Electrically Induced Exercise Modulates Post Prandial Glycemic Markers in People with Spinal Cord Injury. J. Funct. Morphol. Kinesiol. 2022, 7, 89. [Google Scholar] [CrossRef]
- Goldsmith, J.A.; Ennasr, A.N.; Farkas, G.J.; Gater, D.R.; Gorgey, A.S. Role of exercise on visceral adiposity after spinal cord injury: A cardiometabolic risk factor. Eur. J. Appl. Physiol. 2021, 121, 2143–2163. [Google Scholar] [CrossRef]
- Li, J.; Hunter, G.R.; Chen, Y.; McLain, A.; Smith, D.L.; Yarar-Fisher, C. Differences in Glucose Metabolism Among Women with Spinal Cord Injury May Not Be Fully Explained by Variations in Body Composition. Arch. Phys. Med. Rehabil. 2019, 100, 1061–1067.e1. [Google Scholar] [CrossRef]
- Beck, L.A.; Lamb, J.L.; Atkinson, E.J.; Wuermser, L.A.; Amin, S. Body composition of women and men with complete motor paraplegia. J. Spinal Cord Med. 2014, 37, 359–365. [Google Scholar] [CrossRef]
- McCauley, L.S.; Sumrell, R.M.; Gorgey, A.S. Anthropometric Prediction of Visceral Adipose Tissue in Persons with Motor Complete Spinal Cord Injury. PM R J. Inj. Funct. Rehabil. 2018, 10, 817–825.e2. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Wells, K.M.; Austin, T.L. Adiposity and spinal cord injury. World J. Orthop. 2015, 6, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, M.H.; Alavinia, S.M.; Craven, B.C. Management of obesity after spinal cord injury: A systematic review. J. Spinal Cord Med. 2017, 40, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Green, D.J. Exercise protects the cardiovascular system: Effects beyond traditional risk factors. J. Physiol. 2009, 587, 5551–5558. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef]
- Goodyear, L.J.; Kahn, B.B. Exercise, glucose transport, and insulin sensitivity. Annu. Rev. Med. 1998, 49, 235–261. [Google Scholar] [CrossRef]
- Raymond, J.; Harmer, A.R.; Temesi, J.; van Kemenade, C. Glucose tolerance and physical activity level in people with spinal cord injury. Spinal Cord 2010, 48, 591–596. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Dolbow, D.R.; Dolbow, J.D.; Khalil, R.K.; Castillo, C.; Gater, D.R. Effects of spinal cord injury on body composition and metabolic profile—Part I. J. Spinal Cord Med. 2014, 37, 693–702. [Google Scholar] [CrossRef]
- Molenaar, E.A.; Massaro, J.M.; Jacques, P.F.; Pou, K.M.; Ellison, R.C.; Hoffmann, U.; Pencina, K.; Shadwick, S.D.; Vasan, R.S.; O’Donnell, C.J.; et al. Association of lifestyle factors with abdominal subcutaneous and visceral adiposity: The Framingham Heart Study. Diabetes Care 2009, 32, 505–510. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Mather, K.J.; Gater, D.R. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metab. Clin. Exp. 2011, 60, 843–851. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Kingwell, B.A.; Larsen, R.; Healy, G.N.; Cerin, E.; Hamilton, M.T.; Shaw, J.E.; Bertovic, D.A.; Zimmet, P.Z.; Salmon, J.; et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012, 35, 976–983. [Google Scholar] [CrossRef]
- Matthews, C.E.; George, S.M.; Moore, S.C.; Bowles, H.R.; Blair, A.; Park, Y.; Troiano, R.P.; Hollenbeck, A.; Schatzkin, A. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am. J. Clin. Nutr. 2012, 95, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Duvivier, B.M.; Schaper, N.C.; Bremers, M.A.; van Crombrugge, G.; Menheere, P.P.; Kars, M.; Savelberg, H.H. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS ONE 2013, 8, e55542. [Google Scholar] [CrossRef] [PubMed]
- Mauad, F.M.; Chagas-Neto, F.A.; Benedeti, A.; Nogueira-Barbosa, M.H.; Muglia, V.F.; Carneiro, A.A.O.; Muller, E.M.; Elias Junior, J. Reproducibility of abdominal fat assessment by ultrasound and computed tomography. Radiol. Bras. 2017, 50, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, I.; Wiggermann, P.; Behrens, G.; Fischer, B.; Koch, M.; Freese, J.; Rubin, D.; Nothlings, U.; Stroszczynski, C.; Leitzmann, M.F. Reproducibility and validity of ultrasound for the measurement of visceral and subcutaneous adipose tissues. Metab. Clin. Exp. 2014, 63, 1512–1519. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, H.J.; Hur, K.Y.; Choi, S.H.; Ahn, C.W.; Lim, S.K.; Kim, K.R.; Lee, H.C.; Huh, K.B.; Cha, B.S. Visceral fat thickness measured by ultrasonography can estimate not only visceral obesity but also risks of cardiovascular and metabolic diseases. Am. J. Clin. Nutr. 2004, 79, 593–599. [Google Scholar] [CrossRef]
- Allison, D.B.; Paultre, F.; Maggio, C.; Mezzitis, N.; Pi-Sunyer, F.X. The use of areas under curves in diabetes research. Diabetes Care 1995, 18, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Sumrell, R.M.; Nightingale, T.E.; McCauley, L.S.; Gorgey, A.S. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS ONE 2018, 13, e0203049. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Farkas, G.J.; Dolbow, D.R.; Khalil, R.E.; Gater, D.R. Gender Dimorphism in Central Adiposity May Explain Metabolic Dysfunction After Spinal Cord Injury. PMR J. Inj. Funct. Rehabil. 2018, 10, 338–348. [Google Scholar] [CrossRef]
- Ravensbergen, H.R.; Lear, S.A.; Claydon, V.E. Waist circumference is the best index for obesity-related cardiovascular disease risk in individuals with spinal cord injury. J. Neurotrauma 2014, 31, 292–300. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Ennasr, A.N.; Farkas, G.J.; Gater, D.R., Jr. Anthropometric Prediction of Visceral Adiposity in Persons with Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 23–35. [Google Scholar] [CrossRef]
- van der Scheer, J.W.; Totosy de Zepetnek, J.O.; Blauwet, C.; Brooke-Wavell, K.; Graham-Paulson, T.; Leonard, A.N.; Webborn, N.; Goosey-Tolfrey, V.L. Assessment of body composition in spinal cord injury: A scoping review. PLoS ONE 2021, 16, e0251142. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Kim, T.; Lee, B.S.; Kim, O. Factors Affecting Metabolic Syndrome in Individuals with Chronic Spinal Cord Injury. Ann. Rehabil. Med. 2022, 46, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Burton, A.M.; McMillan, D.W.; Sneij, A.; Gater, D.R., Jr. The Diagnosis and Management of Cardiometabolic Risk and Cardiometabolic Syndrome after Spinal Cord Injury. J. Pers. Med. 2022, 12, 1088. [Google Scholar] [CrossRef] [PubMed]
- Saunders, L.L.; Clarke, A.; Tate, D.G.; Forchheimer, M.; Krause, J.S. Lifetime prevalence of chronic health conditions among persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2015, 96, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Elder, C.P.; Apple, D.F.; Bickel, C.S.; Meyer, R.A.; Dudley, G.A. Intramuscular fat and glucose tolerance after spinal cord injury--a cross-sectional study. Spinal Cord 2004, 42, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, R.S.; Babraj, J.A.; Fawkner, S.G.; Vollaard, N.B. Towards the minimal amount of exercise for improving metabolic health: Beneficial effects of reduced-exertion high-intensity interval training. Eur. J. Appl. Physiol. 2012, 112, 2767–2775. [Google Scholar] [CrossRef]
- Jorge, M.L.; de Oliveira, V.N.; Resende, N.M.; Paraiso, L.F.; Calixto, A.; Diniz, A.L.; Resende, E.S.; Ropelle, E.R.; Carvalheira, J.B.; Espindola, F.S.; et al. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metab. Clin. Exp. 2011, 60, 1244–1252. [Google Scholar] [CrossRef]
- D’Oliveira, G.L.; Figueiredo, F.A.; Passos, M.C.; Chain, A.; Bezerra, F.F.; Koury, J.C. Physical exercise is associated with better fat mass distribution and lower insulin resistance in spinal cord injured individuals. J. Spinal Cord Med. 2014, 37, 79–84. [Google Scholar] [CrossRef]
- Carlson, K.F.; Wilt, T.J.; Taylor, B.C.; Goldish, G.D.; Niewoehner, C.B.; Shamliyan, T.A.; Kane, R.L. Effect of exercise on disorders of carbohydrate and lipid metabolism in adults with traumatic spinal cord injury: Systematic review of the evidence. J. Spinal Cord Med. 2009, 32, 361–378. [Google Scholar] [CrossRef]
- Nash, M.S.; Farkas, G.J.; Tiozzo, E.; Gater, D.R. Exercise to mitigate cardiometabolic disorders after spinal cord injury. Curr. Opin. Pharmacol. 2022, 62, 4–11. [Google Scholar] [CrossRef]
- Itodo, O.A.; Flueck, J.L.; Raguindin, P.F.; Stojic, S.; Brach, M.; Perret, C.; Minder, B.; Franco, O.H.; Muka, T.; Stucki, G.; et al. Physical activity and cardiometabolic risk factors in individuals with spinal cord injury: A systematic review and meta-analysis. Eur. J. Epidemiol. 2022, 37, 335–365. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.; Yarar-Fisher, C.; Li, J.; McCully, K.M.; Rimmer, J.H.; Powell, D.; Bickel, C.S.; Fisher, G. Effects of High-Intensity Interval Training Versus Moderate-Intensity Training on Cardiometabolic Health Markers in Individuals with Spinal Cord Injury: A Pilot Study. Top. Spinal Cord Inj. Rehabil. 2019, 25, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Mather, K.J.; Cupp, H.R.; Gater, D.R. Effects of resistance training on adiposity and metabolism after spinal cord injury. Med. Sci. Sports Exerc. 2012, 44, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Ohry, A.; Shemesh, Y.; Rozin, R. Are chronic spinal cord injured patients (SCIP) prone to premature aging? Med. Hypotheses 1983, 11, 467–469. [Google Scholar] [CrossRef]
- Hitzig, S.L.; Eng, J.J.; Miller, W.C.; Sakakibara, B.M.; Team, S.R. An evidence-based review of aging of the body systems following spinal cord injury. Spinal Cord 2011, 49, 684–701. [Google Scholar] [CrossRef]
- Shields, R.K. Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J. Neurophysiol. 1995, 73, 2195–2206. [Google Scholar] [CrossRef]
- Shields, R.K.; Law, L.F.; Reiling, B.; Sass, K.; Wilwert, J. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans. J. Appl. Physiol. 1997, 82, 1499–1507. [Google Scholar] [CrossRef]
- Shields, R.K.; Chang, Y.J. The effects of fatigue on the torque-frequency curve of the human paralysed soleus muscle. J. Electromyogr. Kinesiol. 1997, 7, 3–13. [Google Scholar] [CrossRef]
- Shields, R.K.; Dudley-Javoroski, S. Musculoskeletal adaptations in chronic spinal cord injury: Effects of long-term soleus electrical stimulation training. Neurorehabil. Neural Repair 2007, 21, 169–179. [Google Scholar] [CrossRef]
- Petrie, M.A.; Taylor, E.B.; Suneja, M.; Shields, R.K. Genomic and Epigenomic Evaluation of Electrically Induced Exercise in People with Spinal Cord Injury: Application to Precision Rehabilitation. Phys. Ther. 2022, 102, pzab243. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Thyfault, J.P.; Ruegsegger, G.N.; Toedebusch, R.G. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol. Rev. 2017, 97, 1351–1402. [Google Scholar] [CrossRef] [PubMed]
Non-SCI | SCI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
All | Lean | Non-Lean | All | Lean | Non-Lean | |||||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||||
Subjects | n = 20 (10 females) | n = 12 (7 females) | n = 8 (3 females) | n = 15 (2 females) | n = 6 (1 female) | n = 9 (1 female) | ||||
Age (years) | 24.6 ± 2.1 | † | 24.6 ± 1.4 | 24.6 ± 2.9 | 41.3 ± 15.1 | † | 31.7 ± 8.1 | 47.8 ± 15.5 | ‡ | |
Height (cm) | 173.7 ± 9.6 | 172.5 ± 9.8 | 175.4 ± 9.8 | 177.6 ± 10.5 | 178.9 ± 12.4 | 176.7 ± 9.7 | ||||
Weight (kg) | 85.3 ± 22.6 | 71.3 ± 16.3 | 106.2 ± 11.3 | ‡ | 75.8 ± 14.8 | 64.5 ± 6.08 | 83.3 ± 14.2 | ‡ | ||
BMI (kg m−2) | 28.4 ± 7.2 | † | 24.3 ± 5.8 | 34.6 ± 3.7 | ‡ | 24.0 ± 3.9 | † | 20.2 ± 1.8 | 26.5 ± 2.7 | ‡ |
Fasting Glucose (mg/dL) | 86.8 ± 9.8 | 83.3 ± 8.4 | 92.1 ± 9.9 | ‡ | 92.1 ± 15.3 | 90.7 ± 17.6 | 93.0 ± 14.7 | |||
VAT thickness (cm) | 4.1 ± 2.0 | 2.7 ± 0.6 | 6.2 ± 1.6 | ‡ | 5.3 ± 1.8 | 3.2 ± 0.6 | 6.6 ± 0.7 | ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimball, A.L.; Petrie, M.A.; McCue, P.M.; Johnson, K.A.; Shields, R.K. Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury. J. Funct. Morphol. Kinesiol. 2023, 8, 123. https://doi.org/10.3390/jfmk8030123
Kimball AL, Petrie MA, McCue PM, Johnson KA, Shields RK. Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury. Journal of Functional Morphology and Kinesiology. 2023; 8(3):123. https://doi.org/10.3390/jfmk8030123
Chicago/Turabian StyleKimball, Amy L., Michael A. Petrie, Patrick M. McCue, Kristin A. Johnson, and Richard K. Shields. 2023. "Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury" Journal of Functional Morphology and Kinesiology 8, no. 3: 123. https://doi.org/10.3390/jfmk8030123
APA StyleKimball, A. L., Petrie, M. A., McCue, P. M., Johnson, K. A., & Shields, R. K. (2023). Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury. Journal of Functional Morphology and Kinesiology, 8(3), 123. https://doi.org/10.3390/jfmk8030123