The Influence of Unstable Load and Traditional Free-Weight Back Squat Exercise on Subsequent Countermovement Jump Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol Overview
2.3. Familiarisation Session and One Repetition Maximum (1-RM) Back Squat Assessment
2.4. Comprehensive Warm-Up and Countermovement Jump Trials
2.5. Intervention
2.6. Force Platform Analyses
2.7. Statistical Analysis
3. Results
3.1. Reliability
3.2. Jump Height
3.3. Peak Power
3.4. Peak RFD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mina, M.A.; Blazevich, A.J.; Giakas, G.; Seitz, L.B.; Kay, A.D. Chain-Loaded Variable Resistance Warm-up Improves Free-Weight Maximal Back Squat Performance. Eur. J. Sport Sci. 2016, 16, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.A.; Blazevich, A.J.; Tsatalas, T.; Giakas, G.; Seitz, L.B.; Kay, A.D. Variable, but Not Free-weight, Resistance Back Squat Exercise Potentiates Jump Performance Following a Comprehensive Task-specific Warm-up. Scand. J. Med. Sci. Sports 2019, 29, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.; Judelson, D.A.; Brown, L.E.; Coburn, J.W.; Dabbs, N.C. Influence of Recovery Duration after a Potentiating Stimulus on Muscular Power in Recreationally Trained Individuals. J. Strength Cond. Res. 2010, 24, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Sale, D.G.; MacDougall, J.D.; Tarnopolsky, M.A. Postactivation Potentiation, Fiber Type, and Twitch Contraction Time in Human Knee Extensor Muscles. J. Appl. Physiol. 2000, 88, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Oksa, J. Temperature and Neuromuscular Function. Scand. J. Med. Sci. Sports 2010, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.L.; Stull, J.T. Myosin Light Chain Phosphorylation in Fast and Slow Skeletal Muscles in Situ. Am. J. Physiol. Cell Physiol. 1984, 247, C462–C471. [Google Scholar] [CrossRef] [PubMed]
- Trimble, M.H.; Harp, S.S. Postexercise Potentiation of the H-Reflex Humans. Med. Sci. Sports Exerc. 1998, 30, 933–941. [Google Scholar]
- Cuenca-Fernández, F.; Smith, I.C.; Jordan, M.J.; MacIntosh, B.R.; López-Contreras, G.; Arellano, R.; Herzog, W. Nonlocalized Postactivation Performance Enhancement (PAPE) Effects in Trained Athletes: A Pilot Study. Appl. Physiol. Nutr. Metab. 2017, 42, 1122–1125. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-Activation Potentiation versus Post-Activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef]
- Vandervoort, A.; Quinlan, J.; McComas, A. Twitch Potentiation after Voluntary Contraction. Exp. Neurol. 1983, 81, 141–152. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-Analysis of Postactivation Potentiation and Power: Effects of Conditioning Activity, Volume, Gender, Rest Periods, and Training Status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.; Gordon, T.; Shriver, J. Temperature Dependence of Mammalian Muscle Contractions and ATPase Activities. Biophys. J. 1982, 40, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Folland, J.P.; Wakamatsu, T.; Fimland, M.S. The Influence of Maximal Isometric Activity on Twitch and H-Reflex Potentiation, and Quadriceps Femoris Performance. Eur. J. Appl. Physiol. 2008, 104, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, M.; Docherty, D.; Robbins, D. Post-Activation Potentiation: Underlying Physiology and Implications for Motor Performance. J. Sports Med. 2005, 35, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Edman, K.; Andersson, K.-E. The Variation in Active Tension with Sarcomere Length in Vertebrate Skeletal Muscle and Its Relation to Fibre Width. Experientia 1968, 24, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Jeffreys, I. Warm up Revisited–the ‘Ramp’Method of Optimising Performance Preparation. UKSCA J. 2006, 6, 15–19. [Google Scholar]
- Bishop, D. Warm up II: Performance Changes Following Active Warm up and How to Structure the Warm Up. J. Sports Med. 2003, 33, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.M.; Young, W.B.; Aitken, D.A. The Acute Effects of Heavy Loads on Jump Squat Performance: An Evaluation of the Complex and Contrast Methods of Power Development. J. Strength Cond. Res. 2002, 16, 530–538. [Google Scholar] [CrossRef]
- MacIntosh, B.R.; Robillard, M.-E.; Tomaras, E.K. Should Postactivation Potentiation Be the Goal of Your Warm-Up? Appl. Physiol. Nutr. Metab. 2012, 37, 546–550. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors Modulating Post-Activation Potentiation and Its Effect on Performance of Subsequent Explosive Activities. J. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Masamoto, N.; Larson, R.; Gates, T.; Faigenbaum, A. Acute Effects of Plyometric Exercise on Maximum Squat Performance in Male Athletes. J. Strength Cond. Res. 2003, 17, 68–71. [Google Scholar] [PubMed]
- French, D.N.; Kraemer, W.J.; Cooke, C.B. Changes in Dynamic Exercise Performance Following a Sequence of Preconditioning Isometric Muscle Actions. J. Strength Cond. Res. 2003, 17, 678–685. [Google Scholar] [PubMed]
- de Keijzer, K.L.; McErlain-Naylor, S.A.; Dello Iacono, A.; Beato, M. Effect of Volume on Eccentric Overload-Induced Postactivation Potentiation of Jumps. Int. J. Sports Physiol. Perform. 2020, 15, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Rixon, K.P.; Lamont, H.S.; Bemben, M.G. Influence of Type of Muscle Contraction, Gender, and Lifting Experience on Postactivation Potentiation Performance. J. Strength Cond. Res. 2007, 21, 500–505. [Google Scholar] [PubMed]
- Gourgoulis, V.; Aggeloussis, N.; Kasimatis, P.; Mavromatis, G.; Garas, A. Effect of a Submaximal Half-Squats Warm-up Program on Vertical Jumping Ability. J. Strength Cond. Res. 2003, 17, 342–344. [Google Scholar] [PubMed]
- Hanson, E.D.; Leigh, S.; Mynark, R.G. Acute Effects of Heavy-and Light-Load Squat Exercise on the Kinetic Measures of Vertical Jumping. J. Strength Cond. Res. 2007, 21, 1012–1017. [Google Scholar] [CrossRef]
- Wallace, B.J.; Shapiro, R.; Wallace, K.L.; Abel, M.G.; Symons, T.B. Muscular and Neural Contributions to Postactivation Potentiation. J. Strength Cond. Res. 2019, 33, 615–625. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. J. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Kohler, J.M.; Flanagan, S.P.; Whiting, W.C. Muscle Activation Patterns While Lifting Stable and Unstable Loads on Stable and Unstable Surfaces. J. Strength Cond. Res. 2010, 24, 313–321. [Google Scholar] [CrossRef]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG Activity and Loss of Force Output with Instability. J. Strength Cond. Res. 2004, 18, 637–640. [Google Scholar]
- Lawrence, M.A.; Carlson, L.A. Effects of an Unstable Load on Force and Muscle Activation during a Parallel Back Squat. J. Strength Cond. Res. 2015, 29, 2949–2953. [Google Scholar] [CrossRef] [PubMed]
- Israetel, M.A.; McBride, J.M.; Nuzzo, J.L.; Skinner, J.W.; Dayne, A.M. Kinetic and Kinematic Differences Between Squats Performed with and without Elastic Bands. J. Strength Cond. Res. 2010, 24, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Argus, C.K.; Gill, N.D.; Keogh, J.W.; Blazevich, A.J.; Hopkins, W.G. Kinetic and Training Comparisons Between Assisted, Resisted, and Free Countermovement Jumps. J. Strength Cond. Res. 2011, 25, 2219–2227. [Google Scholar] [CrossRef] [PubMed]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing Post Activation Potentiation for Explosive Activities in Competitive Sports. J. Hum. Kinet. 2016, 52, 95. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Triplett, N.T. Program Design for Resistance Training. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 439–470. [Google Scholar]
- Young, W.B.; Jenner, A.; Griffiths, K. Acute Enhancement of Power Performance from Heavy Load Squats. J. Strength Cond. Res. 1998, 12, 82–84. [Google Scholar]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Linthorne, N.P. Analysis of Standing Vertical Jumps Using a Force Platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- Kibele, A. Possibilities and Limitations in the Biomechanical Analysis of Countermovement Jumps: A Methodological Study. J. Appl. Biomech. 1998, 14, 105–117. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2018; pp. 64–72. [Google Scholar]
- Witmer, C.A.; Davis, S.E.; Moir, G.L. The Acute Effects Of Back Squats On Mechanical Variables During Countermovement Vertical Jump Performance In Women: 1493: Board# 149 June 2 9: 30 AM–11: 00 AM. Med. Sci. Sports Exerc. 2010, 42, 294. [Google Scholar]
- Ostrowski, S.J.; Carlson, L.A.; Lawrence, M.A. Effect of an Unstable Load on Primary and Stabilizing Muscles during the Bench Press. J. Strength Cond. Res. 2017, 31, 430–434. [Google Scholar] [CrossRef]
- Ebben, W.E.; Jensen, R.L. Electromyographic and Kinetic Analysis of Traditional, Chain, and Elastic Band Squats. J. Strength Cond. Res. 2002, 16, 547–550. [Google Scholar] [PubMed]
- Stevenson, M.W.; Warpeha, J.M.; Dietz, C.C.; Giveans, R.M.; Erdman, A.G. Acute Effects of Elastic Bands during the Free-Weight Barbell Back Squat Exercise on Velocity, Power, and Force Production. J. Strength Cond. Res. 2010, 24, 2944–2954. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.A.; Blazevich, A.J.; Giakas, G.; Kay, A.D. Influence of Variable Resistance Loading on Subsequent Free Weight Maximal Back Squat Performance. J. Strength Cond. Res. 2014, 28, 2988–2995. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.J.; Winchester, J.B.; McGuigan, M.R. Effects of Elastic Bands on Force and Power Characteristics during the Back Squat Exercise. J. Strength Cond. Res. 2006, 20, 268–272. [Google Scholar]
- Dunnick, D.D.; Brown, L.E.; Coburn, J.W.; Lynn, S.K.; Barillas, S.R. Bench Press Upper-Body Muscle Activation between Stable and Unstable Loads. J. Strength Cond. Res. 2015, 29, 3279–3283. [Google Scholar] [CrossRef]
- Masel, S.; Maciejczyk, M. Effects of Post-Activation Performance Enhancement on Jump Performance in Elite Volleyball Players. Appl. Sci. 2022, 12, 9054. [Google Scholar] [CrossRef]
- Sañudo, B.; de Hoyo, M.; Haff, G.G.; Muñoz-López, A. Influence of Strength Level on the Acute Post-Activation Performance Enhancement Following Flywheel and Free Weight Resistance Training. Sensors 2020, 20, 7156. [Google Scholar] [CrossRef]
Task | Intensity/Effort | Time [min] |
---|---|---|
5-min cycling | 60 rpm | 0–5.0 |
5 BW squats | 2:2 s tempo | 5.0–5.5 |
5 BW squats | 1:1 s tempo | 6.0–6.5 |
5 CMJs | 70% perceived maximum | 7.0–7.5 |
Single CMJs every 30 s | Maximum (100%) | 8.0–8.5 |
CMJs (pre-intervention test) | Maximum (100%) | 10.5–11.5 |
FWR or UN squats | 85% 1-RM | 12.5–13.0 |
CMJs (post-intervention test) | Maximum (100%) | 13.5, 17.5, 21.5, 25.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jirovska, R.; Kay, A.D.; Tsatalas, T.; Van Enis, A.J.; Kokkotis, C.; Giakas, G.; Mina, M.A. The Influence of Unstable Load and Traditional Free-Weight Back Squat Exercise on Subsequent Countermovement Jump Performance. J. Funct. Morphol. Kinesiol. 2023, 8, 167. https://doi.org/10.3390/jfmk8040167
Jirovska R, Kay AD, Tsatalas T, Van Enis AJ, Kokkotis C, Giakas G, Mina MA. The Influence of Unstable Load and Traditional Free-Weight Back Squat Exercise on Subsequent Countermovement Jump Performance. Journal of Functional Morphology and Kinesiology. 2023; 8(4):167. https://doi.org/10.3390/jfmk8040167
Chicago/Turabian StyleJirovska, Renata, Anthony D. Kay, Themistoklis Tsatalas, Alex J. Van Enis, Christos Kokkotis, Giannis Giakas, and Minas A. Mina. 2023. "The Influence of Unstable Load and Traditional Free-Weight Back Squat Exercise on Subsequent Countermovement Jump Performance" Journal of Functional Morphology and Kinesiology 8, no. 4: 167. https://doi.org/10.3390/jfmk8040167
APA StyleJirovska, R., Kay, A. D., Tsatalas, T., Van Enis, A. J., Kokkotis, C., Giakas, G., & Mina, M. A. (2023). The Influence of Unstable Load and Traditional Free-Weight Back Squat Exercise on Subsequent Countermovement Jump Performance. Journal of Functional Morphology and Kinesiology, 8(4), 167. https://doi.org/10.3390/jfmk8040167