Analysis of the Performance and Sailing Variables of the Optimist Class in a Variety of Wind Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Regatta
2.3. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callewaert, M.; Boone, J.; Celie, B.; De Clercq, D.; Bourgois, J.G. Cardiorespiratory and muscular responses to simulated upwind sailing exercise in Optimist sailors. Pediatr. Exerc. Sci. 2014, 26, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Aziz, A.R.; Spurway, N.C.; Toh, C.; Mackie, H.; Xie, W.; Wong, J.; Fuss, F.K.; Teh, K.C. Indicators of maximal hiking performance in Laser sailors. Eur. J. Appl. Physiol. 2006, 98, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Bojsen-Moller, J.; Larsson, B.; Magnusson, P.; Aagaard, P. Yatch type and crew-specific differences in anthropometric, aerobic capacity, and muscle strength parameters among international Olympic class sailors. J. Sports Sci. 2007, 25, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Pluijms, J.; Cañal-Bruland, C.; Kats, S.; Savelsbergh, G. Translating key methodological issues into technological advancements when running in-situ experiments in sports: An example from sailing. Int. J. Sports Sci. Coach. 2013, 8, 90–103. [Google Scholar] [CrossRef]
- Bernardi, M.; Quattrini, F.M.; Rodio, A.; Fontana, G.; Madaffari, A.; Brugnoli, M.; Marchetti, M. Phsyiological characteristics of America´s Cup sailors. J. Sports Sci. 2007, 25, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Park, J.; Kim, T.; Kim, Y. Performance analysis based on GPS data of Olympic class windsurfing. Int. J. Perform. Anal. Sport 2022, 22, 332–342. [Google Scholar] [CrossRef]
- Caraballo, I.; Cruz Leon, C.; Pérez-Bey, A.; Gutiérrez-Manzanedo, J.V. Performance analysis of paralympic 2.4 mR class sailing. J. Sports Sci. 2021, 39, 109–115. [Google Scholar] [CrossRef]
- Caraballo, I.; Conde-Caveda, J.; Pezelj, L.; Milavić, B.; Castro-Piñero, J. GNSS applications to assess performance in Olympic sailors: Laser Class. Appl. Sci. 2021, 11, 264. [Google Scholar] [CrossRef]
- Hagiwara, M.; Ishii, Y. Analysis of racing factors in windsurfing under light wind. Med. Sci. Sports Exerc. 2016, 48, 1040. [Google Scholar] [CrossRef]
- Anastasiou, A.; Jones, T.; Mullan, P.; Ross, E.; Howatson, G. Descriptive analysis of Olympic class windsurfing competition during the 2017–2018 regatta season. Int. J. Perform. Anal. Sport 2019, 19, 517–529. [Google Scholar] [CrossRef]
- Caraballo, I.; Domínguez, R.; Felipe, J.L.; Sánchez-Oliver, J. Key performance indicators of Olympic windsurfers during a World Cup: RS:X class®. J. Sports Sci. 2022, 40, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Bay, J.; Bojsen-Moller, J.; Nordsborg, N.B. Reliable and sensitive physical testing of elite trapeze sailors. Scan. J. Med. Sci. Sports 2018, 28, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Sun, K. Analysis of sailing variables and performance of laser sailors with different rankings under the condition of certain wind speed. Heliyon 2022, 8, e11682. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, I.; González-Montesinos, J.L.; Casado-Rodríguez, F.; Gutiérrez-Manzanedo, J.V. Performance analysis in Olympic sailors of the Formula Kite Class using GPS. Sensor 2021, 21, 574. [Google Scholar] [CrossRef] [PubMed]
- Caimmi, G.; Semprini, G. Heart rate and GPS data analysis of kiteboard course racing during the Italian Championship. Sport Sci. Health 2017, 13, 79–85. [Google Scholar] [CrossRef]
- Travemünder Woche 2017 Final Overall Results. Available online: https://www.manage2sail.com/nl/Home/DownloadReport/event/94c64512-e3ae-43a2-99b8-9fd7912d7c4d/report/033c5ec4-4562-4ec1-aabe-c1170e241250 (accessed on 21 March 2022).
- SAP Sailing. Optimist (International German Youth Championship). Available online: https://tw2017.sapsailing.com/gwt/Home.html#/regatta/overview/:eventId=7784129f-7832-49f1-a5f0-b8d66aa5560c®attaId=TW2017 (accessed on 21 March 2022).
- Olympic Classes Speed Charts. Available online: https://www.rya.org.uk/racing/race-officials/resource-centre/forms-data-diagrams-graphics/Pages/data-reference.aspx (accessed on 21 March 2022).
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trend Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Larsson, B.; Aagaard, P. Physical requirements in Olympic sailing. Eur. J. Sport. Sci. 2015, 15, 220–227. [Google Scholar] [CrossRef]
- Winchcombe, C.; Goods, P.; Binnie, M.; Doyle, M.; Peeling, P. Workload demands of Laser class sailing regattas. Int. J. Perform. Anal. Sport 2021, 21, 663–678. [Google Scholar] [CrossRef]
- Gourlay, T.; Martellotta, J. Aero-hydrodynamics of an RS: X Olympic racing sailboard. CMST Cent. Mar. Sci. Technol. Res. Rep. 2011, 1, 1–17. Available online: https://www.perthhydro.com/pdf/Gourlay2011Aero-hydroRsx.pdf (accessed on 12 February 2021).
- Castagna, O.; Brisswalter, J.; Lacour, J.R.; Vogiatzis, I. Physiological demands of different sailing techniques of the new Olympic windsurfing class. Eur. J. Appl. Physiol. 2008, 104, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Walls, J.; Bertrand, L.; Gale, T.; Saunders, N. Assessment of upwind dinghy sailing performance using a virtual reality dinghy sailing simulator. J. Sci. Med. Sport 1998, 1, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Day, A.H. Performance prediction for sailing dinghies. Ocean. Eng. 2017, 136, 67–79. [Google Scholar] [CrossRef]
- Spurway, N.C. Hiking physiology and the “quasi-isometric” concept. J. Sports Sci. 2007, 25, 1081–1093. [Google Scholar] [CrossRef]
- Vogiatzis, I.; Tzineris, D.; Athanasopoulos, D.; Georgiadou, O.; Geladas, N. Quadriceps oxygenation during isometric exercise in sailing. Int. J. Sports Med. 2008, 29, 11–15. [Google Scholar] [CrossRef]
Variable | Total Sample (n = 203) | Girls (n = 82) | Boys (n = 121) | ANOVA | |
---|---|---|---|---|---|
p-Value | |||||
Age (years) | 13.1 ± 1.2 | 13.2 ± 1 | 13 ± 1.3 | 0.229 | 0.00 |
Upwind VMG (knots) | 1.6 ± 0.3 | 1.6 ± 0.2 | 1.6 ± 0.3 | 0.334 | 0.04 |
Upwind distance (km) | 1.2 ± 0.1 | 1.2 ± 0.1 | 1.3 ± 0.1 | 0.942 | 0.00 |
Upwind manoeuvres (number) | 9.3 ± 2.1 | 8.7 ± 2.1 | 9.5 ± 1.9 * | 0.005 | 0.03 |
Broad reach VMG (knots) | 3.5 ± 0.4 | 3.5 ± 0.4 | 3.5 ± 0.4 | 0.194 | 0.01 |
Broad reach distance (km) | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.690 | 0.00 |
Broad reach manoeuvres (number) | 0.4 ± 0.3 | 0.4 ± 0.4 | 0.4 ± 0.3 | 0.962 | 0.00 |
Running VMG (knots) | 3.4 ± 0.4 | 3.4 ± 0.4 | 3.4 ± 0.3 | 0.157 | 0.01 |
Running distance (km) | 0.8 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.103 | 0.01 |
Running manoeuvres (number) | 3.5 ± 1 | 3.3 ± 1.1 | 3.6 ± 0.1 * | 0.022 | 0.02 |
Ranking | 102 ± 58.7 | 107.8 ± 60.2 | 98.1 ± 57.6 | 0.247 | 0.00 |
Wind Speed | Variable | P25 (n = 51) | P50 (n = 51) | P75 (n = 51) | P99 (n = 50) | ANOVA | |
---|---|---|---|---|---|---|---|
p-Value | |||||||
Upwind VMG (knots) | 1.6 ± 0.5 | 1.6 ± 0.4 | 1.6 ± 2.5 | 1.3 ± 0.6 | 0.083 | 0.01 | |
Upwind distance (km) | 1 ± 0.3 | 1 ± 0.3 | 1.1 ± 0.4 | 1.1 ± 0.4 | 0.190 | 0.00 | |
Upwind manoeuvres (number) | 14.3 ± 7.6 E | 14 ± 7.4 | 12.8 ± 7.9 | 12.2 ± 9.1 | 0.021 | 0.01 | |
Broad reach VMG (knots) | 3.3 ± 0.9 E | 3.2 ± 0.8 G | 3.2 ± 1.1 | 2.9 ± 1.3 | 0.001 | 0.02 | |
5 to ≤8 | Broad reach distance (km) | 0.8 ± 0.2 | 0.8 ± 0.2 F | 0.8 ± 0.3 | 0.7 ± 0.3 | 0.011 | 0.01 |
(knots) | Broad reach manoeuvres (number) | 0.4 ± 0.9 | 0.5 ± 1.9 | 0.5 ± 1.5 | 0.5 ± 2 | 0.697 | 0.00 |
Running VMG (knots) | 3.1 ± 0.8 E | 3 ± 0.8 G | 2.9 ± 1 | 2.7 ± 1.2 | 0.000 | 0.02 | |
Running distance (km) | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.5 ± 0.3 | 0.5 ± 0.3 | 0.069 | 0.01 | |
Running manoeuvres (number) | 2.7 ± 2.8 | 2.7 ± 3 | 2.5 ± 3.1 | 2.6 ± 3.1 | 0.857 | 0.00 | |
Upwind VMG (knots) | 1.6 ± 0.4 | 1.6 ± 0.3 | 1.6 ± 0.3 | 1.5 ± 0.4 | 0.297 | 0.00 | |
Upwind distance (km) | 1.3 ± 0.3 E | 1.4 ± 0.3 | 1.4 ± 0.2 | 1.4 ± 0.3 | 0.027 | 0.01 | |
Upwind manoeuvres (number) | 21 ± 8.1 | 22 ± 8.1 | 21.2 ± 8.9 | 21.2 ± 9 | 0.620 | 0.00 | |
Broad reach VMG (knots) | 3.8 ± 0.9 | 3.8 ±0.9 | 3.8 ± 0.8 | 3.7 ± 1 | 0.470 | 0.00 | |
>8 to ≤12 | Broad reach distance (km) | 0.8 ± 0.2 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.2 | 0.764 | 0.00 |
(knots) | Broad reach manoeuvres (number) | 0.2 ± 0.5 | 0.1 ± 0.4 | 0.2 ± 0.7 | 0.3 ± 1.7 | 0.270 | 0.00 |
Running VMG (knots) | 3.4 ± 0.9 | 3.4 ± 0.8 | 3.5 ± 0.7 | 3.3 ± 0.9 | 0.588 | 0.00 | |
Running distance (km) | 0.8 ± 0.2 | 0.8 ± 0.2 | 0.9 ± 0.1 | 0.8 ± 0.2 | 0.561 | 0.00 | |
Running manoeuvres (number) | 4.4 ± 3.3 | 4.1 ± 2.7 F | 5.1 ± 3.1 | 4.7 ± 3.1 | 0.029 | 0.01 | |
Upwind VMG (knots) | 1.9 ± 0.3 A | 1.8 ± 0.3 G | 1.7 ± 0.4 | 1.6 ± 0.4 | 0.000 | 0.02 | |
Upwind distance (km) | 1.3 ± 0.2 E | 1.4 ± 0.2 | 1.4 ± 0.3 | 1.4 ± 0.3 | 0.021 | 0.01 | |
Upwind manoeuvres (number) | 20.8 ± 7.7 | 20.7 ± 8.1 | 21.2 ± 7.9 | 22.3 ± 8 | 0.178 | 0.00 | |
>12 to 15 | Broad reach VMG (knots) | 4 ± 0.7 C | 3.9 ± 0.8 H | 3.6 ± 1.1 I | 3.3 ± 1.2 | 0.000 | 0.07 |
(knots) | Broad reach distance (km) | 1.1 ± 0.2 C | 1 ± 0.2 | 1 ± 0.2 | 1 ± 0.2 | 0.00 | 0.02 |
Broad reach manoeuvres (number) | 0.6 ± 0.8 B | 0.3 ± 0.7 | 0.3 ± 0.8 | 0.5 ± 1.1 | 0.01 | 0.01 | |
Running VMG (knots) | 4 ± 0.7 C | 3.9 ± 0.8 H | 3.9 ± 0.9 | 3.6 ± 1.2 | 0.00 | 0.06 | |
Running distance (km) | 0.9 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.2 | 0.9 ± 0.2 | 0.170 | 0.00 | |
Running manoeuvres (number) | 3.3 ± 2.2 | 3.7 ± 2.4 | 3.6 ± 2.7 | 3.5 ± 2.5 | 0.369 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caraballo, I.; Pezelj, L.; Ramos-Álvarez, J.J. Analysis of the Performance and Sailing Variables of the Optimist Class in a Variety of Wind Conditions. J. Funct. Morphol. Kinesiol. 2024, 9, 18. https://doi.org/10.3390/jfmk9010018
Caraballo I, Pezelj L, Ramos-Álvarez JJ. Analysis of the Performance and Sailing Variables of the Optimist Class in a Variety of Wind Conditions. Journal of Functional Morphology and Kinesiology. 2024; 9(1):18. https://doi.org/10.3390/jfmk9010018
Chicago/Turabian StyleCaraballo, Israel, Luka Pezelj, and Juan José Ramos-Álvarez. 2024. "Analysis of the Performance and Sailing Variables of the Optimist Class in a Variety of Wind Conditions" Journal of Functional Morphology and Kinesiology 9, no. 1: 18. https://doi.org/10.3390/jfmk9010018
APA StyleCaraballo, I., Pezelj, L., & Ramos-Álvarez, J. J. (2024). Analysis of the Performance and Sailing Variables of the Optimist Class in a Variety of Wind Conditions. Journal of Functional Morphology and Kinesiology, 9(1), 18. https://doi.org/10.3390/jfmk9010018