Acute Effects of Kickboxing K1 Matches on Hematological Parameters of Kickboxers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. K1 Match
2.4. Blood Collection and Biochemical Analyses
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Keeffe, P. Kick Boxing: The Ultimate Guide to Conditioning, Sparring, Fighting, and More; Skyhorse: New York, NY, USA, 2007; 160p. [Google Scholar]
- Rydzik, Ł.; Ambroży, T. Physical Fitness and the Level of Technical and Tactical Training of Kickboxers. Int. J. Environ. Res. Public Health 2021, 18, 3088. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.D. A Complete Guide to Kickboxing; Enslow Publishing, LLC: Berkeley Heights, NJ, USA, 2017; 130p. [Google Scholar]
- Sebić, L.; Hadrović, A.; Bijelic, S.; Kozic, V. Postural Differences between Girls Who Practice and Who Do Not Practice Rhythmic Gymnastics. Homosporticus 2010, 12, 45. [Google Scholar]
- Chimienti, A. The Bible of K1 Kick Boxing Muay Thai; Mediterranean Records: Uxbridge, UK, 2023; 123p. [Google Scholar]
- Azarbayjani, M.A.; Fathi, R.; Daloii, A.A.; Abdi, A.; Fatolahi, H. Acute Hematological Profile Response to One Session of Aerobic and Anaerobic Exercise among Young Male Kickboxers. Turk. J. Phys. Med. Rehab. 2014, 60, 92–97. [Google Scholar] [CrossRef]
- Ouergui, I.; Davis, P.; Houcine, N.; Marzouki, H.; Zaouali, M.; Franchini, E.; Gmada, N.; Bouhlel, E. Hormonal, Physiological, and Physical Performance During Simulated Kickboxing Combat: Differences between Winners and Losers. Int. J. Sports Physiol. Perform. 2016, 11, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Hazratian, M.R.; TaheriChadorneshin, H.; Rashidi, A. The Effect of One Bout of Intensive Judo Exercise on Select Hematological and Immunological Parameters in Adolescent Elite Judo Athletes. Asian J. Sports Med. 2020, 11, e101364. [Google Scholar] [CrossRef]
- Hebisz, P.; Hebisz, R.; Bakońska-Pacoń, E.; Zatoń, M. Acute hematological response to a single dose of sprint interval training in competitive cyclists. Sci. Sports 2017, 32, 369–375. [Google Scholar] [CrossRef]
- Boyalı, E.; Sevindi, T.; Yüksel, M.F.; Demir, H. The Effects of Preparation Period Exercises on the Hematological Parameters of the Taekwondo Athletes. 2019. Available online: http://acikerisim.aksaray.edu.tr/xmlui/handle/20.500.12451/4612 (accessed on 2 March 2024).
- Convertino, V.A. Blood volume: Its adaptation to endurance training. Med. Sci. Sports Exerc. 1991, 23, 1338. [Google Scholar] [CrossRef] [PubMed]
- Olaf Schumacher, Y.; Schmid, A.; Grathwohl, D.; Bültermann, D.; Berg, A. Hematological indices and iron status in athletes of various sports and performances. Med. Sci. Sports Exerc. 2002, 34, 869. [Google Scholar] [CrossRef] [PubMed]
- Shaskey, D.J.; Green, G.A. Sports Haematology. Sports Med. 2000, 29, 27–38. [Google Scholar] [CrossRef]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Chapter Fifteen—Exercise and the Regulation of Immune Functions. In Progress in Molecular Biology and Translational Science; Bouchard, C., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 355–380. Available online: https://www.sciencedirect.com/science/article/pii/S1877117315001842 (accessed on 29 February 2024).
- Olds, T.; Marfell-Jones, M. (Eds.) Kinanthropometry IX: Proceedings of the 9th International Conference of the International Society for the Advancement of Kinanthropometry; Routledge: London, UK, 2008; 168p. [Google Scholar]
- Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [PubMed]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: New York, NY, USA, 2019; 832p. [Google Scholar]
- Belviranli, M.; Okudan, N.; Kabak, B. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects. Med. Sci. 2017, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari-Niaki, A.; Saghebjoo, M.; Hedayati, M. A single session of circuit-resistance exercise effects on human peripheral blood lymphocyte ABCA1 expression and plasma HDL-C level. Regul Pept. 2011, 166, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.P.; Flynn, M.G.; Braun, W.A.; Mylona, E. Influence of acute submaximal exercise on T-lymphocyte suppressor cell function in healthy young men. Eur. J. Appl. Physiol. 2000, 82, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Chaki, B.; Bandyopadhyay, A. High intensity exercise induced alteration of hematological profile in sedentary post-pubertal boys and girls: A comparative study. IJPP 2021, 64, 207–214. [Google Scholar] [CrossRef]
- Pitsavos, C.; Chrysohoou, C.; Panagiotakos, D.B.; Skoumas, J.; Zeimbekis, A.; Kokkinos, P.; Stefanadis, C.; Toutouzas, P.K. Association of leisure-time physical activity on inflammation markers (C-reactive protein, white cell blood count, serum amyloid A, and fibrinogen) in healthy subjects (from the ATTICA study). Am. J. Cardiol. 2003, 91, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Campo, D.J.; Ávila-Gandía, V.; Alacid, F.; Soto-Méndez, F.; Alcaraz, P.E.; López-Román, F.J.; Rubio-Arias, J.Á. Muscle damage, physiological changes, and energy balance in ultra-endurance mountain-event athletes. Appl. Physiol. Nutr. Metab. 2016, 41, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Neves, P.R.D.S.; Tenório, T.R.D.S.; Lins, T.A.; Muniz, M.T.C.; Pithon-Curi, T.C.; Botero, J.P.; Do Prado, W.L. Acute effects of high- and low-intensity exercise bouts on leukocyte counts. J. Exerc. Sci. Fit. 2015, 13, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Timmons, B.W.; Tarnopolsky, M.A.; Snider, D.P.; Bar-Or, O. Immunological changes in response to exercise: Influence of age, puberty, and gender. Med. Sci. Sports Exerc. 2006, 38, 293–304. [Google Scholar] [CrossRef]
- İbiş, S.; Hazar, S.; Gökdemir, K. Acute effect of hematological parameters on aerobic and anaerobic exercise. J. Hum. Sci. 2010, 7, 70–82. [Google Scholar]
- Çakmakçi, E. Effects of Camp Term on Some Hematological Parameters in Male Taekwondoers. Nigde Univ. J. Phys. Educ. Sport Sci. 2009, 3, 21–29. [Google Scholar]
- Smith, L.L.; McCammon, M.; Smith, S.; Chamness, M.; Israel, R.G.; O’Brien, K.F. White blood cell response to uphill walking and downhill jogging at similar metabolic loads. Eur. J. Appl. Physiol. 1989, 58, 833–837. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.S.; El-Sayed Ali, Z.; Ahmadizad, S. Exercise and Training Effects on Blood Haemostasis in Health and Disease. Sports Med. 2004, 34, 181–200. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.A.; Dale, M.M. The Leucocytosis of Exercise. Sports Med. 1988, 6, 333–363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Matsuo, K.; Farmawati, A.; Higashi, Y.; Ogawa, K.; Nagata, K.; Nagatomi, R. Exhaustive Exercise Induces Differential Changes in Serum Granulysin and Circulating Number of Natural Killer Cells. Tohoku J. Exp. Med. 2006, 210, 117–124. [Google Scholar] [CrossRef]
- Karakoc, Y.; Duzova, H.; Polat, A.; Emre, M.H.; Arabaci, I. Effects of training period on haemorheological variables in regularly trained footballers. Br. J. Sports Med. 2005, 39, e4. [Google Scholar] [CrossRef]
- Wu, H.J.; Chen, K.T.; Shee, B.W.; Chang, H.C.; Huang, Y.J.; Yang, R.S. Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J. Gastroenterol. 2004, 10, 2711–2714. [Google Scholar] [CrossRef]
- Oda, E.; Kawai, R. Comparison between High-Sensitivity C-Reactive Protein (hs-CRP) and White Blood Cell Count (WBC) as an Inflammatory Component of Metabolic Syndrome in Japanese. Intern. Med. 2010, 49, 117–124. [Google Scholar] [CrossRef]
- Krüger, K.; Lechtermann, A.; Fobker, M.; Völker, K.; Mooren, F.C. Exercise-induced redistribution of T lymphocytes is regulated by adrenergic mechanisms. Brain Behav. Immun. 2008, 22, 324–338. [Google Scholar] [CrossRef]
- Mazzeo, R.S.; Rajkumar, C.; Rolland, J.; Blaher, B.; Jennings, G.; Esler, M. Immune response to a single bout of exercise in young and elderly subjects. Mech. Ageing Dev. 1998, 100, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.; Paul, G.L.; Seifert, J.G.; Eddy, D.E. Responses to varying rates of carbohydrate ingestion during exercise. Med. Sci. Sports Exerc. 1991, 23, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Heidari, N.; Dortaj, E.; Karimi, M.; Karami, S.; Kordi, N. The effects of acute high intensity interval exercise of judo on blood rheology factors. Turk. J. Kinesiol. 2016, 2, 6–10. [Google Scholar]
- Okeke, C.O.; Emmanuel, M.; Akosile, C.O.; Ani, K.U. Changes in white blood cell, red blood cell and platelet parameters following short term aerobic exercise in students of Nnamdi Azikiwe University, Nigeria. Int. J. Sport Exerc. Health Res. 2020, 4, 73–78. [Google Scholar]
- Ahmadizad, S.; El-Sayed, M.S. The acute effects of resistance exercise on the main determinants of blood rheology. J. Sports Sci. 2005, 23, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Aldemir, H.; Kiliç, N. The effect of time of day and exercise on platelet functions and platelet–neutrophil aggregates in healthy male subjects. Mol. Cell. Biochem. 2005, 280, 119–124. [Google Scholar] [CrossRef]
- Kratz, A.; Wood, M.J.; Siegel, A.J.; Hiers, J.R.; Van Cott, E.M. Effects of Marathon Running on Platelet Activation Markers: Direct Evidence for In Vivo Platelet Activation. Am. J. Clin. Pathol. 2006, 125, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Salvagno, G.L.; Danese, E.; Tarperi, C.; Guidi, G.C.; Schena, F. Variation of Red Blood Cell Distribution Width and Mean Platelet Volume after Moderate Endurance Exercise. Adv. Hematol. 2014, 2014, e192173. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, J.P.; Linden, M.D.; Coffey, V.G. Effect of Aerobic Interval Training and Caffeine on Blood Platelet Function. Med. Sci. Sports Exerc. 2013, 45, 342. [Google Scholar] [CrossRef]
- Wardyn, G.G.; Rennard, S.I.; Brusnahan, S.K.; McGuire, T.R.; Carlson, M.L.; Smith, L.M.; McGranaghan, S.; Sharp, J.G. Effects of exercise on hematological parameters, circulating side population cells, and cytokines. Exp. Hematol. 2008, 36, 216–223. [Google Scholar] [CrossRef]
- Fujitsuka, S.; Koike, Y.; Isozaki, A.; Nomura, Y. Effect of 12 weeks of strenuous physical training on hematological changes. Mil. Med. 2005, 170, 590–594. [Google Scholar] [PubMed]
- Bakovic, D.; Pivac, N.; Eterovic, D.; Breskovic, T.; Zubin, P.; Obad, A.; Dujic, Z. The effects of low-dose epinephrine infusion on spleen size, central and hepatic circulation and circulating platelets. Clin. Physiol. Funct. Imaging 2013, 33, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Heber, S.; Volf, I. Effects of Physical (In)activity on Platelet Function. BioMed Res. Int. 2015, 2015, e165078. [Google Scholar] [CrossRef] [PubMed]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef] [PubMed]
- Brun, J.F. Exercise hemorheology as three acts play with metabolic actors: Is it of clinical relevance? Clin. Hemorheol. Microcirc. 2002, 26, 155–174. [Google Scholar] [PubMed]
- Gencer, Y.G.; Coskun, F.; Sarikaya, M.; Kaplan, S. Investigation on the Effects of 12 Days Intensive Competition on Some Blood Parameters of Basketball Players. J. Educ. Train. Stud. 2018, 6, 79–83. [Google Scholar] [CrossRef]
- Oluboyo, A.O.; Oshobugie, B.N.; Adeosun, M.E.; Oluboyo, B.O. Effects of Short-Term Exercise on Iron Status and Hematological Parameters of Apparently Healthy Males in Ado Ekiti, Ekiti State, Nigeria. J. Sci. Sport Exerc. 2024. [Google Scholar] [CrossRef]
- Jannah, K. The effect of jogging exercise to improve hemoglobin levels. J. Phys. Conf. Ser. 2020, 1481, 012028. [Google Scholar]
- Tayebi, S.M.; Hanachi, P.; Niaki, A.G.; Ali, P.N.; Ghaziani, F.G.A. Ramadan Fasting and Weight-Lifting Training on Vascular Volumes and Hematological Profiles in Young Male Weightlifters. Glob. J. Health Sci. 2010, 2, 160. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Fleck, S.J.; Dziados, J.E.; Harman, E.A.; Marchitelli, L.J.; Gordon, S.E.; Mello, R.; Frykman, P.N.; Koziris, L.P.; Triplett, N.T. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J. Appl. Physiol. 1993, 75, 594–604. [Google Scholar] [CrossRef]
- Battezzati, A.; Benedini, S.; Fattorini, A.; Piceni Sereni, L.; Luzi, L. Effect of hypoglycemia on amino acid and protein metabolism in healthy humans. Diabetes 2000, 49, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, P.; Giuseppe, L.; Nicola, M. Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, R.A.; Pais, S.; Reynolds, T.B.; Kaplowitz, N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology 2005, 41, 380–382. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.P.; de Sousa, M.D.S.C.; Neves, E.B.; Rosa, C.; Cruz, I.R.D.; Júnior, A.T.; de Macedo, J.O.R.; Reis, V.M.; Vilaça-Alves, J. Acute effect of a fight of Mixed Martial Arts (MMA) on the serum concentrations of testosterone, cortisol, creatine kinase, lactate, and glucose. Motricidade 2017, 13, 30–37. [Google Scholar] [CrossRef]
- Brandão, F.; Fernandes, H.M.; Alves, J.V.; Fonseca, S.; Reis, V.M. Hematological and biochemical markers after a Brazilian Jiu-Jitsu tournament in world-class athletes. Rev. Bras. Cineantropometria Desempenho Hum. 2014, 16, 144–151. [Google Scholar]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-kinase-and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 1, 960363. [Google Scholar] [CrossRef]
Max | Min | ± SD | |
---|---|---|---|
Age (years) | 28 | 19 | 23.71 ± 3.82 |
Body Height (cm) | 184 | 176 | 179.6 ± 3.11 |
Body weight (kg) | 84 | 71 | 79.2 ± 5.54 |
Variable | Test | n | SD | t | df | p | |
---|---|---|---|---|---|---|---|
WBC (109/L) | Pre | 10 | 6.49 | 1.91 | −10.838 | 9 | 0.000 * |
Post | 10 | 11.17 | 2.42 | ||||
Plt (109/L) | Pre | 10 | 261.00 | 28.19 | −13.450 | 9 | 0.000 * |
Post | 10 | 334.20 | 39.32 | ||||
Neut (%) | Pre | 10 | 61.83 | 7.36 | 7.304 | 9 | 0.000 * |
Post | 10 | 50.92 | 9.13 | ||||
Lymph (%) | Pre | 10 | 26.03 | 6.51 | −8.063 | 9 | 0.000 * |
Post | 10 | 37.74 | 9.22 | ||||
Mono (%) | Pre | 10 | 0.64 | 0.24 | −6.748 | 9 | 0.000 * |
Post | 10 | 1.04 | 0.35 | ||||
RBC (1012/L) | Pre | 10 | 5.25 | 0.30 | 0.722 | 9 | 0.488 |
Post | 10 | 5.20 | 0.23 | ||||
Hgb (g/dL) | Pre | 10 | 15.66 | 0.70 | 0.670 | 9 | 0.520 |
Post | 10 | 15.55 | 0.46 | ||||
Hct (%) | Pre | 10 | 46.65 | 2.02 | −1.251 | 9 | 0.243 |
Post | 10 | 47.45 | 1.63 | ||||
CK (U/L) | Pre | 10 | 288.10 | 187.84 | −4.036 | 9 | 0.000 * |
Post | 10 | 330.30 | 206.58 | ||||
La (mmol/L) | Pre | 10 | 1.94 | 0.35 | −4.04 | 9 | 0.003 * |
Post | 10 | 10.23 | 1.05 | ||||
Glucose (mg/dL) | Pre | 10 | 91.900 | 8.646 | −10.205 | 9 | 0.000 * |
Post | 10 | 168.500 | 27.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewczas, M.; İlbak, İ.; Düz, S.; Pałka, T.; Ambroży, T.; Duda, H.; Wąsacz, W.; Król, P.; Czaja, R.; Rydzik, Ł. Acute Effects of Kickboxing K1 Matches on Hematological Parameters of Kickboxers. J. Funct. Morphol. Kinesiol. 2024, 9, 130. https://doi.org/10.3390/jfmk9030130
Niewczas M, İlbak İ, Düz S, Pałka T, Ambroży T, Duda H, Wąsacz W, Król P, Czaja R, Rydzik Ł. Acute Effects of Kickboxing K1 Matches on Hematological Parameters of Kickboxers. Journal of Functional Morphology and Kinesiology. 2024; 9(3):130. https://doi.org/10.3390/jfmk9030130
Chicago/Turabian StyleNiewczas, Marta, İsmail İlbak, Serkan Düz, Tomasz Pałka, Tadeusz Ambroży, Henryk Duda, Wojciech Wąsacz, Paweł Król, Robert Czaja, and Łukasz Rydzik. 2024. "Acute Effects of Kickboxing K1 Matches on Hematological Parameters of Kickboxers" Journal of Functional Morphology and Kinesiology 9, no. 3: 130. https://doi.org/10.3390/jfmk9030130
APA StyleNiewczas, M., İlbak, İ., Düz, S., Pałka, T., Ambroży, T., Duda, H., Wąsacz, W., Król, P., Czaja, R., & Rydzik, Ł. (2024). Acute Effects of Kickboxing K1 Matches on Hematological Parameters of Kickboxers. Journal of Functional Morphology and Kinesiology, 9(3), 130. https://doi.org/10.3390/jfmk9030130