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Abstract: Background/Objectives: The purpose of this research was to create a peak detection
algorithm and machine learning model for use in triathlon. The algorithm and model aimed to
automatically measure movement cadence in all three disciplines of a triathlon using data from
a single inertial measurement unit and to recognise the occurrence and duration of cycling task
changes. Methods: Six triathletes were recruited to participate in a triathlon while wearing a single
trunk-mounted measurement unit and were filmed throughout. Following an initial analysis, a
further six triathletes were recruited to collect additional cycling data to train the machine learning
model to more effectively recognise cycling task changes. Results: The peak-counting algorithm
successfully detected 98.7% of swimming strokes, with a root mean square error of 2.7 swimming
strokes. It detected 97.8% of cycling pedal strokes with a root mean square error of 9.1 pedal strokes,
and 99.4% of running strides with a root mean square error of 1.2 running strides. Additionally,
the machine learning model was 94% (±5%) accurate at distinguishing between ‘in-saddle’ and
‘out-of-saddle’ riding, but it was unable to distinguish between ‘in-saddle’ riding and ‘coasting’ based
on tri-axial acceleration and angular velocity. However, it displayed poor sensitivity to detect ‘out-of-
saddle’ efforts in uncontrolled conditions which improved when conditions were further controlled.
Conclusions: A custom peak detection algorithm and machine learning model are effective tools to
automatically analyse triathlon performance.

Keywords: machine learning; peak detection; cycling task; cadence; motor performance; inertial
measurement

1. Introduction

Triathlon is a sport where athletes swim, cycle, and run sequentially in a highly
dynamic environment which requires them to have well developed continuous motor
skills (i.e., swimming, cycling, and running) and discrete motor skills (i.e., cornering
skills in cycling) to achieve elite performance [1]. To gain a detailed analysis of both
continuous and discrete motor skills, three-dimensional motion analysis would be the most
appropriate method. However, obtaining this level of detail during a race is logistically
and feasibly complex to achieve with any certainty. Additionally, there is substantial inter-
and intra-race variation, as races are conducted on courses with varying tidal conditions
(swim), differing degrees of difficulty in cornering and elevation changes (cycle and run),
and congestion caused by varying densities of triathletes [1]. Given these challenges, an
alternative method for collecting and analysing data that describes motor skill performance
in triathlon is required.
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Measuring motor skill performance over time is important for identifying changes in
triathletes’ motor skills so that intentional training strategies can be applied to improve
performance. In triathlon, movement cadence refers to the number of propulsive move-
ments performed within a specific time frame (usually one minute) [2–4]. In each discipline
of triathlon, movement cadence has been identified as a parameter of swimming, cycling,
and running motor skills which should be trained to achieve elite success [1]. Within an
information processing paradigm, the ability to adjust the speed of movement to optimally
fit the movement goal is a form of parametrisation [5]. Therefore, longitudinally measuring
changes in movement cadence provides a measurement of a triathlete’s ability to parame-
terise the speed of swimming, cycling, and running motor skills, and as this improves, an
improvement in motor skill performance can be inferred [6].

To better understand how movement cadence and other motor skills are performed
differently in response to contextual racing factors (like contact with competitors and
changes in elevation), it is essential to analyse them over small, contextually relevant
timescales. For instance, a significant limitation of commercial sport watches is the in-
ability to analyse movement cadence changes over short time epochs (e.g., 10 s or less).
Furthermore, sport watches lack the positional accuracy required to meaningfully integrate
stride frequency with global positioning data with high precision [7]. An investigation
by Gløersen, Kocbach, and Gilgien [7] determined that a multi-sport wristwatch (Garmin
Forerunner 920XT, Garmin International, Olathe, Kansas) had substantially larger error
rates in detecting a horizontal position in space (2.54–3.28 m) than a trunk-worn inertial
measurement unit (IMU) such as a Catapult Optimeye S5 (Catapult Australia, Melbourne)
(0.34–0.51 m). These authors suggested that GPS antenna type, positioning (on the wrist vs.
on the trunk) and sample rate (1 Hz vs. 10 + Hz) substantially compromise the accuracy of
these sensors to collect GPS information [7].

Wearable IMUs provide a method of measuring the aspects of performance where video
capture is not feasible. These wearable IMUs typically contain micro-electromechanical
systems (MEMS), such as accelerometers, gyroscopes, and magnetometers, which measure
along three axes as well as global position system (GPS) components [8]. By attaching
these sensors to a body segment, information is gathered that can be used to infer the
movements of the wearer. Wearable IMUs have been validated to analyse a variety of
running and swimming performance metrics [9–12]. A recent investigation into the use of
wearable IMUs in triathlon showed their validity for detecting swimming strokes, cycling
pedal strokes, and running strides throughout a triathlon [13]. Although there have been
several investigations of wearable IMU use in swimming and running, the automation of
movement cadence measurement throughout an entire triathlon from a single wearable
IMU is novel. Furthermore, it is important to verify that any performance information
obtained by using automatic analysis methods is accurate and valid.

These investigators also explored the validity of the IMU to recognise cycling task
changes, finding it to be a valid tool for recognising time spent ‘out of saddle riding’.
However, there was a bias towards underestimating time spent ‘in saddle riding’ and
overestimating time spent ‘coasting’. Although these biases were statistically significant
(p < 0.001), the practical differences were small (in saddle riding: −0.45 s [−1.11 to 0.19 s];
coasting: 0.39 s [0.19 to 0.58 s]) [13]. However, the analysis in this investigation was
performed visually, using a time- and labour-intensive method, without assistance from
machine learning or automatic pattern recognition.

Human activity recognition by machine learning has been used in sports performance
analysis as a fast and accurate method to describe and quantify important performance
metrics [14–18]. To do this, wearable IMU data are analysed using machine learning
algorithms to detect patterns that correspond to specific movement signatures. Analysing
data in this way makes it possible to recognise complex patterns across multiple data
streams and provide an analysis far quicker than manual analysis methods. Therefore,
this investigation aims to advance the application of wearable IMUs in a sprint-distance
triathlon (750 m swim, 20 km cycle, and 5 km run) by developing an automatic activity
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detection algorithm to detect swimming strokes, cycling pedal strokes and task changes,
and running strides performed in a race.

2. Materials and Methods
2.1. Participants

Six triathletes (participants 1–6; three females and three males; mean age = 16.2 yrs. ± 2.7;
competition level: one Tier 4: elite/international; four Tier 3: highly trained/national; and
one Tier 2: trained/developmental [19]) were purposively sampled to participate in a mock
triathlon on a course constructed for the research study. These participants were selected to
form a heterogenous sample of triathletes with a variety of skill levels, ages, and statures.
Sampling in this way will establish a deeper understanding of the ecological validity of
the wearable IMU and activity recognition algorithm compared to a homogenous sample.
Triathletes were eligible to participate if they were at least 12 years of age, could swim
continuously for 200 m, cycle for 10 km, and run for 2 km, and were excluded if they had
any injury preventing participation in training or competition. Written informed consent
was provided by all participants over 18 years old, while parental consent and participant
assent was obtained for those under 18 years old. Ethical approval for this research was
granted by the institution’s human research ethics committee (HRE2022-0048).

2.2. Methodology

The methodology used in this study is the same as those used by Chesher, Rosalie,
Chapman, Charlton, van Rens, and Netto [13] to investigate the validity of this mea-
surement tool using manual analysis methods. To collect movement data, participants
completed a triathlon on a specifically constructed racecourse. During the triathlon, each
participant was filmed by a paired volunteer while wearing a trunk-mounted wearable
IMU (Optimeye S5, Catapult Innovations, Melbourne, Australia) to collect movement
data. Prior to the triathlon, participants set out their equipment (bike, equipment box, and
running shoes) as they would in a race, then completed a ten-minute warm up consisting
of low-intensity sport-specific activities and dynamic stretching. Participants were then
briefed on the course, which consisted of one lap of a 400-metre swim course in a lake, a
transition area, four laps of a five-kilometre elongated rectangular cycling course (20 km),
and two laps of a 2.5 km run course along a footpath (5 km), finishing back at the transition
area. Participants began the triathlon in a time-trial format, each beginning 30 s apart to
prevent the visual obstruction of the video cameras.

To confirm the occurrence of swimming strokes, pedal strokes and task changes, and
running strides, participants were filmed using stationary cameras (CasioEXZR-800, Exilim,
Tokyo, Japan) attached to tripods, and mobile cameras (Hero Session 5, GoPro, San Mateo,
CA, USA) attached to the handlebars of bikes ridden by the paired volunteers. Camera
set-up and filming technique were briefly piloted during a group training session prior
to data collection. Sensor data and video footage were time synchronised at the start of
each triathlon segment by striking the sensor five times in view of the video camera to
create distinct peaks in the forward accelerometer signal. The wearable IMU contained a
GPS sensor, tri-axial accelerometer, and gyroscope, which measured 96.5 × 52 × 14 mm3,
and weighed approximately 67 g and was positioned between the shoulder blades in a
custom-made pouch within the triathlon suit. The GPS sampled at 10 Hz, while both the
accelerometer and gyroscope sampled at 100 Hz along three axes with measurement ranges
of ±16 g and 2000◦/s, respectively. Following the triathlon, both video and wearable IMU
data were analysed to count the swimming strokes, pedal strokes, and running strides, and
to record the time stamp and the duration of cycling task changes.

To obtain a ground truth value for swimming strokes, pedal strokes, and running
strides, the video footage was analysed (Avidemux 2.8; Mean, Gruntster and Fahr; Paris,
France), and the movement cadence in each discipline was manually counted and recorded
on a custom spreadsheet (Excel 2019, Microsoft Corporation, Redmond, WA, USA). Swim-
ming strokes were counted when any part of the upper limb from fingertips to elbow
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entered the water, pedal strokes were counted when each of the participant’s feet revolved
to the bottom of the pedal crank (i.e., there are two pedal strokes in one entire revolution),
and running strides were counted at each heel strike.

Cycling task changes were identified by viewing the footage, and the start and end
times of each task were recorded. ‘In-saddle’ riding was defined as pedalling while the
gluteus maximus was in contact with the bike seat, ‘out-of-saddle’ riding was defined as
pedalling without contact between the gluteus maximus and the seat, and ‘coasting’ was
defined as riding without actively turning the pedals for more than one second, regardless
of seat contact.

From the initial analysis, ‘in-saddle’ riding was substantially overrepresented (90–94%
of the duration) compared to ‘out-of-saddle’ riding (1.5–7.8%) and ‘coasting’ (1.8–4.5%)
throughout the triathlon. To create a valid machine learning algorithm that recognises
each cycling task, additional controlled data with clearly demarcated and evenly rep-
resented cycling tasks was required. Thus, 217 min of additional cycling data were
collected from six participants (participants 7–12; four female and two male triathletes;
mean age = 20.33 yrs. ± 3.3; competition level: two Tier 4: elite/international level; two
Tier 3: highly trained/national level and two Tier 2: trained/developmental level [19])
who cycled around a closed track, performing ‘in-saddle’ riding, ‘out-of-saddle’ riding,
and ‘coasting’ in a specific sequence for equal 20 s durations. Durations of this length were
chosen as it was suspected that the parameters of the short-time Fourier transform blurred
the signal of short duration (2–4 s) cycling tasks. A 180◦ turn was included at the end of
each lap to ensure an even distribution of turn directions. A different track was used for
the second round of data collection (Figure 1) to allow for greater control of the conditions,
improving the quality of the data for training the machine learning algorithm. Additionally,
conducting the second round of data collection on a different track enhanced the model’s
validity, generalisability, and robustness to noise [20].
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2.3. Creating the Performance Analysis Tool

To automate the detection of swimming strokes, cycling pedal strokes, task changes,
and running strides, both a ‘peak counting’ and a machine learning model were created.
‘Peak counting’ refers to counting the peaks and troughs in the accelerometer and gyroscope
signal that correspond to swimming strokes, pedal strokes, and running strides. To begin,
the accelerometer signals were filtered using a sixth-order bandpass Butterworth filter with
lower and upper cutoff frequencies of 2 Hz and 3 Hz, respectively, for cycling and running.
The Butterworth filter was chosen for its maximally flat passband response and gradual
roll-off from the passband to the stopband, which allows it to effectively remove unwanted
frequencies while preserving the desired ones [21]. For swimming, the same filter was
used, but with lower and upper cutoff frequencies of 0.5 Hz and 1.4 Hz due to the slower
movement cadence of swimming. Peaks and troughs of the filtered accelerometer signal
were counted using SciPy (2022, version 1.9.2, Enthought, Austin, TX, USA). The minimum
peak detection intervals for each movement were set at 0.5 s for swimming, 0.3 s for cycling,
and 0.25 s for running.

Next, a machine learning model was built to classify cycling tasks. The accelerometer
and gyroscope signals were combined and filtered using the same method as for peak
counting. A short-time Fourier Transform (STFT) was then applied using SciPy to convert
the time-domain signal into the frequency domain. Signal processing by STFT is commonly
used to analyse distinct patterns in signal data [22]. The frequency content of accelerome-
ter signals generated by physical activity can change over time, making time-frequency
domain analysis more appropriate [23]. A window size of 250 samples (2.5 s) with no
overlap was chosen, resulting in 126 frequency bins for each time step, which were used
as additional features for model training. Data standardisation was then performed using
the ‘standard scaler’ function in Scikit-learn (2023, version 1.2.2, Cournapeau, D.). Cycling
task classification labels were aligned with the original time series, featuring 0.1 s steps,
and with the resampled series from the STFT with 2.5 s steps. For each longer step, the
most frequent label from the 250 shorter steps was assigned to the long step [23]. Finally,
an XGBClassifier was trained using XGBoost (2023, version 1.7.5, Xu, B.) in Python (2023,
version 3.12.0b3, Python Software Foundation, Wilmington, DE, USA). Since this work
serves as a proof of concept rather than a fully optimised model, default parameters were
used, and fine-tuning was reserved for future investigations. The resulting data were then
exported to Excel (version 2305, Microsoft, Redmond, WA, USA) for analysis and visualised
onto a map using the folium library in Python.

Descriptive statistics were calculated to show the average and standard deviation of
the number of swimming strokes, pedal strokes, and running strides for each participant. To
evaluate the accuracy of the peak-counting algorithm and the machine learning model, the
percentage of correctly counted swimming strokes, cycling pedal strokes, running strides,
and cycling task classifications were calculated [20]. To evaluate the error and provide prac-
tical interpretation, the root mean square error (RMSE) and relative error were calculated
for the peak-counting algorithm. Subsequently, as cycling task is a categorical variable, the
sensitivity and specificity was calculated for the machine learning algorithm to detect the
correct labelling of data points as ‘out of saddle’ riding [20]. Three participants from the
first round (participant one, two, and three) and three participants from the second round
(participant eight, nine, and eleven) of data collection were randomly selected, and their
data was used to train the cycling task recognition model using the ‘hold out’ method [24].
With this method, 80% of the data from these six participants were used for training and
the remaining 20% were used for testing. The remaining six participants were entirely
excluded from the model training process and used solely to test the generalisability of
the model.

3. Results

The peak-counting algorithm successfully counted swimming strokes, pedal strokes,
and running strides. The ground truth average number of swimming strokes, pedal strokes,
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and running strides per participant was 341 swimming strokes (±43), 2760 cycling pedal
strokes (±171), and 2036 running strides (±568), respectively. During cycling, participant
five’s wearable sensor came loose from the race suit, resulting in a corrupted cycling
accelerometer signal. Consequently, these data were removed and reported as “N/A”. The
percentage accuracy of the peak-counting algorithm is presented in Table 1.

Table 1. Accuracy of peak detection algorithm in each discipline of triathlon.

Swimming Strokes Cycling Pedal Strokes Running Strides

% Accuracy RMSE (str/min) % Accuracy RMSE (str/min) % Accuracy RMSE (str/min)

P1 99.1% 2.0 98.0% 12.0 98.7% 1.0

P2 99.1% 2.9 98.6% 9.5 98.5% 2.6

P3 98.4% 1.3 98.2% 7.3 99.7% 1.5

P4 99.5% 5.4 96.1% 7.9 99.9% 0.7

P5 98.2% 3.7 N/A N/A 99.9% 0.6

P6 98.2% 1.0 97.9% 8.7 99.8% 0.8

Average 98.7% (±0.5%) 2.7 (±1.5) 97.8% (±1.0%) 9.1 (±1.6) 99.4% (±0.6%) 1.2 (±0.7)

The average swimming cadence across all participants and races was 78.9 (±8.1)
strokes/min with a relative error of 3.4%. The average cycling cadence across all partici-
pants and races was 157.5 (±6.6) pedal strokes/min with a relative error of 5.8%, and the
average running cadence across all participants and races was 172 (±5.9) strides/min with
a relative error of 0.7%. The average ground truth of cycling task changes for the original
dataset was 21 (±5.6) instances of ‘in-saddle’ riding (16.27 min ± 13.8 s), 11 (±5.2) instances
of ‘out-of-saddle’ riding (37.7 ± 21.0 s), and 11 (±2.6) instances of ‘coasting’ (28.1 ± 10.3 s).
For the additional cycling data collection, the average ground truth was 67 (±18.3) instances
of ‘in-saddle’ riding (12.6 ± 2.6 min; 34.9%), 42 (±8.6) instances of ‘out-of-saddle’ riding
(11.5 ± 2.5 min; 31.9%), and 60 (±18.5) instances of ‘coasting’ (11.7 ± 2.8 min; 32.3%).
The machine learning model was not accurate at distinguishing the sections of ‘coasting’
from ‘in-saddle-riding’. Therefore, only the accuracy for distinguishing between ‘in-saddle’
and ‘out-of-saddle’ riding has been reported (Table 2) and visualised on the cycling task
classification map (Figure 2A).

Table 2. Accuracy of machine learning model to recognise cycling tasks.

Participant # Percentage Accuracy Sensitivity Specificity

P1 97.6% 42.2% 95.7%

P2 100% 32.4% 97.6%

P3 98.8% 22.5% 99.6%

P4 98.8% 10.5% 99.5%

P5 N/A N/A N/A

P6 91.5% 63.4% 98.5%

P7 94.7% 86.4% 93.5%

P8 97.6% 87.0% 93.9%

P9 91.7% 83.1% 92.6%

P10 91.5% 85.5% 91.9%

P11 83.3% 52.5% 96.9%

P12 88.1% 70.3% 98.3%

Average 94.0% (±5.0%) 57.8% (±26.4%) 96.2% (±2.7%)
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Figure 2. (A) Cycling task classification and (B) running performance map. Note: The red sections of
the cycling performance map (A) show the location and duration of ‘out-of-saddle’ riding and the
green sections show ‘in-saddle’ riding. On the running performance map (B), the green and blue
sections indicate intervals of customisable length where the number of running strides during those
intervals is calculated along with a rolling average of stride rate.

Finally, the machine learning model was designed to plot the race performance from
participants on a map with changes in cycling tasks and revolutions per minute information
available for the analysis of cycling and a run course with a stride rate at customisable
intervals available. Examples of the performance of the model are available in Figure 2.
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4. Discussion

This study investigated the accuracy of a peak detection algorithm and a machine learn-
ing model to calculate movement cadence across the three disciplines of triathlon, and to clas-
sify cycling task changes during the cycling leg of the race. In swimming, comparing the RMSE
with the sample standard deviation shows that the expected error range is ±0.33 standard
deviations from the mean, giving an expected range of 74.3 to 79.7 strokes/min for an elite
open-water swimmer with a medium cadence (77 strokes/min) [25]. This indicates a high
degree of accuracy. In cycling, comparing the RMSE with the sample standard deviation
shows that the expected error range is ±1.38 standard deviations from the mean. For an elite
triathlete cycling at an average cadence (194 pedals/min or 97 RPM), the expected range is
185 to 203 pedals/min (or 92.5 to 101.5 RPM). Thus, the accuracy is lower than in swimming,
but the error range remains practically useful. Finally, in running, comparing the RMSE
with the sample standard deviation shows that the expected error range is ±0.2 standard
deviations from the mean, giving an expected range of 180.8 to 183.2 strides/min for an
elite triathlete with a cadence of 182 strides/min [26] which is considered highly accurate.

These findings contrast slightly with previous research which showed lower error rates
when using the visual inspection of inertial sensor signals to measure triathlon movement
cadence [13]. Chesher, Rosalie, Chapman, Charlton, van Rens, and Netto [13] found that
swimming strokes, cycling pedal strokes, and running strides could be detected with very
high accuracy (−0.2 swimming strokes, −0.5 cycling pedal strokes, and 0 running strides
per minutes) as well as ‘out-of-saddle’ riding (0.08 s, respectively). While there has been
some reduction in accuracy to automate movement cadence measurement, the ranges for
error are still practically useful to use as a tool that enables the assessment of a triathlete’s
ability to parameterise the speed of swimming, cycling, and running motor skills.

The machine learning model developed to detect transitions between cycling tasks suc-
cessfully differentiated between ‘in-saddle’ and ‘out-of-saddle’ riding but was inaccurate
at distinguishing between ‘in-saddle’ riding and ‘coasting’. While the algorithm exhibited
high accuracy in identifying correctly labelled time points, the sensitivity and specificity
analysis offers a more nuanced interpretation. Specificity across all participants was high,
indicating that the model was effective at recognising ‘in-saddle’ riding. However, the low
sensitivity revealed its poor performance in detecting ‘out-of-saddle’ riding. Notably, there
is a distinct difference in specificity between the first (participants 1–6) and second (partici-
pants 7–12) rounds of data collection by 43.4%, contrasting with the algorithm’s measured
accuracy. Two factors likely explain this discrepancy: (1) In the first round, ‘in-saddle’
riding was overrepresented (90–94% of riding time) compared to ‘out-of-saddle’ riding,
meaning that the algorithm’s high specificity inflated its overall accuracy, misrepresenting
its ability to detect ‘out-of-saddle’ efforts. (2) In the first round of data collection, ‘out of
saddle’ riding efforts were short (~2–4 s) compared to the imposed duration of 20 s in the
second round of data collection. As the short-time Fourier transform used a window size
of 2.5 s, this blurred shorter ‘out-of-saddle’ efforts, reducing detection accuracy.

The automation of cycling task analysis using the machine learning model has con-
trasting accuracy compared to previous research [13]. However, as in earlier work, the
model still failed to distinguish ‘coasting’ from ‘in-saddle’ riding, likely due to the small
amplitude differences between the two tasks, compounded by the sensor’s torso placement,
which attenuates reaction forces through the kinetic chain—a finding echoed in running
studies [27]. To improve the accuracy of the model, a more suitable approach for differenti-
ating these tasks may involve using a convolutional neural network (CNN) to analyse the
signal’s shape or integrating a pedal crank power sensor. However, the current dataset was
too small for CNN analysis, a limitation that should be addressed in future research.

Another way to improve cycling task recognition would be to alter the window size
of the short-time Fourier transform. Selecting an appropriate window size is important
to balancing the time and frequency resolution. When trying to analyse a signal with
rapidly changing frequency, a shorter window size can more accurately track these changes,
compared to averaging over a longer window. As the minimum cycling task length in this
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investigation was one second, a reduced window size may be more accurate to distinguish
between rapid changes in cycling tasks [28].

Collecting objective data during triathlons has previously been challenging due to the
logistical complexity of video capture and the lack of validated wearable IMU technologies.
In some cases, performance analysts manually analyse multiple data streams obtained
from multiple sensors attached to various body segments to gain insights. Therefore,
this research fills a gap in triathlon performance analysis by quickly generating nuanced
performance insights from a single IMU that measures global position more accurately
than common alternatives [7]. A wearable IMU positioned on the trunk is unlikely to
capture kinematic information about the lower body due to its distance from the relevant
segments. However, the use of a lower-body attachment location for a wearable IMU has
been investigated to measure the number of kicks performed while swimming [29]. This
investigation found that a wearable IMU has high accuracy and sensitivity to measure the
number of kicks performed during freestyle swimming.

At a basic level, this research offers a simple performance analysis tool that measures
changes in movement cadence and cycling tasks over time. However, its application could
be expanded to assess motor skill adaptability, a key factor in elite triathlon success [1].
Although swimming, cycling, and running are typically considered “closed” motor skills,
their execution in a triathlon context transforms them into more “open” motor skills that
require adaptability to varying contextual factors, such as racecourse features and environ-
mental conditions [30]. Evaluating this adaptability necessitates measuring performance
changes over timescales comparable to those of the contextual variations. Thus, measure-
ments of movement cadence per minute, or average movement cadence per kilometre are
inappropriate to evaluate motor skill adaptability.

Plotting changes in motor skill performance over time can identify changes in the
quality, consistency, and stability of swimming, cycling, and running motor skills [6]. Fur-
thermore, combining performance data and contextual information can show persistence
of progress and reduced attention demand in motor skill performance [6]. For example,
Bouillod and Grappe [31] identified that some cyclists alternate between ‘in-saddle’ and
‘out-of-saddle’ riding to maintain speed during a race despite the increased mechanical
cost of ‘out-of-saddle’ riding. While this could be influenced by environmental features
imposed by the race (hills, overtaking, corners), it may also reflect a cyclist’s difficulty in
maintaining an efficient in-saddle riding motor pattern [1,31]. This could indicate that
these cyclists have not learned the stability of the cycling motor pattern at that speed. Thus,
measuring time spent in different cycling positions and linking it to racecourse features
like elevation could assess motor skill stability.

This investigation addresses a gap in the literature by developing a practical measure-
ment tool capable of recording movement cadence across all three triathlon disciplines
using a single sensor, eliminating the need to merge data from multiple sources. The high
accuracy and relative simplicity of this method of performance analysis makes it suitable
to implement in a practical setting. The peak-counting algorithm and map visualisation
provides coaches and sport scientists the ability to analyse each discipline in short time
intervals and detect performance changes caused by environmental features like hills, cor-
ners, competitor congestion, and tidal conditions. This nuanced and detailed performance
data can inform coaches’ training decisions, enabling incremental improvements that are
especially valuable at the elite level.

Some limitations should be considered when interpreting this research. First, the
machine learning model could not distinguish between efforts of ‘coasting’ and ‘in-saddle-
riding’, limiting the strength of the inferences that can be made about cycling motor skills
related to cornering or pedalling consistency [1]. Second, the peak-counting algorithm and
cycling task recognition model cannot yet be generalised, as it was developed from a small
subset of triathletes and a larger, more diverse dataset is required for generalisation.

Further research should aim to continue developing the cycling task recognition
model to distinguish ‘coasting’ from ‘in-saddle’ cycling to deepen the analysis that can be
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performed. Zignoli and Biral [32] note that cyclists typically adopt one of two cornering
strategies: maintaining a high velocity but also a large radius of curvature (and thus travel
a greater distance) or take a shorter path with greater velocity loss. The latter strategy is
commonly utilised, but requires a precisely timed late braking point (coasting) and an early
high-power ‘out-of-saddle’ effort [32]. Measuring this could be possible by combining
the peak-counting algorithm and the machine learning model to determine ‘coasting’ as
‘in-saddle’ riding with no pedalling. This proof of concept for trunk-mounted wearable
sensors could be integrated with bike computers to combine GPS, power, and inertial data
for a comprehensive time-motion analysis of cycling. Additionally, further research should
investigate the average changes in the movement cadence of youth triathletes over time to
inform training practises.

5. Conclusions

Developing a peak-counting algorithm to measure cadence at customisable intervals,
along with a machine learning model to recognise cycling task changes, is an important step
towards improving motor skill analysis and the practise design in triathlon. Automating
this process also makes the analysis of multiple athletes feasible, given the time and
resource constraints faced by many elite sporting organisations. Further refinement of the
peak-counting algorithm to include additional performance metrics, and enhancement
of the machine learning model to recognise ‘coasting’ efforts can deepen coaches’ and
sports scientists’ understanding of their athletes’ performance without requiring additional
analysis time.

Author Contributions: Conceptualisation: S.M.C., D.W.C., S.M.R., P.C.C. and K.J.N.; Methodology:
S.M.C., C.M., D.W.C., P.C.C. and K.J.N.; Software: S.M.C. and C.M.; Validation: S.M.C. and C.M.;
Formal Analysis: S.M.C. and C.M.; Investigation: S.M.C. and C.M.; Resources: S.M.C., C.M. and
K.J.N.; Data Curation: S.M.C. and C.M.; Writing—Original Draft Preparation: S.M.C. and C.M.;
Writing—Review and Editing: S.M.C., C.M., D.W.C., S.M.R., P.C.C. and K.J.N.; Visualisation: S.M.C.
and C.M.; Project Administration: S.M.C. and K.J.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Curtin
University (HRE2022-0048 from 31 January 2022).

Informed Consent Statement: Written informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: Data are available upon request by contacting the corresponding author
(privacy and ethical).

Conflicts of Interest: Author Simon M. Rosalie is affiliated with SR Performance which is a motor skill
performance consulting business with no financial interests in the materials or methods employed,
or the outcomes of this research. As such there are no perceived or potential conflicts of interests
to disclose.

References
1. Chesher, S.M.; Rosalie, S.M.; Netto, K.J.; Charlton, P.C.; van Rens, F.E.C.A. A qualitative exploration of the motor skills required

for elite triathlon performance. Psychol. Sport Exerc. 2022, 62, 102249. [CrossRef]
2. Ribeiro, J.; Figueiredo, P.; Morais, S.; Alves, F.; Toussaint, H.; Vilas-Boas, J.P.; Fernandes, R.J. Biomechanics, energetics and

coordination during extreme swimming intensity: Effect of performance level. J. Sports Sci. 2017, 16, 1614–1621. [CrossRef]
[PubMed]

3. Moore, I.S. Is there an economical running tehnique? A review of modifiable biomechanical factors affecting running economy.
Sports Med. 2016, 46, 793–807. [CrossRef] [PubMed]

4. Turpin, N.A.; Watier, B. Cycling biomechanics and its relationship to performance. Appl. Sci. 2020, 10, 4112. [CrossRef]
5. Schmidt, R.A. A schema theory of discrete motor learning. Psychol. Rev. 1975, 82, 225–260. [CrossRef]

https://doi.org/10.1016/j.psychsport.2022.102249
https://doi.org/10.1080/02640414.2016.1227079
https://www.ncbi.nlm.nih.gov/pubmed/27602781
https://doi.org/10.1007/s40279-016-0474-4
https://www.ncbi.nlm.nih.gov/pubmed/26816209
https://doi.org/10.3390/app10124112
https://doi.org/10.1037/h0076770


J. Funct. Morphol. Kinesiol. 2024, 9, 269 11 of 12

6. Magill, R.; Anderson, D. Motor Learning and Control: Concepts and Applications, 10th ed.; McGraw-Hill: New York, NY, USA, 2014;
ISBN 978-007-802-267-8.

7. Gløersen, Ø.; Kocbach, J.; Gilgien, M. Tracking perforance in endurance racing sports: Evaluation of the accuracy offered by three
commercial GNSS receivers aimed at the sports market. Front. Physiol. 2018, 9, 1425. [CrossRef]

8. Crang, Z.L.; Duthie, G.; Cole, M.H.; Weakley, J.; Hewitt, A.; Johnston, R.D. The validity and reliability of wearable microtechnology
for intermittent team sports: A systematic review. Sports Med. 2021, 51, 549–565. [CrossRef]

9. Mooney, R.; Corley, G.; Godfrey, A.; Quinlan, L.R.; ÓLaighin, G. Inertial sensor technology for elite swimming performance
analysis: A systematic review. Sensors 2016, 16, 18. [CrossRef]

10. Ganzevles, S.; Vullings, R.; Beek, P.J.; Daanen, H.; Truijens, M. Using tri-axial accelerometry in daily elite swim training practice.
Sensors 2017, 17, 990. [CrossRef]

11. Benson, L.C.; Clermont, C.A.; Bošnjak, E.; Ferber, R. The use of wearable devices for walking and running gait analysis outside of
the lab: A systematic review. Gait Posture 2018, 63, 124–138. [CrossRef]

12. Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends supporting the in-field use of wearable inertial sensors for sport
performance evaluation: A systematic review. Sensors 2018, 18, 873. [CrossRef] [PubMed]

13. Chesher, S.M.; Rosalie, S.M.; Chapman, D.W.; Charlton, P.C.; van Rens, F.E.C.A.; Netto, K.J. A single trunk-mounted wearable
sensor to measure motor performance in triathletes during competition. Proc. Inst. Mech. Eng. P J. Sport Eng. Technol. 2024, 238,
361–369. [CrossRef]

14. Delhaye, E.; Bouvet, A.; Nicolas, G.; Vilas-Boas, J.P.; Bideau, B.; Bideau, N. Automatic swimming activity recognition and lap time
assessment based on a single IMU: A deep learning approach. Sensors 2022, 22, 5786. [CrossRef] [PubMed]

15. Jowitt, H.K.; Durussel, J.; Brandon, R.; King, M. Auto detecting deliveries in elite cricket fast bowlers using microsensors and
machine learning. J. Sports Sci. 2020, 38, 767–772. [CrossRef] [PubMed]

16. Murray, N.B.; Black, G.M.; Whiteley, R.J.; Gahan, P.; Cole, M.H.; Utting, A.; Gabbett, T.J. Automatic detection of pitching and
throwing events in baseball with inertial measurement sensors. Int. J. Sports Physiol. Perform. 2017, 12, 533–537. [CrossRef]

17. Hendry, D.; Chai, K.; Campbell, A.; Hopper, L.; O’Sullivan, P.; Straker, L. Development of a human activity recognition system for
ballet tasks. Sports Med. 2020, 6, 10. [CrossRef]

18. Hulin, B.T.; Gabbett, T.J.; Johnston, R.D.; Jenkins, D.G. Wearable microtechnology can accurately identify collision events during
professional rugby league match-play. J. Sci. Med. Sport 2017, 20, 638–642. [CrossRef]

19. McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining
training and performance calbre: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331.
[CrossRef]

20. Farrahi, V.; Rostami, M. Machine learning in physical activity, sedentary, and sleep behaviour research. J. Act. Sedentary Sleep
Behav. 2024, 3, 5. [CrossRef]

21. Wang, B. Signal processing based on Butterworth filter: Properties, design, and applications. High. Sci. Eng. Technol. 2024, 97,
72–77. [CrossRef]

22. Ramos-Aguilar, R.; Olvera-López, J.A.; Olmos-Pineda, I.; Snchez-Urrieta, S.; Martín-Ortiz, M. Parameter experimentation for
epileptic seizure detection in EEG signals using Short-Time Fourier transform. Res. Comput. Sci. 2019, 148, 83–96. [CrossRef]

23. Mateo, C.; Talavera, J.A. Short-Time Fourier transform with the window size fixed in the frequency domain. Dig. Signal Process.
2018, 77, 13–21. [CrossRef]

24. Eertink, J.J.; Heymans, M.W.; Zwezerijnen, G.J.C.; Zijlstra, J.M.; de Vet, H.C.W.; Boellaard, R. External validation: A simulation
study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using
PET data from DLBCL patients. EJNMMI Res. 2022, 12, 58. [CrossRef] [PubMed]

25. Rodríguez, L.; Veiga, S.; García, I.; González-Ravé, J.M. Stroking rates of open water swimmers during the 2019 FINA World
Swimming Championships. Int. J. Environ. Res. Public Health 2021, 18, 6850. [CrossRef] [PubMed]

26. Landers, G.J.; Blanksby, B.A.; Rackland, T. Cadence, stride rate and stride length during triathlon competition. Int. J. Exerc. Sci.
2011, 4, 40–48. [CrossRef]

27. Wundersitz, D.W.T.; Gastin, P.; Richter, C.; Robertson, S.J.; Netto, K.J. Validity of a trunk-mounted accelerometer to assess peak
accelerations during walking, jogging and running. Eur. J. Sport Sci. 2014, 15, 382–390. [CrossRef]

28. Banos, O.; Galvez, J.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition. Sensors 2014, 14,
6474–6499. [CrossRef]

29. Bianchi, V.; Ambrosini, L.; Presta, V.; Gobbi, G.; de Munari, I. Prediction of kick count in triathletes during freestyle swimming
session using inertial sensor technology. Appl. Sci. 2022, 12, 6313. [CrossRef]

30. Gentile, A.M. Skill acquisition: Action, movement, and neuromotor processes. In Movement Science: Foundations for Physical
Therapy, 2nd ed.; Carr, J.H., Shepherd, R.D., Eds.; Aspen: Rockville, MD, USA, 2000; pp. 111–187, ISBN 978-083-421-747-8.

https://doi.org/10.3389/fphys.2018.01425
https://doi.org/10.1007/s40279-020-01399-1
https://doi.org/10.3390/s16010018
https://doi.org/10.3390/s17050990
https://doi.org/10.1016/j.gaitpost.2018.04.047
https://doi.org/10.3390/s18030873
https://www.ncbi.nlm.nih.gov/pubmed/29543747
https://doi.org/10.1177/17543371241272789
https://doi.org/10.3390/s22155786
https://www.ncbi.nlm.nih.gov/pubmed/35957347
https://doi.org/10.1080/02640414.2020.1734308
https://www.ncbi.nlm.nih.gov/pubmed/32100623
https://doi.org/10.1123/ijspp.2016-0212
https://doi.org/10.1186/s40798-020-0237-5
https://doi.org/10.1016/j.jsams.2016.11.006
https://doi.org/10.1123/ijspp.2021-0451
https://doi.org/10.1186/s44167-024-00045-9
https://doi.org/10.54097/3cq7qb95
https://doi.org/10.13053/rcs-148-9-7
https://doi.org/10.1016/j.dsp.2017.11.003
https://doi.org/10.1186/s13550-022-00931-w
https://www.ncbi.nlm.nih.gov/pubmed/36089634
https://doi.org/10.3390/ijerph18136850
https://www.ncbi.nlm.nih.gov/pubmed/34202341
https://doi.org/10.70252/NBUX1042
https://doi.org/10.1080/17461391.2014.955131
https://doi.org/10.3390/s140406474
https://doi.org/10.3390/app12136313


J. Funct. Morphol. Kinesiol. 2024, 9, 269 12 of 12

31. Bouillod, A.; Grappe, F. Physiological and biomechanical responses beween seated and standing positions during distance-based
uphill time trials in elite cyclists. J. Sports Sci. 2018, 36, 1173–1178. [CrossRef]

32. Zignoli, A.; Biral, F. Prediction of pacing and cornering strategies during cycling individual time trials with optimal control.
Sports Eng. 2020, 23, 13. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/02640414.2017.1363902
https://doi.org/10.1007/s12283-020-00326-x

	Introduction 
	Materials and Methods 
	Participants 
	Methodology 
	Creating the Performance Analysis Tool 

	Results 
	Discussion 
	Conclusions 
	References

