The Short-Term Retention of Depth
Abstract
:1. Depth and visual working memory
Review Methodology
2. Visual Short-Term Memory for (x, y)
3. Depth Information in Iconic Memory
4. Depth Information in Visual Working Memory (VWM)
4.1. Partial Report
4.2. Change Detection Task (CDT)
4.3. VWM Capacity in Depth
4.4. Set-Size Effect
4.5. Variations in Metric and Ordinal Depth
4.6. VWM or VMWd?
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Nakayama, K. Visual Short-Term Memory Benefit for Objects on Different 3-D Surfaces. J. Exp. Psychol. 2007, 136, 653–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chunharas, C.; Rademaker, R.L.; Sprague, T.C.; Brady, T.F. Separating memoranda in depth increases visual working memory performance. J. Vis. 2019, 19, 4. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Li, J.; Wang, K.; Liu, S.; Lei, Q. Evidence for the effect of depth on visual working memory. Sci. Rep. 2017, 7, 6408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, J.; Li, Z.; Zhang, K.; Lei, Q. Relation matters: Relative depth order is stored in working memory for depth. Psychon. Bull. Rev. 2020, 27, 341–349. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, K. Working memory for stereoscopic depth is limited and imprecise—Evidence from a change detection task. Psychon. Bull. Rev. 2019, 26, 1657–1665. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, K.; Liu, S.; Lei, Q. The transition from feature to object: Storage unit in visual working memory depends on task difficulty. Mem. Cogn. 2019, 47, 1498–1514. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhang, K.; Wang, K.; Li, J.; Lei, Q. Saturation and brightness modulate the effect of depth on visual working memory. J. Vis. 2018, 18, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, A.; Lei, Q. Short-term Visual Memory for Location in Depth: A U-shaped function of time. Atten. Percept. Psychophys. 2017, 79, 1917–1932. [Google Scholar] [CrossRef]
- Reeves, A.; Lei, Q. Is Visual Short-term memory depthful? Vis. Res. 2014, 96, 102–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, A.; Lynch, D. Transparency in stereopsis: Parallel encoding of overlapping depth planes. JOSA (A) 2017, 34, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, C. The range and scope of binocular depth discrimination in man. J. Physiol. 1970, 211, 599–622. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.; Skavenski, A.A. Accuracy of spatial localizations near the time of saccadic eye movements. Vis. Res. 1985, 25, 1077–1082. [Google Scholar] [CrossRef]
- Sperling, G. The information available in brief visual presentations. Psychol. Monogr. 1960, 74, 498. [Google Scholar] [CrossRef]
- Phillips, W.A.; Baddeley, A.D. Reaction time and short-term visual memory. Psychon. Sci. 1971, 22, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Phillips, W.A. On the distinction between sensory storage and short-term visual memory. Percept. Psychophys. 1974, 16, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Phillips, W.A.; Christie, D.F.M. Components of visual memory. Q. J. Exp. Psychol. 1977, 29, 117–133. [Google Scholar] [CrossRef]
- Hogben, J.H.; Di Lollo, V. Perceptual integration and perceptual segregation of brief visual stimuli. Vis. Res. 1974, 14, 1059–1069. [Google Scholar] [CrossRef]
- Sligte, I.G.; Scholte, H.S.; Lamme, V.A.F. Are there multiple visual short-term memory stores? PLoS ONE 2008, 3, 1699. [Google Scholar] [CrossRef] [PubMed]
- Liss, P.; Reeves, A. Interruption of dot processing by a backward mask. Perception 1983, 12, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Lindsay-Wilson, J.T. Visual persistence at both onset and offset of stimulation. Percept. Psychophys. 1981, 30, 353–356. [Google Scholar] [CrossRef]
- Wood, J.N. When do spatial and visual working memory interact? Atten. Percept. Psychophys. 2011, 73, 420–439. [Google Scholar] [CrossRef]
- Broadbent, D.E. Perception and Communication; Pergamon Press: Oxford, UK, 1958. [Google Scholar]
- Irwin, D.E. Information integration across saccadic eye movements. Cogn. Psychol. 1991, 23, 420–456. [Google Scholar] [CrossRef]
- Luck, S.J.; Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 1997, 390, 279–281. [Google Scholar] [CrossRef]
- Alvarez, G.A.; Cavanagh, P. The capacity of visual short- term memory is set both by visual information load and by number of objects. Psychol. Sci. 2004, 15, 106–111. [Google Scholar] [CrossRef]
- Brady, T.F.; Störmer, V.S.; Alvarez, G.A. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proc. Natl. Acad. Sci. USA 2016, 113, 7459–7464. [Google Scholar] [CrossRef] [Green Version]
- He, Z.J.; Nakayama, K. Visual attention to surfaces in three-dimensional space. Proc. Natl. Acad. Sci. USA 1995, 92, 11155–11159. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K.; Silverman, G.H. Serial and parallel processing of visual feature conjunctions. Nature 1986, 320, 264–265. [Google Scholar] [CrossRef] [PubMed]
- Awh, E.; Vogel, E.K.; Oh, S. Interactions between attention and working memory. Neuroscience 2006, 139, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, B.; Hendry, D.; Stark, L. Failure to detect displacements of the visual world during saccadic eye movements. Vis. Res. 1975, 15, 719–722. [Google Scholar] [CrossRef]
- Rensink, R.A.; O’Regan, J.K.; Clark, J.J. To see or not to see: The need for attention to perceive changes in scenes. Psychol. Sci. 1997, 8, 368–373. [Google Scholar] [CrossRef]
- Tijus, C.A.; Reeves, A. Rapid iconic erasure without masking. Spat. Vis. 2004, 17, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertzov, Y.; Husain, M. The privileged role of location in visual working memory. Atten. Percept. Psychophys. 2014, 76, 1914–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, O.; Harris, I.M. The role of location in visual feature binding. Atten. Percept. Psychophys. 2019, 81, 1551–1563. [Google Scholar] [CrossRef] [Green Version]
- Schneegans, S.; Harrison, W.J.; Bays, P.M. Location-independent feature binding in visual working memory for sequentially presented objects. Atten. Percept. Psychophys. 2021, 83, 2377–2393. [Google Scholar] [CrossRef]
- Gobell, J.L.; Tseng, C.H.; Sperling, G. The spatial distribution of visual attention. Vis. Res. 2004, 44, 1273–1296. [Google Scholar] [CrossRef] [Green Version]
- Stefurak, D.L.; Boynton, R.M. Independence of memory for categorically different colors and shapes. Percept. Psychophys. 1986, 39, 164–174. [Google Scholar] [CrossRef]
- Reeves, A.; Fuller, H.; Fine, E. The role of attention in binding shape to color. Vis. Res. 2005, 45, 3343–3355. [Google Scholar] [CrossRef] [Green Version]
- Hollingworth, A. Object-position binding in visual memory for natural scenes and object arrays. J. Exp. Psychol. Hum. Percept. Perform. 2007, 33, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Sakitt, B. Iconic memory. Psychol. Rev. 1976, 83, 257–276. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, D.; Qian, J. Overestimation and contraction biases of depth information stored in working memory depend on spatial configuration. Br. J. Psychol. 2021, 112, 230–246. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, Z.; Huang, S.; Qian, J. Increasing perceptual separateness affects working memory for depth—Re-allocation of attention from boundaries to the fixated center. J. Vis. 2021, 21, 8. [Google Scholar] [CrossRef]
- Li, Z.; Tong, M.; Chen, S.; Qian, J. Effect of attentional selection on working memory for depth in a retro-cueing paradigm. Mem. Cogn. 2021, 49, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001, 24, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Sarno, D.W.; Lewis, J.E.; Neider, M.B. Depth benefits now loading: Visual working memory capacity and benefits in 3-D. Atten. Percept. Psychophys. 2019, 81, 684–693. [Google Scholar] [CrossRef]
- Souza, A.S.; Oberauer, K. In search of the focus of attention in working memory: 13 years of the retro-cue effect. Atten. Percept. Psychophys. 2016, 78, 1839–1860. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, N.J.; Remington, R.W.; Retell, J.D.; Grove, P.M. Segmentation by depth does not always facilitate visual search. J. Vis. 2013, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Godwin, H.J.; Menneer, T.; Liversedge, S.P.; Cave, K.R.; Holliman, N.S.; Donnelly, N. Adding Depth to Overlapping Displays Can Improve Visual Search Performance. J. Exp. Psychol. Hum. Percept. Perform. 2017, 43, 1532–1549. [Google Scholar] [CrossRef] [PubMed]
- Sala, J.B.; Courtney, S.M. Binding of what and where during working memory maintenance. Cortex 2007, 43, 5–21. [Google Scholar] [CrossRef]
- Ungerleider, L.G.; Courtney, S.M.; Haxby, J.V. A neural system for human visual working memory. Proc. Natl. Acad. Sci. USA 1998, 95, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Clevenger, P.E.; Hummel, J.E. Working memory for relations among objects. Atten. Percept. Psychophys. 2014, 76, 1933–1953. [Google Scholar] [CrossRef]
- Bradley, C.; Pearson, J. The sensory components of high-capacity iconic memory and visual working memory. Front. Psychol. 2012, 3, 355. [Google Scholar] [CrossRef] [Green Version]
- Öğmen, H.; Ekiz, O.; Huynh, D.; Bedell, H.E.; Tripathy, S.P. Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model. PLoS ONE 2013, 8, e83671. [Google Scholar] [CrossRef]
- Beard, B.L.; Levi, D.M.; Klein, S.A. Vernier Acuity with Non-simultaneous Targets: The Cortical Magnification Factor Estimated by Psychophysics. Vis. Res. 1997, 37, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Fahle, M.; Harris, J.P. Visual Memory for Vernier Offsets. Vis. Res. 1991, 32, 1033–1042. [Google Scholar] [CrossRef]
- Sheth, B.R.; Shimojo, S. Compression of space in visual memory. Vison Res. 2001, 41, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Loomis, J.M.; Fujita, N.; Da Silva, J.A.; Fukusima, S.S. Visual Space Perception and Visually Directed Action. J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 906–992. [Google Scholar] [CrossRef]
- Ben-Shalom, A.; Ganel, T. Spatial resolution in visual memory. Psychon. Bull. Rev. 2016, 22, 500–508. [Google Scholar] [CrossRef]
- Tanaka, K.; Yamamoto, K.; Sung-en, C.; Watanabe, K. Memory distortion of depth of a visual stimulus for perception and action. In Proceedings of the 2016 8th International Conference on Knowledge and Smart Technology, Chiangmai, Thailand, 3–6 February 2016; pp. 281–286. [Google Scholar] [CrossRef]
- Baddeley, A.D. Working memory, theories models and controversy. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddeley, A.D. Exploring the central executive. Q. J. Exp. Psychol. 1996, 49A, 5–28. [Google Scholar] [CrossRef]
- Wolfe, J.M.; Reinecke, A.; Brawn, P. Why don’t we see changes? The role of attentional bottlenecks and limited visual memory. Vis. Cogn. 2006, 14, 749–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazl, A.; Grossberg, S.; Mingolla, E. View-invariant object category learning, recognition, and search: How spatial and object attention are coordinated using surface-based attentional shrouds. Cogn. Psychol. 2009, 58, 1–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossberg, S. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spat. Vis. 1999, 12, 163–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Stimuli | Paradigm | Set Size | Display Time | Retention for | Accuracy |
---|---|---|---|---|---|---|
Xu & Naka-yama [1] | Squares | Change Detection, CDT | N = 6 | 200 ms | 1000 ms | 77% 1 or 2 planes (mixed) 81% 2 planes (blocked) |
Reeves & Lei [9] | Letters | Partial report of 3 items (Expt. 1) | N = 9 | 50 ms | ISI = 0, 100, 300, 700 ms | 0 100 300 700 ms (planes) 80%, 54%, 52%, 53% (one or two) |
Chunharas et al. [2] | Colors | CDT (Expt. 2) | N = 2, 4, 6, 8, 12 | 500 ms | 900 ms | N = 2, 4, 6, 8, 12 (planes) 80% 60% 40% 29% 15% (two) 80% 60% 39% 28% 13% (one) |
Reeves & Lei [8] | Numeral | Partial report of 1 of 4 items | N = 4 | best subjects; 200 ms | 0, 200, 700, or 1700 ms delay | 0 200 700 1700 ms 76%, 60%, 64%, 66% |
Qian & Zhang [5] | Square | CDT | N = 1, 2, 4, 6 | 800 ms | 900 ms | Single display 71%. Whole display 78%. |
Qian et al. [4] | Square | CDT. δ = metric depth change | N = 2, 3 | 800 ms | 900 ms | δ: small large 89% 93% (order changed) 67% 80% (unchanged) |
Zhang et al. [41] | Square | Adjustment | N = 1, 6 | 800 ms | 900 ms | 90% contraction bias (N = 1) 80% contraction bias (N = 6) |
Wang et al. [42] | Square | CDT | N = 2, 4 | 800 ms | 900 ms | fixating middle plane, Front: 75%; Mid: 63%; Back: 73% |
Li et al. [43] | Square | CDT; retro-cue | N = 4 | 800 ms | 1300 ms | Cue valid 77%; Neutral: 71%; Invalid: 68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reeves, A.; Qian, J. The Short-Term Retention of Depth. Vision 2021, 5, 59. https://doi.org/10.3390/vision5040059
Reeves A, Qian J. The Short-Term Retention of Depth. Vision. 2021; 5(4):59. https://doi.org/10.3390/vision5040059
Chicago/Turabian StyleReeves, Adam, and Jiehui Qian. 2021. "The Short-Term Retention of Depth" Vision 5, no. 4: 59. https://doi.org/10.3390/vision5040059
APA StyleReeves, A., & Qian, J. (2021). The Short-Term Retention of Depth. Vision, 5(4), 59. https://doi.org/10.3390/vision5040059