Agreement between Two Devices for Measuring Pupil Diameter in Patients Implanted with Multifocal Intraocular Lenses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurement Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravikumar, S.; Bradley, A.; Thibos, L.N. Chromatic Aberration and Polychromatic Image Quality with Diffractive Multifocal Intraocular Lenses. J. Cataract Refract. Surg. 2014, 40, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- García-Domene, M.C.; Felipe, A.; Peris-Martínez, C.; Navea, A.; Artigas, J.M.; Pons, Á.M. Image Quality Comparison of Two Multifocal IOLs: Influence of the Pupil. J. Refract. Surg. 2015, 31, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Tauste, A.; Piñero, D.P. Biometric Factors Associated with the Visual Performance of a High Addition Multifocal Intraocular Lens. Curr. Eye Res. 2018, 43, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, M.; Shiba, T. Diffractive Multifocal Intraocular Lens Implantation in Eyes with a Small-Diameter Pupil. Sci. Rep. 2018, 8, 11686. [Google Scholar] [CrossRef]
- Chaidaroon, W.; Juwattanasomran, W. Colvard Pupillometer Measurement of Scotopic Pupil Diameter in Emmetropes and Myopes. Jpn. J. Ophthalmol. 2002, 46, 640–644. [Google Scholar] [CrossRef]
- Hashemi, H.; Yazdani, K.; Khabazkhoob, M.; Mehravaran, S.; Mohammad, K.; Fotouhi, A. Distribution of Photopic Pupil Diameter in the Tehran Eye Study. Curr. Eye Res. 2009, 34, 378–385. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J.; Asimellis, G. Clear-Cornea Cataract Surgery: Pupil Size and Shape Changes, Along with Anterior Chamber Volume and Depth Changes. A Scheimpflug Imaging Study. Clin. Ophthalmol. 2014, 8, 2141–2150. [Google Scholar] [CrossRef]
- Cardona, G.; López, S. Pupil Diameter, Working Distance and Illumination during Habitual Tasks. Implications for Simultaneous Vision Contact Lenses for Presbyopia. J. Optom. 2016, 9, 78–84. [Google Scholar] [CrossRef]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Burguera, N.; Piñero, D.P. Pupil Dependence Assessment with Multifocal Intraocular Lenses through Visual Acuity and Contrast Sensitivity Defocus Curves. Eur. J. Ophthalmol. 2021, 31, 2989–2996. [Google Scholar] [CrossRef]
- ISO/CIE 8995; Lighting of Indoor Work Places. The Commission Internationale de l’Éclairage (CIE): Vienna, Austria, 2002. [CrossRef]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Burguera, N.; Piñero, D.P. Pupil Diameter in Patients With Multifocal Intraocular Lenses. J. Refract. Surg. 2020, 36, 750–756. [Google Scholar] [CrossRef]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Burguera, N.; Piñero, D.P. Long-Term Efficacy, Visual Performance and Patient Reported Outcomes with a Trifocal Intraocular Lens: A Six-Year Follow-Up. J. Clin. Med. 2021, 10, 2009. [Google Scholar] [CrossRef]
- Vounotrypidis, E.; Diener, R.; Wertheimer, C.; Kreutzer, T.; Wolf, A.; Priglinger, S.; Mayer, W.J. Bifocal Nondiffractive Intraocular Lens for Enhanced Depth of Focus in Correcting Presbyopia: Clinical Evaluation. J. Cataract Refract. Surg. 2017, 43, 627–632. [Google Scholar] [CrossRef]
- Tañá-Sanz, P.; Rodríguez-Carrillo, M.D.; Elvira-Giner, B.; Ruiz-Santos, M.; Montés-Micó, R.; Tañá-Rivero, P. Enhanced Monofocal Extended Depth of Focus IOL With a Diffractive Surface Design. J. Refract. Surg. 2021, 37, 595–600. [Google Scholar] [CrossRef]
- Sun, T.; Liu, Y.; Gao, Y.; Tang, C.; Lan, Q.; Yang, T.; Zhao, X.; Qi, H. Comparison of Visual Outcomes of a Diffractive Trifocal Intraocular Lens and a Refractive Bifocal Intraocular Lens in Eyes with Axial Myopia: A Prospective Cohort Study. BMC Ophthalmol. 2022, 22, 407. [Google Scholar] [CrossRef]
- De Luis Eguileor, B.; Martínez-Indart, L.; Martínez Alday, N.; Sacristán Egüén, C.; Cuadros Sánchez, C. Differences in Intermediate Vision: Monofocal Intraocular Lenses vs. Monofocal Extended Depth of Focus Intraocular Lenses. Arch. Soc. Esp. Oftalmol. 2020, 95, 523–527. [Google Scholar] [CrossRef]
- Nejat, F.; Pirhadi, S.; Aghamollaei, H.; Naderi, M.; Ghodsi, M.N.; Gharebaghi, R.; Jadidi, K. Visual and Subjective Outcomes Following Trifocal Intraocular Lens Implantation in Iranian Cataractous Patients. Oman J. Ophthalmol. 2020, 13, 63–69. [Google Scholar] [CrossRef]
- Zhu, M.; Fan, W.; Zhang, G. Visual Outcomes and Subjective Experience with Three Intraocular Lenses Based Presbyopia Correcting Strategies in Cataract Patients. Sci. Rep. 2022, 12, 19625. [Google Scholar] [CrossRef]
- Rementería-Capelo, L.A.; Contreras, I.; García-Pérez, J.L.; Blázquez, V.; Ruiz-Alcocer, J. Visual Performance and Impact of Residual Refractive Errors with Trifocal Intraocular Lenses of Different Aspheric Design. Eur. J. Ophthalmol. 2022, 33, 949–956. [Google Scholar] [CrossRef]
- Carkeet, A. A Review of the Use of Confidence Intervals for Bland-Altman Limits of Agreement in Optometry and Vision Science. Optom. Vis. Sci. 2020, 97, 3–8. [Google Scholar] [CrossRef]
- Miháltz, K.; Szegedi, S.; Steininger, J.; Vécsei-Marlovits, P.V. The Relationship between Patient Satisfaction and Visual and Optical Outcome after Bilateral Implantation of an Extended Depth of Focus Multifocal Intraocular Lens. Adv. Ophthalmol. Pract. Res. 2022, 2, 100043. [Google Scholar] [CrossRef]
- ISO-11979-7:2018; Ophthalmic Implants—Intraocular Lenses—Part 7: Clinical Investigations. ISO: Geneva, Switzerland, 2018.
- Yamaguchi, T.; Dogru, M.; Yamaguchi, K.; Ono, T.; Saiki, M.; Okuyama, H.; Tsubota, K.; Negishi, K. Effect of Spherical Aberration on Visual Function under Photopic and Mesopic Conditions after Cataract Surgery. J. Cataract Refract. Surg. 2009, 35, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-P.; Zhang, F.; Zhao, J.-Y.; Ma, L.-W.; Zhang, J.-S. Visual Function and Higher Order Aberration after Implantation of Aspheric and Spherical Multifocal Intraocular Lenses: A Meta-Analysis. Int. J. Ophthalmol. 2013, 6, 690–695. [Google Scholar] [PubMed]
- Gong, X.-H.; Zheng, Q.-X.; Wang, N.; Chen, D.; Zhao, J.; Li, J.; Zhao, Y.-E. Visual and Optical Performance of Eyes with Different Corneal Spherical Aberration Implanted with Aspheric Intraocular Lens. Int. J. Ophthalmol. 2012, 5, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Nochez, Y.; Favard, A.; Majzoub, S.; Pisella, P.J. Measurement of Corneal Aberrations for Customisation of Intraocular Lens Asphericity: Impact on Quality of Vision after Micro-Incision Cataract Surgery. Br. J. Ophthalmol. 2010, 94, 440–444. [Google Scholar] [CrossRef]
- Alba-Bueno, F.; Vega, F.; Millán, M.S. Halos and Multifocal Intraocular Lenses: Origin and Interpretation. Arch. Soc. Española Oftalmol. (Engl. Ed.) 2014, 89, 397–404. [Google Scholar] [CrossRef]
- Gil, M.A.; Varón, C.; Cardona, G.; Buil, J.A. Visual Acuity and Defocus Curves with Six Multifocal Intraocular Lenses. Int. Ophthalmol. 2020, 40, 393–401. [Google Scholar] [CrossRef]
- Chang, J.S.M. Bilateral Implantation of a Single-Piece Bifocal Diffractive Intraocular Lens in Presbyopic Patients: A Prospective Case Series. Asia-Pac. J. Ophthalmol. 2019, 8, 12–21. [Google Scholar] [CrossRef]
- Gil, M.A.; Varón, C.; Cardona, G.; Vega, F.; Buil, J.A. Comparison of Far and near Contrast Sensitivity in Patients Symmetrically Implanted with Multifocal and Monofocal IOLs. Eur. J. Ophthalmol. 2014, 24, 44–52. [Google Scholar] [CrossRef]
- Fernández-Vega-Cueto, L.; Madrid-Costa, D.; Alfonso-Bartolozzi, B.; Vega, F.; Millán, M.S.; Alfonso, J.F. Optical and Clinical Outcomes of an Extended Range of Vision Intraocular Lens. J. Refract. Surg. 2022, 38, 168–176. [Google Scholar] [CrossRef]
- Pepose, J.S.; Qazi, M.A.; Chu, R.; Stahl, J. A Prospective Randomized Clinical Evaluation of 3 Presbyopia-Correcting Intraocular Lenses after Cataract Extraction. Am. J. Ophthalmol. 2014, 158, 436–446.e1. [Google Scholar] [CrossRef]
- Alfonso, J.F.; Fernández-Vega Cueto, L.; Belda-Salmerón, L.; Montés-Micó, R.; Fernández-Vega, L. Visual Function after Implantation of a Diffractive Aspheric Trifocal Intraocular Lens. Eur. J. Ophthalmol. 2016, 26, 405–411. [Google Scholar] [CrossRef]
- Fernández-Vega-Cueto, L.; Vega, F.; Guerra-Velasco, R.; Millán, M.S.; Madrid-Costa, D.; Alfonso, J.F. Optical and Clinical Outcomes of an Enhanced Monofocal Intraocular Lens for High Hyperopia. J. Refract. Surg. 2022, 38, 572–579. [Google Scholar] [CrossRef]
- Piñero, D.P.; De Fez, D.; Cabezos, I.; López-Navarro, A.; Caballero, M.T.; Camps, V.J. Intrasession Repeatability of Pupil Size Measurements under Different Light Levels Provided by a Multidiagnostic Device in Healthy Eyes. BMC Ophthalmol. 2020, 20, 354. [Google Scholar] [CrossRef]
- Kohnen, T.; Terzi, E.; Bühren, J.; Kohnen, E.M. Comparison of a Digital and a Handheld Infrared Pupillometer for Determining Scotopic Pupil Diameter. J. Cataract Refract. Surg. 2003, 29, 112–117. [Google Scholar] [CrossRef]
- Yazici, A.T.; Bozkurt, E.; Alagoz, C.; Alagoz, N.; Pekel, G.; Kaya, V.; Yilmaz, O.F. Central Corneal Thickness, Anterior Chamber Depth, and Pupil Diameter Measurements Using Visante OCT, Orbscan, and Pentacam. J. Refract. Surg. 2010, 26, 127–133. [Google Scholar] [CrossRef]
- Prakash, G.; Srivastava, D.; Suhail, M.; Bacero, R. Assessment of Bilateral Pupillary Centroid Characteristics at Varying Illuminations and Post-Photopic Flash Response Using an Automated Pupillometer. Clin. Exp. Optom. 2016, 99, 535–543. [Google Scholar] [CrossRef]
- Ordiñaga-Monreal, E.; Castanera-Gratacós, D.; Castanera, F.; Fambuena-Muedra, I.; Vega, F.; Millán, M.S. Pupil Size Differences between Female and Male Patients after Cataract Surgery. J. Optom. 2022, 15, 179–185. [Google Scholar] [CrossRef]
- Gharieb, H.M.; Othman, I.S.; Elkitkat, R.S. Orbscan 3 Versus Pentacam HR: Evaluating the Possible Interchangeable Use of Various Parameters. Cornea 2020, 39, 649–653. [Google Scholar] [CrossRef]
- Qin, M.; Yuan, Y.; Wang, Y.; Li, P.; Chen, W.; Wang, Y.; Yang, M.; Wu, J.; Ji, M.; Luo, J.; et al. Comparison of Preoperative Angle Kappa Measurements in the Eyes of Cataract Patients Obtained from Pentacam Scheimpflug System, Optical Low-Coherence Reflectometry, and Ray-Tracing Aberrometry. BMC Ophthalmol. 2022, 22, 153. [Google Scholar] [CrossRef]
- Ashena, Z.; Gallagher, S.; Naveed, H.; Spalton, D.J.; Nanavaty, M.A. Comparison of Anterior Corneal Aberrometry, Keratometry and Pupil Size with Scheimpflug Tomography and Ray Tracing Aberrometer. Vision 2022, 6, 18. [Google Scholar] [CrossRef]
- Nanavaty, M.A.; Ashena, Z.; Gallagher, S.; Borkum, S.; Frattaroli, P.; Barbon, E. Visual Acuity, Wavefront Aberrations, and Defocus Curves With an Enhanced Monofocal and a Monofocal Intraocular Lens: A Prospective, Randomized Study. J. Refract. Surg. 2022, 38, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Greve, D.; Bertelmann, E.; Pilger, D.; von Sonnleithner, C. Visual Outcome and Optical Quality of a Wavefront-Engineered Extended Depth-of-Focus Intraocular Lens. J. Cataract Refract. Surg. 2021, 47, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Choi, A.; Kwon, H. Analysis of Uncorrected near Visual Acuity after Extended Depth-of-Focus AcrySof® VivityTM Intraocular Lens Implantation. PLoS ONE 2022, 17, e0277687. [Google Scholar] [CrossRef] [PubMed]
- Guarro, M.; Sararols, L.; Londoño, G.J.; Goñi, I.; Vázquez, M.; Ruiz, S.; López, S. Visual Disturbances Produced after the Implantation of 3 EDOF Intraocular Lenses vs 1 Monofocal Intraocular Lens. J. Cataract Refract. Surg. 2022, 48, 1354–1359. [Google Scholar] [CrossRef]
- Savini, G.; Schiano-Lomoriello, D.; Balducci, N.; Barboni, P. Visual Performance of a New Extended Depth-of-Focus Intraocular Lens Compared to a Distance-Dominant Diffractive Multifocal Intraocular Lens. J. Refract. Surg. 2018, 34, 228–235. [Google Scholar] [CrossRef]
- Gallenga, C.E.; D’Aloisio, R.; D’Ugo, E.; Vecchiarino, L.; Agnifili, L.; Simonelli, M.B.; Di Nicola, M.; Toto, L.; Perri, P. Visual Performance and Quality of Life after Femtosecond Laser-Assisted Cataract Surgery with Trifocal IOLs Implantation. J. Clin. Med. 2021, 10, 3038. [Google Scholar] [CrossRef]
- Garzón, N.; Poyales, F.; Albarrán-Diego, C.; Rico-Del-Viejo, L.; Pérez-Sanz, L.; García-Montero, M. Visual and Optical Quality of Enhanced Intermediate Monofocal versus Standard Monofocal Intraocular Lens. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 3617–3625. [Google Scholar] [CrossRef]
- Bova, A.; Vita, S. Clinical and Aberrometric Evaluation of a New Monofocal IOL with Intermediate Vision Improvement. J. Ophthalmol. 2022, 2022, 4119698. [Google Scholar] [CrossRef]
- Huang, J.; Savini, G.; Li, J.; Lu, W.; Wu, F.; Wang, J.; Li, Y.; Feng, Y.; Wang, Q. Evaluation of a New Optical Biometry Device for Measurements of Ocular Components and Its Comparison with IOLMaster. Br. J. Ophthalmol. 2014, 98, 1277–1281. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J.; Asimellis, G.; Georgiadou, S. Digital Pupillometry and Centroid Shift Changes after Cataract Surgery. J. Cataract Refract. Surg. 2015, 41, 408–414. [Google Scholar] [CrossRef]
- Nakamura, K.; Bissen-Miyajima, H.; Oki, S.; Onuma, K. Pupil Sizes in Different Japanese Age Groups and the Implications for Intraocular Lens Choice. J. Cataract Refract. Surg. 2009, 35, 134–138. [Google Scholar] [CrossRef]
Pupil | K5M | PW | Hand Ruler | p-Value |
---|---|---|---|---|
Photopic | 2.75 ± 0.56 a 2.8 [0.6] | 3.06 ± 0.54 b 2.95 [0.59] | 3.17 ± 0.46 c 3 [0] | <0.0005 |
Mesopic | 4.64 ± 0.82 4.5 [1.1] | 4.68 ± 0.80 4.56 [1.03] | 0.34 |
Author | Subjects | Eyes | Age | Intraocular Lens | Device | PP | MP |
---|---|---|---|---|---|---|---|
Gil et al. [28] | 19 | 19 | 74 ± 8 | ReSTOR_SN6AD2 | Colvard | 3.2 ± 0.6 | - |
Gil et al. [28] | 20 | 20 | 69 ± 13 | Tecnis ZKB00 | Colvard | 3.4 ± 0.7 | - |
Gil et al. [28] | 20 | 20 | 73 ± 5 | Tecnis ZLB00 | Colvard | 3.2 ± 0.7 | - |
Gil et al. [28] | 18 | 18 | 72 ± 7 | AT LISA 809M | Colvard | 3.0 ± 0.6 | - |
Gil et al. [28] | 19 | 19 | 69 ± 10 | AT LISA tri 839MP | Colvard | 3.3 ± 0.8 | - |
Gil et al. [28] | 20 | 20 | 68 ± 6 | Symfony ZXR00 | Colvard | 3.3 ± 0.8 | - |
Chang et al. [29] | 36 | 72 | 56 ± 7 | Tecnis ZMB00 | Colvard | - | 4.7 ± 0.8 |
Gil et al. [30] | 12 | 24 | 63 ± 9 | ReSTOR SN6AD1 | Colvard | 3.1 ± 0.6 | 4.6 ± 1.0 |
Gil et al. [30] | 11 | 22 | 69 ± 7 | Tecnis ZMA00 | Colvard | 3.0 ± 0.4 | 4.8 ± 0.4 |
Fernández-V-C et al. [31] | 30 | 60 | 77 ± 6 | Vivity DFT015 | Colvard | 2.9 ± 0.6 | 4.6 ± 0.8 |
Pepose et al. [32] | 26 | 52 | 63 ± 6 | Crystalens AO | Colvard | 3.2 ± 0.6 | 6.1 ± 0.7 |
Pepose et al. [32] | 25 | 50 | 64 ± 7 | ReSTOR SN6AD1 | Colvard | 3.2 ± 0.7 | 6.2 ± 1.3 |
Pepose et al. [32] | 22 | 44 | 63 ± 9 | Tecnis ZMA00 | Colvard | 3.4 ± 0.6 | 6.4 ± 0.8 |
Alfonso et al. [33] | 22 | 44 | 68 ± 6 | Eyhance ICB00 | Colvard | 3.9 ± 0.9 | 5.7 ± 0.9 |
Fernández-V-C et al. [34] | 22 | 22 | 71 ± 9 | Vivity DFT015 | Colvard | 3.0 ± 0.5 | 4.7 ± 0.7 |
Author | Subjects | Eyes | Age | Intraocular Lens | Device | PP |
---|---|---|---|---|---|---|
Tañá-Sanz et al. [14] | 25 | 50 | 68 ± 7 | Xact Mono-EDOF ME4 | Pentacam | 2.8 ± 0.5 |
Eguileor et al. [16] | 15 | 30 | 72 ± 8 | Eyhance ICB00 | Pentacam | 2.4 ± 0.3 |
Eguileor et al. [16] | 15 | 30 | 74 ± 8 | Tecnis ZCB00 | Pentacam | 2.5 ± 0.5 |
Nejat et al. [17] | 23 | 46 | 58 ± 11 | AT LISA tri 839MP | Pentacam | 2.8 ± 0.6 |
Zhu et al. [18] | 20 | 40 | 60 ± 7 | Symfony ZXR00 | Pentacam | 2.7 ± 0.5 |
Zhu et al. [18] | 21 | 42 | 59 ± 6 | AT LISA tri 839MP | Pentacam | 2.9 ± 0.4 |
Sun et al. [15] | 20 | 20 | 66 ± 13 | AT LISA tri 839MP | Pentacam | 3.3 ± 0.6 |
Sun et al. [15] | 20 | 20 | 71 ± 11 | AT LISA tri 839MP | Pentacam | 2.8 ± 0.5 |
Sun et al. [15] | 20 | 20 | 70 ± 10 | SBL-3 | Pentacam | 3.3 ± 0.8 |
Sun et al. [15] | 20 | 20 | 68 ± 8 | SBL-3 | Pentacam | 2.9 ± 0.4 |
Rementería-Capelo [19] | 14 | 28 | 67 ± 10 | PanOptix TFNT00 | Pentacam | 2.6 ± 0.6 |
Rementería-Capelo [19] | 13 | 26 | 66 ± 6 | RayOne Trifocal | Pentacam | 3.0 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, J.; Burguera, N.; Rocha-de-Lossada, C.; Rodríguez-Calvo-de-Mora, M.; Rodríguez-Vallejo, M. Agreement between Two Devices for Measuring Pupil Diameter in Patients Implanted with Multifocal Intraocular Lenses. Vision 2023, 7, 40. https://doi.org/10.3390/vision7020040
Fernández J, Burguera N, Rocha-de-Lossada C, Rodríguez-Calvo-de-Mora M, Rodríguez-Vallejo M. Agreement between Two Devices for Measuring Pupil Diameter in Patients Implanted with Multifocal Intraocular Lenses. Vision. 2023; 7(2):40. https://doi.org/10.3390/vision7020040
Chicago/Turabian StyleFernández, Joaquín, Noemí Burguera, Carlos Rocha-de-Lossada, Marina Rodríguez-Calvo-de-Mora, and Manuel Rodríguez-Vallejo. 2023. "Agreement between Two Devices for Measuring Pupil Diameter in Patients Implanted with Multifocal Intraocular Lenses" Vision 7, no. 2: 40. https://doi.org/10.3390/vision7020040
APA StyleFernández, J., Burguera, N., Rocha-de-Lossada, C., Rodríguez-Calvo-de-Mora, M., & Rodríguez-Vallejo, M. (2023). Agreement between Two Devices for Measuring Pupil Diameter in Patients Implanted with Multifocal Intraocular Lenses. Vision, 7(2), 40. https://doi.org/10.3390/vision7020040