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Abstract: Computer vision is a powerful tool in medical image analysis, supporting the early
detection and classification of eye diseases. Diabetic retinopathy (DR), a severe eye disease secondary
to diabetes, accompanies several early signs of eye-threatening conditions, such as microaneurysms
(MAs), hemorrhages (HEMOs), and exudates (EXs), which have been widely studied and targeted as
objects to be detected by computer vision models. In this work, we tested the performances of the
state-of-the-art YOLOv8 and YOLOv9 architectures on DR fundus features segmentation without
coding experience or a programming background. We took one hundred DR images from the public
MESSIDOR database, manually labelled and prepared them for pixel segmentation, and tested the
detection abilities of different model variants. We increased the diversity of the training sample
by data augmentation, including tiling, flipping, and rotating the fundus images. The proposed
approaches reached an acceptable mean average precision (mAP) in detecting DR lesions such as
MA, HEMO, and EX, as well as a hallmark of the posterior pole of the eye, such as the optic disc. We
compared our results with related works in the literature involving different neural networks. Our
results are promising, but far from being ready for implementation into clinical practice. Accurate
lesion detection is mandatory to ensure early and correct diagnoses. Future works will investigate
lesion detection further, especially MA segmentation, with improved extraction techniques, image
pre-processing, and standardized datasets.

Keywords: diabetic retinopathy; computer vision; segmentation; YOLOv8; YOLOv9; retinal fundus

1. Introduction

Diabetes is a severe and chronic disease characterized by high blood glucose levels [1,2].
It is a leading cause of death and disability worldwide and affects people regardless of gen-
der, age, and birthplace. According to estimates from the 2019 Global Burden of Diseases,
Injuries, and Risk Factors (GBD) Study, diabetes was the world’s eighth-leading cause of
death and disability, with approximately 460 million people living with the disease [3]. In
2021, the International Diabetes Federation (IDF) estimated that approximately 537 million
people worldwide had diabetes [4], representing a substantial and recognized problem
for healthcare systems [5]. In 2023, the updated GBD 2021 was published [6], which esti-
mated that 529 million people of all ages had diabetes (a global prevalence of 6.1%). By
2050, the global prevalence of diabetes will increase by 60%, reaching 9.8% (approximately
1.31 billion people worldwide). The form of diabetes that will most represent the global
diabetic population is Type 2, i.e., with a solid genetic characterization and a strong asso-
ciation with a sedentary lifestyle and obesity. Males and those over 65 years old are at a
higher risk, according to the same report.

Diabetic eye disease, caused by damage to the retinal capillaries, is the most common
microvascular end-organ complication of diabetes and includes diabetic retinopathy (DR)
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and macular edema (ME) [7]. DR occurs in 30% to 40% of all diabetic individuals, and
the increasing prevalence of diabetes parallels DR [8]. A recent systematic review and
meta-analysis accounting for 59 population-based studies published up to March 2020 [9]
showed that 103 million people are suffering from DR, and these estimates will further
increase to 161 million individuals by 2045. Based on other short-term projections for 2030,
DR prevalence is increased in middle- and low-income countries, ranging from 20% to 48%,
far above the rates in high-income countries. The DR pandemic is a pressing global issue
that must be urgently addressed [10].

DR can be described as non-proliferative (NPDR), proliferative (PDR), and macu-
lopathy or macular edema (ME). NPDR is known as background DR, whereas PDR and
ME represent its advanced stages [11,12]. DR patients can show different signs, such as
micro-aneurysms (MAs), hard exudates (HEs), hemorrhages (HEMOs), and cotton wool
spots (CWSs) in varying stages of the disease. MAs are weak dark red spots developed on
blood vessels that bulge outward. They are the first detectable change in the retina due to
DR. Bleeding, or a HEMO, is dark red, usually round or oval, and formed by an MA rupture.
HEs and CWSs are collectively known as exudates (EXs). The first are yellowish deposits
of protein in the retina. The latter, which are softer, are white and fluffy lesions [13].

Broad strategies are needed to address this situation, including evolving the screening
strategies for DR by leveraging technologies such as telemedicine and artificial intelli-
gence (AI). Screening for DR detection is crucial, because early treatments mean better
outcomes [14]. The advantages of AI screening systems include the convenience of point-
of-care access and potentially lower operating costs due to automatic interpretations of
images and referral to eye care specialists as needed [15].

Several studies have focused on DR grading using retinal images objectively evaluated
by different AI-based grading systems [16]. One of the earliest works on DR grading from
retinal fundus photographs with neural networks is by Gulshan et al. [17]. They trained a
deep convolutional neural network, a specific neural network for digital image analysis,
to correctly classify the disease from an aggregate pixels’ analysis. Their mathematical
function does not explicitly recognize lesions like MAs and HEMOs. It learns how to
identify them using local features. The neural network used in their work is described
elsewhere [18]. Yun et al. [19] proposed a method to classify the DR stages using a three-
layer feedforward neural network based on blood vessel examination and differentiation
from MA and HEMO. Imani et al. [20] tested a new technique based on a morphological
component analysis algorithm to discriminate between normal and pathological retinal
structures, spotting blood vessels and exudation. Other research focused on the localization
of DR traits, such as red lesions and exudates, intending to grade the severity of the
disease properly. Tariq et al. [13] created a system that extracts the macula and optic disc
locations from digital retinal images alongside possible exudate regions. They used a
Gaussian mixture model classifier at different stages of diabetic maculopathy. Monemian
and Rabbani [21] formulated a new red lesions extraction method to determine the disease’s
severity better. They found the boundary pixels of blood vessels and red lesions by
analyzing directional intensity changes. Sun et al. [22] proposed a new deep learning model
for DR detection based on super-resolution performed on low-quality fundus images to
address the issue of low image resolution, the tiny size of MAs, and insufficient imaging
depth. They used a magnified adaptive feature pyramid network and a standard two-stage
detection network as the backbone.

All the methods presented above, both for classification and detection, require a
rigorous and deep background knowledge of programming and algorithm development,
which is not an ordinary skill among healthcare professionals. Several companies have
released application programming interfaces (APIs) and online interfaces to solve this issue,
implementing deep learning, so that anyone with basic computer competence could train a
high-quality model [23].
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Our work aimed to develop a computer-assisted method that could accurately detect
DR lesions from retinal fundus photographs, even without coding experience.

The contributions of this study are as follows:

• We create a dataset of annotated fundus retinal images from [24] that can be used for
machine learning (ML) and computer vision purposes;

• We test the new computer vision model YOLOv9 with publicly available retinal fundus
images from a well-recognized online database [24,25];

• We explore the feasibility of automated ML model development without coding expertise;
• We investigate the model’s performance in detecting different DR features, such as

MAs, HEMOs, and EXs, and compare the performance to our previous research
experience and other models published in the literature.

The study is structured as follows: Section 2 presents related work with use of the
YOLO architecture and briefly describes our previous academic experience with YOLOv8.
Section 3 outlines the proposed methodology, dataset preparation, and describes the char-
acteristics of YOLOv8 and v9. The findings are presented in Section 4. Section 5 discusses
this study’s contributions and concludes it.

2. Related Work

You Only Look Once (YOLO) is a state-of-the-art AI architecture by Ultralytics for
training and deploying accurate AI models [26]. YOLO is an efficient object recognition algo-
rithm characterized by its ability to perform object localization and classification in a single
forward pass [27]. Version 8 sets new standards in real-time detection and segmentation,
with increased different-sizes object detection capabilities and a powerful identification
efficiency compared to the previous version, and it is accessible even online [28,29].

Many researchers have used the YOLO network for object detection rather than other
network frameworks because of its faster speed and higher accuracy. Park et al. [30]
used YOLOv3 to find the location of the optic disc (OD) and its vertical cup-to-disc ratio.
Li et al. [31] tested a series of state-of-the-art algorithms for DR lesion detection, including
YOLO, achieving only poor performances, suggesting that the detection task in fundus
images is demanding and challenging. Santos et al. [32] proposed considerable work
presenting a convolutional neural network structure based on the architectures of YOLO
versions 4 and 5 to improve fundus lesion detection. They tried to keep the computational
costs as low as possible, performing real-time inferences on affordable GPU devices. They
improved the pre-processing phase to enhance feature extraction and minimize false
positive pixel generation. They focused on creating a tiling method to increase the receptive
fields of the input images, reducing the loss of information caused by the reduction in the
images used at the network entrance, especially in the case of small objects such as MAs.

Our research, which tested the performance of YOLOv8 for academic use, has opened
up exciting possibilities for further exploration. We developed a Bachelor’s degree thesis on
DR lesion detection with the help of our optometry student. The student manually labelled
a series of retinal fundus photographs with the help of a VGG image annotator, highlighting
the OD, MAs, and HEMOs. They prepared four different versions of the datasets using the
YOLO API service, applying different stages of data augmentation. The student compared
the performances of the five available YOLOv8 models in detecting the above features
through mean average precision (mAP) [33]. We also performed further experiments with
the YOLOv8 online platform (image annotator, dataset preparation, data augmentation,
and detection) to accurately segment and detect the OD, MAs, and HEMOs [34,35]. Our
results were promising, boosting our enthusiasm to continue our research, improve it,
explore future outcomes, and better understand the limitations we found. Table 1 lists the
above research papers and summarizes their findings.
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Table 1. List of research works involving YOLO architectures.

Research Paper YOLO Version Main Findings

[30] YOLOv3 OD location and its vertical cup-to-disc ratio

[31] YOLO MA, EX, and HE detection with poor
mAP results

[32] YOLOv4 and YOLOv5

Improved pre-processing phase to minimize
false positive pixel generation; development of a
tiling method to reduce the loss of information

due to input image resize

[33] YOLOv8
OD, MA, and HEMO annotation and

performance comparison by mAP from five
model’s sizes of YOLO

[34] YOLOv8
OD, MA, and HEMO annotations improved; fine

tuning of the dataset; performance evaluation
by mAP

[35] YOLOv8 OD and HEMO class only and performance
evaluation by mAP

3. Materials and Methods

In this work, we focus on the detection performances on MAs, HEMOs, and EXs with
the help of YOLOv9. We also describe our experience with YOLOv8 in detecting ODs,
MAs, and HEMOs and compare the two model versions. MA detection is one of the most
challenging tasks, as discussed by [32]; YOLOv8 can successfully detect ODs. We want to
improve MA and HEMO detection by adding EX localization with the help of YOLO’s new
version 9.

The experiments were carried out using an Intel Core i7, 64 GB of RAM, and an 8 GB
graphic card, NVIDIA 3070Ti.

3.1. Dataset

First, we collected retinal fundus photographs from DR patients. We looked for
available image datasets online for healthcare research purposes and found the Messidor
dataset [24]. The Messidor contains 1200 eye fundus RGB color numerical images of the
posterior pole, 540 healthy images and 660 DR images. The Messidor project produced this
dataset to evaluate different lesion segmentation methods for color fundus images in the DR
screening and diagnosis framework. It provides 8 bits per color plane image at 1440 × 960,
2240 × 1488, or 2304 × 1536 pixels, eight hundred images with pupil dilation and four
hundred without pupil dilation. Three ophthalmologic departments took these pictures
using a color video 3CCD camera on a Topcon TRC NW6 non-mydriatic retinographer
with a 45◦ field of view. Each department provided 100 images in TIFF format and an Excel
file with medical diagnoses. We corrected potential sources of errors in the dataset at the
beginning of this research using the additional material supplied on the Messidor website.
We deleted image duplicates and adjusted inconsistent grades [36].

Medical experts provided each image’s DR grade and macular edema risk. They
graded the DR severity into four levels based on MA, HEMO, and neovascularization (NV)
presence and amount. They graded the macular edema risk according to hard exudates.
The grading system for DR and ME is shown in Table 2.

We meticulously selected 100 DR fundus RGB images from the Messidor dataset
to annotate the desired features. The selected images, all of which are gradable, had
varying DR severity from 2 to 3 according to the reference scale reported in Table 2. We
annotated each image with pixel-level and bounding-box annotations (see section below
for detailed description).
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Table 2. Messidor dataset grading system. DR is classified according to the amount of MAs, HEMOs,
and NV. Risk of ME is given by the number of HE.

Grade DR Lesions Risk of ME

0 (Normal) No detectable lesions No visible HE

1 Mild lesions (0 < MA ≤ 5) and
no HEMO (=0)

Shortest distance between macula
and HE > one papilla diameter

2
Moderate lesions

(5 < MA < 15 or 0 < HEMO <5 ) and
no NV (=0)

Shortest distance between macula
and HE ≤ one papilla diameter

3
Severe lesions

(MA ≥ 15 or HEMO ≥ 5) or presence of
NV (=1)

NA

DR: diabetic retinopathy; ME: macular edema; MA: micro-aneurysm; HEMO: hemorrhages; HE: hard exudates;
NV: neovascularization; and NA: not available.

3.2. Annotation Method

The Messidor dataset provides image-level DR and ME grading annotations using
an Excel file, referring to a number per image according to its reference scale, as shown
above. It does not provide pixel-level annotations or bounding-box annotations of lesions
associated with DR.

The annotation process was a meticulous task performed by a well-trained optometrist.
Using special online software provided at [37], the optometrist performed pixel-level
annotations for the OD and three lesions, including MAs, HEMOs, and EXs. The annotation
tool allowed the optometrist to label each lesion with a custom polygon manually, enabling
them to identify boundaries and correct the polygon to follow each object profile better. The
selected 100 DR RGB images were then converted into PNG format and uploaded on the
YOLO API service, and the annotation process began. Each image was manually annotated,
saved, and stored online for later use or downloading. We used four colors to distinguish
four features. Finally, the software automatically created a copy of the pictures with the
bounding-box-level annotations from the pixel-level annotated images by overlying the
bounding boxes on the original image. Figure 1 provides an example of the original image
and the same picture with the pixel-level and bounding-box-level annotations.
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Figure 1. Example of (a) original image; (b) pixel-level annotated image; and (c) a close look of
the pixel-level annotated image. The image in (d) shows some bounding boxes, just a few of them,
to avoid confusion and allow better visualization: yellow, hemorrhages; cyan, optic disc; purple,
exudates; and orange, micro-aneurysms.

3.3. You Only Look Once (Version 8 and 9) Architecture

YOLOv8, a cutting-edge convolutional neural network (CNN) model for object detec-
tion, offers a promising blend of speed and accuracy. It addresses the problem of detecting
multiple eye signs and characterizing DR as a segmentation task, facilitating the identifica-
tion of different stages or severity levels of the disease. The network architecture has three
main components: the backbone, the neck, and the head, as shown in Figure 2. YOLOv8,
while sharing a similar backbone with YOLOv5, introduces innovative changes in the
cross-stage partial connections (CSP) layer, now known as the C2f module. This module, a
cross-stage partial bottleneck with two convolutions, effectively merges high-level features
with contextual information, thereby enhancing detection accuracy [38]. YOLOv8 adopts
an anchor-free model with a decoupled head, allowing for the independent processing of
objectness, classification, and regression tasks. This design, which enables each branch to
concentrate on its specific task, significantly enhances the model’s overall accuracy. In the
output layer of YOLOv8, the sigmoid function is used as the activation function for the
objectness score, indicating the likelihood that the bounding box contains an object. The
softmax function is employed for the class probabilities, indicating the likelihood of the
objects belonging to each possible class [38]. YOLOv8 leverages the CIoU [39] and DFL [40]
loss functions for bounding-box loss and binary cross-entropy for classification loss. These
losses significantly enhance object detection performance, particularly when dealing with
smaller objects, instilling confidence in the model’s capabilities [38].
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Figure 2. YOLOv8 architecture from [41]. It uses a modified CSPDarknet53 backbone. The C2f
module replaces the CSPLayer of YOLOv5. A spatial pyramid pooling fast (SPPF) layer increases
speed computation by pooling features into a fixed-size map. The head is decoupled to independently
process objectness, classification, and regression tasks [38].

The backbone [42] is responsible for extracting rich feature representations from the
input image I, which is defined as:

IϵRH×W×3, (1)

where H and W are the height and width of the input image, respectively. A series of
convolutional layers are applied to the input image to extract features.

Conv(I, K, s, p) = ReLU(BatchNorm(I ∗ K)), (2)

where K is the convolutional kernel, s is the stride, p is the padding, * denotes the convolu-
tion operation, and BatchNorm denotes the batch normalization. Residual blocks help to
learn deeper features:

Res(X) = X + Conv(Conv(X, K1, s1, p1), K2, s2, p2), (3)
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where X is the input of the residual block, and K1 and K2 are the kernels of the convolutional
layers within the block.

The neck [42] aggregates feature maps from different stages of the backbone to enhance
feature representation. The Feature Pyramid Network (FPN) combines feature maps from
different scales:

Pl = UpSample(Cl+1) + Cl , (4)

where Pl is the feature map at level l, Cl+1 is the feature map from the previous layer, and
UpSample denotes the up-sampling operation. The Path Aggregation Network (PAN)
enhances the feature pyramid by combining feature maps in both top–down and bottom–
up pathways:

Ul = Conv(ConcatPl−1, DownSample(Pl))), (5)

where Ul is the output feature map at level l and Concat denotes the concatenation operation.
The head [42] predicts the bounding boxes, objectness scores, and class probabilities

for the detected objects. The bounding box prediction is defined as:

B =
(
σ(tx) + cx, σ

(
ty
)
+ cy, etw ·pw, eth ·ph

)
, (6)

where (cx, cy) is the center of the anchor box, (pw, ph) are the dimensions of the anchor
box, and tx, ty, tw, and th are the predicted offsets. The sigmoid function σ ensures that the
outputs are within a valid range. The objectness score is defined as:

o = σ(tc), (7)

where tc is the raw class score for class c.
The loss function used to train YOLOv8 combines multiple components to ensure

accurate predictions. The localization loss is defined as:

ℓloc = ∑i smoothL1
(

Bi, B′
i
)
, (8)

where Bi is the predicted bounding box, B′
i is the ground truth bounding box, and smoothL1

is the smooth L1 loss. The objectness loss is defined as:

ℓobj = ∑i BCE
(
oi, o′ i

)
, (9)

where BCE is the binary cross-entropy loss, oi is the predicted objectness score, and o′i is
the ground truth objectness score. The classification loss is defined as:

ℓcls = ∑i BCE
(

pi(c), p′ i(c)
)
, (10)

where pi (c) is the predicted class probability and p′i (c) is the ground truth class label. The
total loss is then defined as:

ℓ = λlocℓloc + λobjℓobj + λclsℓcls, (11)

where λloc, λobj, and λcls are weighting factors for each loss component [42].
YOLOv9 marks a significant advancement in real-time object detection, introducing

groundbreaking techniques such as Programmable Gradient Information (PGI) and the
Generalized Efficient Layer Aggregation Network (GELAN) [25]. The new version, devel-
oped upon the robust codebase of YOLO version 7, shows remarkable efficiency, accuracy
and adaptability improvements. Information loss in deep neural networks is a critical
challenge that YOLOv9’s advancements try to address. The core innovations of version 9
lay in the Information Bottleneck Principle (IBP) and Reversible Functions (RFs). Figure 3
shows the architecture diagram of YOLOv9.
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The IBP highlights a crucial challenge in deep learning: as data pass through multiple
layers of a network, the information loss increases. This phenomenon is mathematically
represented as:

I(X, X) ≥ I(X, fθ(X)) ≥ I(X, gφ( fθ(X ))), (12)

where I means mutual information and f and g are transformation functions with param-
eters θ and φ, respectively. This loss can lead to unreliable gradients and a poor model
convergence. One solution is to increase the model’s size, retaining more information.
YOLOv9 counters this challenge by implementing PGI, which aids in preserving essential
data across the network’s depth, ensuring more reliable gradient generation, convergence,
and performance. PGI is a solution comprising a main branch for inference, an auxiliary
reversible branch for reliable gradient calculation, and multi-level auxiliary information to
tackle deep supervision issues effectively without adding extra inference costs.

A function is defined as reversible if it can be inverted without any loss of information,
as expressed by:

X = vζ

(
rψ(X)

)
, (13)

where ψ and ζ are parameters for the reversible and its inverse function. This ensures no
information loss during data transformation, enabling the network to maintain all the input
data through all the layers and provide more accurate updates to the model’s parameters.
YOLOv9 incorporates RFs within its architecture to mitigate the risk of data degradation
and preserve critical information for object detection tasks.

GELAN represents a unique design that fits the PGI framework, enabling YOLOv9
to achieve superior parameter utilization and computational efficiency. It allows for the
flexible integration of various computational blocks, making version 9 adaptable to various
applications without sacrificing speed or accuracy. For more detailed information on
YOLOv9 and the YOLO family, see [25,45].

Table 3 shows the available variants of YOLO versions 8 and 9, which are accessible
online for project development, highlighting the sizes of input images (in pixels), number
of used parameters (in millions), and floating-point operations per second (FLOPs, i.e.,
number of parameter and computational needs). YOLOv8 comes in nano (n), small (s),
medium (m), large (l), and extra-large (x) model sizes. YOLOv9 offers model variants from
tiny (t) to small, medium, compact (c), and extensive (e). We used the c and e versions
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of YOLOv9 for this research, the only two available iterations at the beginning of this
work [45,46].

Table 3. Comparison between YOLO version 8 and 9 model variants.

Model Size (Pixels) Parameters (Million) FLOPs (B)

YOLOv8-n 640 3.4 12.6
YOLOv8-s 640 11.8 42.6
YOLOv8-m 640 27.3 110.2
YOLOv8-l 640 46.0 220.5
YOLOv8-x 640 71.8 344.1
YOLOv9-c 640 27.9 159.4
YOLOv9-e 640 60.5 248.4

3.4. Data Augmentation and Training Parameters

Before we started the training phase, we increased our input dataset of 100 images
by applying data augmentation to increase the dataset diversity and avoid overfitting.
We performed image resizing to a resolution of 640 × 640 pixels, set the auto-orientation
function, and applied a 4 rows × 4 columns tiling. Horizontal and vertical flipping, 90◦

rotations clockwise, counter-clockwise, and upside down were applied. We created a
4256-image dataset, with 94% and 6% of the images used for training and validation. Batch
size, a hyperparameter defining the number of samples taken to work through a particular
machine learning model before updating its internal model parameters, was set at 8. The
default value is 32, but we decided to try smaller batch sizes first, because a more significant
size typically requires a lot of computational resources to complete an epoch, but requires
fewer epochs to converge. We opted to run each model for 100 epochs and set an early-stop
parameter, monitoring the progress of the training phase. If the model did not improve for
ten consecutive epochs, it stopped, as it had converged.

3.5. Performance Metrics

The performance metrics [32,47] used to analyze the research outcomes include:

• Average Precision (AP): AP computes the area under the Precision × Recall curve, pro-
viding a single value that encapsulates the model’s precision and recall performance;

• Mean Average Precision (mAP): this extends the concept of AP by calculating the aver-
age AP values across multiple object classes, as shown in Equation (14). It immediately
provides a comprehensive evaluation of the model’s performance. It is commonly
used in computer vision model research to compare both different models on the same
task and different versions of the same model;

• Precision (P) and Recall (R): the first quantifies the proportion of true positives among
all positive predictions, assessing the model’s capability to avoid false positives. The
latter calculates the proportion of true positives among all actual positives, mea-
suring the model’s ability to detect all instances of a class. Precision and Recall
are calculated for each class by applying the formulas for each image, as shown in
Equations (15) and (16), respectively;

• Accuracy (Acc): Acc is a metric that measures how often a model correctly predicts
the outcome. In other words, accuracy is equal to the number of correct predictions
divided by the number of predictions made, as shown in Equation (17);

• F1 score: this the harmonic mean of Precision and Recall, providing a balanced
assessment of a model’s performance while considering both false positives and false
negatives, as shown in Equation (18);

• Intersection over Union (IoU): this is used to estimate the similarity between two sets
of samples, and the ratio between the area of overlap and the area of the union of the
predicted bounding boxes and the ground truth bounding boxes obtains it.
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mAP =
1
N ∑N

i=1 APi, (14)

Precision =
TP

TP + FP
, (15)

Recall =
TP

TP + FN
, (16)

Accuracy =
TP + TN

TP + TN + FP + FN
, (17)

F1 score =
TP

TP + 1
2 (FP + FN)

, (18)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
We provide a Precision–Recall curve example, a useful tool in model performance

evaluation. From this curve, we can calculate AP and mAP as the weighted means of
the Precisions achieved at each threshold, with the increase in Recall from the previous
threshold used as the weight. An IoU of 0.5 is selected to calculate the proposed model’s
performance and compare the results with the other works from the literature. Figure 4
shows the PR curves from the YOLOv8 model-s used to detect ODs, MAs, and HEMOs.
The x-axis of the PR curve represents the Recall, while the y-axis shows the Precision. In
this space, the goal is to be in the upper right corner (1, 1), meaning that the predictor
classified all positives as positive (Recall = 1), and that everything classified as positive is
true positive (Precision = 1) [32]. We use the top right corner summary table to identify
the performance achieved by the model on each class, showing the AP per class and the
calculated mAP at an IoU of 0.5.
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Figure 5 shows an example of a confusion matrix, a table containing data from exper-
iments with the adopted approach. It summarizes the information on the performances
achieved and lets us compare them to other work. For example, we show the confusion
matrix from the same experiment with the YOLOv8 model-s as before. To better understand
how to use a confusion matrix, we use Equations (15) and (16) to calculate the Precision
and Recall from the confusion matrix for the OD class. The computation is available below.
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Figure 5. Confusion matrix from the model-s of YOLOv8 experiment, during the validation step
of the proposed approach. Optic discs; hemorrhages; and microaneurysms. Background, x-axis
represents the false positive (FP), y-axis stands for false negative (FN).

The confusion matrix resulting from the detection of objects presents the numbers of
false positives (FPs) and false negatives (FNs), respectively, the image background detected
as a lesion, without any corresponding label in the ground truth, and authentic objects not
detected by the proposed method and, therefore, considered as background. True positives
(TPs) and true negatives (TNs) are found in the confusion matrix as well, respectively, a
lesion with a corresponding label in the ground truth detected as an effective lesion by the
model, and a result that indicates the absence of a lesion or a feature. The confidence limit
established for detecting objects in these images will directly impact the results obtained
from background FPs and background FNs. A confidence limit is applied to filter the
bounding boxes of a possible object to eliminate the bounding boxes with low confidence
scores through a Non-Maximum Suppression algorithm, which disregards detected objects
with an IoU less than the defined threshold [32]. We calculated the results presented in
the confusion matrix using a fixed confidence limit of 0.25, which aligns with the default
inference configurations of YOLOv8 and v9. With lower confidence limits, such as our
default value, the mAP results will be improved but produce a more significant amount of
background FPs that will appear in the confusion matrix [32]. Squares with darker shades
of blue indicate a more significant number of samples. The confusion matrix presents
the hits in predicting fundus lesions on the main diagonal, while the values off the main
diagonal correspond to prediction errors.

We show and compare the results using only the variants of the models with the
highest mAPs, choosing between n, s, m, l, and xl options for YOLOv8 and between c and
e for YOLOv9. For each selected variant, we calculate and provide the Precision, Recall,
accuracy, and F1 score.

To calculate the Precision and Recall for the OD class, according to Equations (15) and (16),
we need TPs, FPs, and FNs for the OD class. As we can see from the confusion matrix in
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Figure 5, the box connecting the true Optic_disc on the x-axis and the predicted Optic_disc
on the y-axis contains the number 30. This number represents the TPs for the OD class.
Similarly, if we want to find the FPs and FNs for the OD class, we have to look at the
boxes which connect the background on the x-axis to the Optic_disc on the y-axis and the
Optic_disc on the x-axis to the background on the y-axis, respectively. Then, the FPs and
FNs for the OD class are equal to 1. Now, applying Equations (15) and (16), the Precision
and Recall are equal to 0.968. If we calculate the same performance metrics for another
class, such as MA, the TPs are 25, the FPs are 6, and the FNs are 118. The Precision and
Recall for MA are 0.806 and 0.175, respectively. Repeating this procedure, it is possible to
calculate performance metrics for all the desired classes.

4. Results

We successfully built a digital image dataset with DR lesions (MAs, HEMOs, and
EXs) and OD annotations from the Messidor database. We ran the same dataset on two
different versions of the YOLO architecture, YOLOv8 and YOLOv9, and compared the
feature detection ability results. We first describe OD, MA, and HEMO segmentation
with YOLOv8 and then present the novel results from the YOLOv9 segmentation of MAs,
HEMOs, and EXs.

We carefully evaluated our proposed approach using the AP and mAP metrics, ensur-
ing a comprehensive comparison of the results. These metrics, which measure the precision
of machine learning algorithms in object detection, were instrumental in our evaluation.
We then compared our the YOLO v8 and v9 results with related approaches found in the
literature, further validating our findings.

4.1. OD, MA, and HEMO with YOLOv8

The small version of the model performed best in detecting ODs, MAs, and HEMOs
with the highest mAP. Figure 4 visually presents the PR curves for the small model. The APs
for ODs, MAs, and HEMOs are 0.982, 0.265, and 0.506, respectively. The mAP for all fundus
features considered is 0.584 at an IoU of 0.5, underscoring the small model’s superior perfor-
mance. Figure 5 depicts the s-variant’s confusion matrix, offering a detailed breakdown of
the model’s performance. The matrix reveals that the highest incidence of background FNs
occurred in MAs (with 82%), followed by HEMOs (with 36%) and ODs (with 3%). In terms
of FP background errors, the highest incidence was in HEMOs (with 67%), followed by
MAs (with 10%) and ODs (with 1%). The system also incorrectly identified 7% of HEMOs
as MAs and 3% of MAs as HEMOs, highlighting areas for potential improvement.

All the performance results obtained by each model variant are shown in Table 4, with
the metrics of AP and mAP for the IoU threshold of 0.5 in the validation dataset.

Table 4. Results obtained by each variants of YOLOv8′s models, with the metrics AP and mAP for
the IoU threshold of 0.5 in the validation dataset. The variant with the highest mAP is highlighted in
bold. Detected features: OD; MA; and HEMO.

Models
AP

mAP
OD MA HEMO

nano 0.965 0.224 0.544 0.578
small 0.982 0.265 0.506 0.584

medium 0.971 0.212 0.489 0.557
large 0.966 0.192 0.527 0.562

extra-large 0.973 0.247 0.479 0.566

We opted to display all the model variant results in a tabular form, leveraging their
visual similarity. This method allows the reader to swiftly pinpoint the best model variant,
as only its results are shown graphically, as shown in Figure 4. To further substantiate our
decision, we present an example in Figure 6, displaying the results from the five model
sizes of YOLOv8 when ODs, MAs, and HEMOs are considered.
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Figure 6. All PR curves from each model’s size of YOLOv8 experiment on OD, MA, and HEMO detection,
with classes’ AP and mAP. Variants are shown as follows: (a) nano, (b) small, (c) medium, (d) large, and
(e) extra-large. Note how visually similar curves are, making accurate interpretation difficult.

The OD detection is higher than 96% with all variants of YOLOv8, indicating that this
hallmark of the posterior pole of the eye can be accurately highlighted with this online
API CNN, with no need for external modification by coding experts. The adaptability
of the YOLOv8 variants ensures their versatility in various applications. Moreover, this
task can be efficiently and accurately fulfilled with the reduced size s-variant of the model,
keeping the computation load at a minimum and the operation time as low as less than
ten minutes. MA detection is highest with the same s-version, followed by the xl-version.
HEMOs, instead, are best detected with the nano version of the model, followed by the
large and then small variants.
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After this experiment, we remove the MA class from the dataset and try to rerun each
model to see if there is room for improvement in HEMO detection. We leave the OD class to
test if the CNN consistently repeats this task, confirming an excellent capability to segment
the OD and HEMOs. Again, the best-performing version of the model is the small one,
with an mAP of 0.769 at an IoU of 0.5. The APs for OD sand HEMOs are 0.982 and 0.555,
respectively. All the performance results obtained by each variant of the model are shown
in Table 5, with the metrics of AP and mAP for the IoU threshold of 0.5 in the validation
dataset. OD segmentation has the best detection AP, with the medium version of the model
performing slightly better than the small one, followed by the xl, n, and l variants. Version
n and m perform equally in HEMO segmentation, followed by xl and l, confirming the
s-model as the best.

Table 5. Results obtained by each variants of YOLOv8’s models, with the metrics AP and mAP for
the IoU threshold of 0.5 in the validation dataset excluding the microaneurysms class. The variant
with the highest mAP is highlighted in bold. Detected features: OD; and HEMO.

Models
AP

mAP
OD HEMO

nano 0.974 0.491 0.733
small 0.982 0.555 0.769

medium 0.983 0.491 0.737
large 0.969 0.469 0.719

extra-large 0.979 0.470 0.724

Figure 7 shows the PR curves from this modified model, where the curves are closer
to the top right corner, indicating finer lesion detection. Remarkably, the curve in orange,
which is from HEMO segmentation, is more curved towards the top right corner than
the one from Figure 4. Deleting the MA class from the training phase makes the model a
better classifier, with the mAP increasing from 0.506 to 0.555. The blue mAP curve draws
a similar pattern, with a better curved profile in Figure 7 than in Figure 4, meaning that
the new s-model has better segmentation skills. Figure 8 shows its confusion matrix: the
HEMO class reached background FN and FP rates of 42% and 93%. There was no confusion
between ODs and HEMOs during detection, probably thanks to the OD’s more prominent
size and higher contrast against the color fundus of the eye. The edges of red lesions, such
as HEMOs and even more MAs, can be covered by the color of surrounding pixels, similar
to the posterior pole pictures.

Vision 2024, 8, x FOR PEER REVIEW 16 of 26 
 

 

classifier, with the mAP increasing from 0.506 to 0.555. The blue mAP curve draws a sim-
ilar pattern, with a better curved profile in Figure 7 than in Figure 4, meaning that the new 
s-model has better segmentation skills. Figure 8 shows its confusion matrix: the HEMO 
class reached background FN and FP rates of 42% and 93%. There was no confusion be-
tween ODs and HEMOs during detection, probably thanks to the OD’s more prominent 
size and higher contrast against the color fundus of the eye. The edges of red lesions, such 
as HEMOs and even more MAs, can be covered by the color of surrounding pixels, similar 
to the posterior pole pictures. 

 
Figure 7. Graph with Precision x Recall curve with a limit of IoU of 0.5 obtained during the valida-
tion step of the proposed approach with YOLOv8 model-s, excluding the MA class from the analy-
sis. 

 

Figure 7. Graph with Precision × Recall curve with a limit of IoU of 0.5 obtained during the validation
step of the proposed approach with YOLOv8 model-s, excluding the MA class from the analysis.



Vision 2024, 8, 48 16 of 25

Vision 2024, 8, x FOR PEER REVIEW 16 of 26 
 

 

classifier, with the mAP increasing from 0.506 to 0.555. The blue mAP curve draws a sim-
ilar pattern, with a better curved profile in Figure 7 than in Figure 4, meaning that the new 
s-model has better segmentation skills. Figure 8 shows its confusion matrix: the HEMO 
class reached background FN and FP rates of 42% and 93%. There was no confusion be-
tween ODs and HEMOs during detection, probably thanks to the OD’s more prominent 
size and higher contrast against the color fundus of the eye. The edges of red lesions, such 
as HEMOs and even more MAs, can be covered by the color of surrounding pixels, similar 
to the posterior pole pictures. 

 
Figure 7. Graph with Precision x Recall curve with a limit of IoU of 0.5 obtained during the valida-
tion step of the proposed approach with YOLOv8 model-s, excluding the MA class from the analy-
sis. 

 

Figure 8. Confusion matrix from the model-s of YOLOv8 experiment, during the validation step of
the proposed approach, excluding the Microaneurysms class. Background, x-axis represents the false
positive (FP) and y-axis stands for false negative (FN).

4.2. MA, HEMO, and EX with YOLOv8

As we successfully achieved OD segmentation with the first couple of experiments,
we tested YOLOv8 in detecting MAs and HEMOs again, adding a white lesion class as
EXs. We achieved the best mAP with two versions of the model, the n and m-models,
with a value of 0.339 at IoU 0.5. We chose the nano version because of its faster training
time, lower computation load, and higher AP registered for the EX class (0.417). The MA
detection was very close between the two models, with the nano and medium reaching
APs of 0.182 and 0.189, respectively. The m-model better segmented HEMOs, reaching an
AP of 0.483. We still decided to choose the nano because, in the previous experiment, we
achieved a better performance both for the MA and HEMO classes, so we chose the variant
which gave the best outcome for the new EX class. While performing the training phase
with the xl-model, we faced several system aborts, leading to a loss of trained data and the
absence of performance metrics for this variant. All the results are shown in Table 6, with
the metrics of AP and mAP for the IoU threshold of 0.5 in the validation dataset. Figure 9
shows the PR curves from the n-model, which depicts the AP and mAP for each class,
and Figure 10 represents its confusion matrix. The highest incidence of background FNs
occurred in MAs (with 85%), followed by EXs (with 60%) and HEMOs (with 44%). As for
FP background errors, the highest incidence occurred in HEMOs (with 59%), followed by
MAs (with 23%) and EXs (with 18%). Finally, the system misclassified 14% of HEMOs as
MAs and just 2% of MAs as HEMOs.
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Table 6. Results obtained by each variants of YOLOv8’s models, with the metrics AP and mAP for
the IoU threshold of 0.5 in the validation dataset. The variant with the highest mAP is highlighted in
bold. Detected features: MA; HEMO; and EX.

Models
AP

mAP
MA HEMO EX

nano 0.182 0.418 0.417 0.339
small 0.173 0.420 0.352 0.315

medium 0.189 0.483 0.344 0.339
large 0.206 0.474 0.319 0.333

extra-large NA NA NA NA

4.3. MA, HEMO, and EX with YOLOv9

We performed the last experiment with the two models offered by YOLOv9, the c and
e-models. We trained the two options with the same dataset as the previous experiments
and evaluated the MA, HEMO, and EX detection performance. The best result was achieved
by the e-model, with an mAP of 0.359 at an IoU of 0.5. AP for MAs, HEMOs, and EX, with
values of 0.205, 0.484, and 0.390, respectively. The compact version of the model showed
an almost identical mAP of 0.358, with a slightly improved AP for MAs at 0.212, the same
AP for HEMOs as the extended variant, and a lower EXs AP value of 0.378. All the results
are shown in Table 7. Figures 11 and 12 show the PR curves and confusion matrix for
the extended model. The most significant number of background FNs occurred in MAs
(with 82%), followed by EXs (with 58%) and HEMOs (with 43%). As for FP background
errors, the highest incidence occurred in HEMOs (with 35%), followed by EXs (with 34%)
and MAs (with 31%). Ultimately, the model incorrectly detected 14% of HEMOs as MAs.
Conversely, it mistook just 3% of MAs for HEMOs.
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Models
AP

mAP
MA HEMO EX
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extended 0.205 0.484 0.390 0.359
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4.4. Summary of Experiment Results

We describe the results from four experiments, three with YOLO version 8 and one
with version 9. We evaluated the performance of four computer vision models in detecting
ODs, MAs, HEMOs, and EXs with metrics such as mAP and AP, and then with the FPs and
FNs from their confusion matrixes. Tables 4–7 show our findings in detail and compare the
various options available within the YOLOv8 and v9 networks. Considering the confusion
matrixes from Figure 5, 8, 10, and 12, we can calculate the FPs and FNs for each of the best
models from every experiment. In medical imaging analysis, the role of FNs is crucial,
because the cost of a high FN rate could mean potentially misdiagnosed life-threatening
conditions, or in our case, eye-threatening conditions. It is possible to verify that every time
there is an MA detection task, which involves identifying microaneurysms, MAs reach
the highest incidence of FNs (82% and 85%), followed by EXs (58% and 60%), HEMOs
(36%, 42%, and 44%), and ODs (3%). A higher rate of FN could mean the systems struggle
to accurately detect a lesion, leading to a possible misdiagnosis. MA detection is the
most complex task in this kind of computer vision experiment [32], and our experiments
confirmed this belief. MAs are the first and earliest sign of DR, and accurate, objective
localization of these lesions is tremendously desirable in large population-based screening
and clinical practice for better prevention and treatment outcomes. Future works must
prioritize the detection of early signs of disease with larger datasets such as [29,48] with a
clinically acceptable performance compared to medical retina experts.

Table 8 summarizes the performance metrics of mAP, AP, Precision, Recall, Accu-
racy, and F1 score achieved by each of the selected models from our experiments with
YOLOv8 and v9.

Precision considers how many predictions are correct among all the lesion-positive
assumptions made by the model; Recall assumes how many situations of the positive class
with expected values are correct; the F1 score calculates the harmonic mean between P and
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Re, giving a more balanced evaluation of the model’s accuracy. The first experiment is 50%
accurate, with an F1 score of 0.528, which is acceptable. The lower Re value of 0.405 means
the model could be missing actual lesions, leading to possible undiagnosed DR, especially
in the early stage of the disease. When we ask the model to consider just two classes (ODs
and HEMOs), the F1 score increases, and the P and Re values are more balanced (71.6%,
65%, and 68.2%, respectively). In this case, the model’s accuracy, expressed by the F1 score,
is close to 70%, which means it is an excellent classifier. It is possible to consider the small
version of YOLOv8 we use to detect ODs and HEMOs as a promising system to accurately
and objectively detect those two hallmarks of the posterior pole when clinicians need to
quickly evaluate the OD and suspect DR or any other conditions leading to bleeding of the
retina. Unfortunately, the last two experiments achieve lower F1 scores, 31.6% and 34.4%,
respectively. Precision is similar between the two models, but the lower Re scores lead
to many missing lesions. This cause of this loss relies on MA detection, which is, again,
very difficult to fulfil. The best model is the extended version of YOLOv9, which has at
least all scores higher than those of the YOLOv8-nano. We need larger image datasets and
improved feature extraction techniques such as [48,49] for better results.

Table 8. Results obtained with the metrics: mAP, AP, Precision, Recall, Accuracy, and F1 score with
the best models from our experiment with YOLOv8 and v9 during the validation step.

Models
AP

mAP P Re Acc F1
OD MA HEMO EX

Test YOLOv8-small 0.982 0.265 0.506 NA 0.584 0.758 0.405 0.359 0.528
Test YOLOv8-small 0.982 NA 0.555 NA 0.769 0.716 0.650 0.517 0.682
Test YOLOv8-nano NA 0.182 0.418 0.417 0.339 0.590 0.216 0.188 0.316

Test YOLOv9-extended NA 0.205 0.484 0.390 0.359 0.610 0.239 0.208 0.344

Table 9 summarizes the performance metrics of mAP and AP achieved by each of the
selected models from our experiments with YOLOv8 and v9 and related works found in
the literature that provide the same evaluation metrics.

We should be satisfied with our proposed models, where the OD detection achieved
an AP of 0.982. Compared to other models found in the literature, such as [30], YOLOv8 is
second to DenseNet and YOLOv3 (with Aps of 1.000 and 0.990, respectively) but better than
ResNet (AP 0.956). Future works with YOLOv8 and YOLOv9 will enable us to measure
and evaluate the morphological characteristics of the OD, such as the vertical cup-to-disc
ratio [30], which are associated with progressive disease stages in glaucoma. Similarly,
researchers may use YOLO models in glaucoma detection, as they have for DR detection.

Table 9. Results obtained with the metrics mAP and AP during the validation stage with the best
models from our experiment (highlighted in bold) involving YOLOv8 and v9 compared with related
works from the literature.

Models Datasets
AP

mAP
OD MA HEMO EX

YOLOv3 [30]
Custom—1959 Retina Images in the training

step; 204 retina images in the test step

0.990 NA NA NA 0.990

ResNet [30] 0.956 NA NA NA 0.956

DenseNet [30] 1.000 NA NA NA 1.000

YOLOv5 [50]
STARE, AIRA, G1020, and

MESSIDOR2—5823 training images—6372
testing images from seventeen datasets

0.996 NA NA NA 0.996
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Table 9. Cont.

Models Datasets
AP

mAP
OD MA HEMO EX

YOLOv7 [51] DRISHTI-GS and ORIGA—68 training
images and 33 testing images 0.995 NA NA NA 0.995

HED [31]

DDR—757 fundus images with DR lesion
annotations

NA 0.060 0.189 0.271 0.170

DeepLab-v3+ [31] NA 0.039 0.405 0.438 0.332

SSD [31] NA 0.000 0.000 0.000 0.006

YOLO [31] NA 0.000 0.010 0.004 0.004

Faster RCNN [31] NA 0.009 0.087 0.030 0.093

YOLOv4+SGD [52] NA 0.019 0.085 0.037 0.072

YOLOv5 [32] NA 0.005 0.130 0.031 0.104

YOLOv8 SGD+Tilling [32] NA 0.105 0.333 0.229 0.249

YOLOv8 Adam opt+Tilling [32] NA 0.111 0.352 0.224 0.2630

YOLOv3+Adam opt+dropout [49] NA NA NA NA 0.216

Mask R-CNN Adam opt [53] NA 0.109 0.258 0.260 0.235

Mask R-CNN Adam opt + Tilling [53] NA 0.164 0.352 0.294 0.290

YOLOv2 [48] EyePacs—5000 annotated images for
training—519 image as test NA 0.813 NA NA 0.813

YOLOv3 [54]
Private dataset from Amar Eye Hospitl and

Kaggle-DR dataset

NA 0.844 0.920 NA 0.922

YOLOv2 [54] NA 0.814 0.905 NA 0.906

YOLOv1 [54] NA 0.789 0.899 NA 0.894

test YOLOv8-s

100 manually annotated images from
Messidor—4256 images after augmentation

0.982 0.265 0.506 NA 0.584

test YOLOv8-s 0.982 NA 0.555 NA 0.769

test YOLOv8-n NA 0.182 0.418 0.417 0.339

test YOLOv9-e NA 0.205 0.484 0.390 0.359

Definitions: NA, Not Available; YOLO, You Only Look Once, version from 1 to 9; ResNet, Residual neural
network; DenseNet, Densely connected neural network; HED, Holistically-nested Edge Detection; SSD, Single
Shot Multi-Box Detector; Mask R-CNN, Mask Regions with Convolutional Neural Network; SGD, Stochastic
Gradient Descent; Adam opt, Adam optimizer.

Considering the papers reporting MA, HEMO, and EX detection performance, our two
models, YOLOv8-nano and YOLOv9-extended, perform well, with mAPs of 0.339 and 0.359,
respectively. They seem to be better models than the options presented by [31,32,49,52] in
detecting DR lesions. The DeepLabv3+ from [31] is the only neural network performing
closer to our proposed approach, with an mAP of 0.332. The AP values for HEMO and
EX detection with DeepLabv3+ are 0.405 and 0.438; for YOLOv8-nano, they are 0.418 and
0.417; and for YOLOv9-extended, they are 0.484 and 0.390. It is possible to verify that our
proposed approaches perform better in HEMO detection. However, DeepLabv3+ is better
in EX detection, probably due to the higher EX annotations in the DDR dataset.

Although the obtained AP for OD detection alone is excellent, the overall performance
of the s-model of YOLOv8, as shown in Figure 4, still needs to be at the level of clinical
use on actual patients. The mAP curves for OD, MA, and HEMO are not at the ideal point
(1, 1) or an mAP of 1.0, nor are they at an acceptable 0.8 [55]. However, when we consider
MAs, HEMOs, and EXs, as shown in Figures 9 and 11 (YOLOv8 model-n and YOLOv9
model-e, respectively), the mAPs for the selected lesions are better than in other work from
the literature, indicating the need for further research. The only instance where the mAP
is close to 0.8, suggesting that the model could be cautiously adopted for clinical use, is
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shown in Figure 7 (YOLOv8 model-s). In this case, the mAP is 0.769, close to 0.8, valid for
OD and HEMO detection.

The precise segmentation and detection of MAs is still a challenge in the field due to
the intrinsic characteristics of these retinal lesions. Without complex image pre-processing,
our approaches achieved higher results than the other experiments shown in Table 9. The
nano version of YOLOv8 and the extended version of YOLOv9 reached MA APs of 0.182
and 0.205, respectively, significantly higher than the other neural networks. Even our
YOLOv8-small model achieved an AP of 0.265 for MA detection, just with the unmodified
version of YOLO and RGB images. The best alternatives that perform well on the DDR
dataset are the two from [32], which achieved MA APs score of 0.105 and 0.111 with
YOLOv8 + SGD + tilling and YOLOv8 + Adam optimizer + tilling. The best model among
all the presented neural networks in Table 9 is the one from [48], which reached an AP of
0.813 in MA detection within the EyePacs image dataset.

5. Discussion

This work demonstrates that, even without coding expertise, optometrists, medical
professionals, and researchers can achieve significant results in DR lesion detection tasks.
By utilizing the training models available online as API services, private practices and
public hospital teams can create image datasets and establish a platform for objectively
evaluating medical images, particularly those from DR patients. YOLOv8 and v9, as
powerful tools, empower these professionals to enhance patient care and healthcare services,
including telemedicine and home-based examinations, while keeping costs low. This
presents an excellent opportunity for students and young eye care practitioners to bolster
their knowledge through education-based software created with low-cost API services,
thereby enhancing their role in the diagnosis process.

YOLOv8 and v9, as excellent online systems, not only offer an annotation platform for
creating desired datasets for different computer vision tasks, but also a series of working
computer vision models. These models inspire innovation and progress in the field of
computer-assisted diagnoses of DR, providing a platform for objectively evaluating medical
images and pushing the boundaries of what is possible in healthcare.

Our creation of a 100 RGB image dataset from the Messidor database, with OD, MA,
HEMO, and EX annotations, is a significant contribution to future research. While the
Messidor dataset has been widely used to facilitate studies on computer-assisted diagnoses
of DR, it is prone to overfitting when training with deep neural networks [32]. To ensure the
quality and reliability of our research and training, we must prioritize using standardized
datasets where precise descriptions of available annotations are well-defined. An example
of such a dataset is the DDR [31], which provides 757 annotated DR images for both image
classification, according to international DR classification standards, and lesions detection,
with four pixel-level labeled classes. This dataset has been used extensively in research
focused on computer-assisted lesion segmentation (see Table 9).

Using different datasets, our study compared results with other works on computer
vision models and DR lesion detection. We recognize the value of mAP in computer vision
research to address this issue. We plan to test the unmodified versions of YOLOv8 and
YOLOv9, as in the current work, to verify their applicability in clinical contexts and by non-
programming experts. Once we have gained this experience and clarified their strengths,
we will be able to engage a coding expert to adjust the hyperparameters of each model for
improved results, paving the way for future research directions.

Another limitation of this study is the image type used. We used RGB images and did
not apply image pre-processing, except for image tiling in data augmentation. However,
we are optimistic about the potential of image pre-processing, which has been adopted
successfully by [48,49,56]. This process, which starts with green channel image extraction
from the original RGB image, thus increasing the contrast of red lesions (they appear
as black spots) and then improving the image contrast through an adaptive histogram
equalization technique, holds promise for future research. Finally, it is possible to accurately
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separate the desired lesions from the background by applying the correct threshold and
morphological operations. This procedure can be adopted even for white lesion extraction,
such as exudates.

The proposed approach achieved remarkable results compared to other state-of-the-art
works, with similar purposes found in the literature, confirming that machine learning
techniques can successfully perform fundus lesion detection. However, this achievement
needs to solve previous challenging issues, such as detecting microlesions. MA detection
must still be perfected before implementation in actual practice with real patients. They are
tiny and can be too close to each other, leading to frequent missing. Of course, this scenario
is not acceptable. Future works should focus on new methods to properly separate MAs
from the retina’s background and each other. Upscaling the image size could be a possible
solution. However, this comes with a more significant computation load and the need for
higher-resolution devices, which are expensive and not very widespread. However, AI is
developing so fast that we will soon have a more powerful tool to detect even micro-objects
with the proper input information. This will be a game changer in computer-assisted
medical image classification, significantly improving patient care assistance and reducing
the need for highly specialized practitioners and expensive equipment.
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