

Supplementary Materials: E2BMO: Facilitating User Interaction with a BioMimetic Ontology via Semantic Translation and Interface Design

```
<!-- http://purl.obolibrary.org/obo/BMO_0009005 -->
<owl:Class>
              <owl:intersectionOf rdf:parseType="Collection">
                         </owl:Restriction>
                              <owl:Restriction>
                                   <awl:onProperty rdf:resource="http://purl.obolibrary.org/obo/parameter"/>
<awl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/BMO_0000025"/>
                              <owl:Restriction>
                                   <owl:onProperty rdf:resource="http://purl.obolibrary.org/obo/parameter"/>
<owl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/BM0_0000037322"/>
                              </owl:Restriction>
                         </owl:unionOf>
                    </owl:Class>
                    <owl:Class>
                        <owl:unionOf rdf:parseType="Collection">
<owl:Restriction>
                                   cowl:onProperty rdf:resource="http://purl.obolibrary.org/obo/parameter"/>
<owl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/BMO_0000027"/>
                              </owl:Restriction>
                                   <owl:onProperty rdf:resource="http://purl.obolibrary.org/obo/parameter"/>
<owl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/BMO_0000028"/>
                              </owl:Restriction>
                              <owl:Restriction>
                                   <owl:onProperty rdf:resource="http://purl.obolibrary.org/obo/parameter"/>
<owl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/BMO_0000029"/>
                              <owl:Restriction>
                                   <owl:onProperty rdf:resource="http://purl.obolibrary.org/obo/parameter"/>
<owl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/BMO_00000314"/>
                              <owl:Restriction>
                                   <owl:onProperty rdf:resource="http://purl.obolibrary.org/obo/parameter"/>
                                   <owl:someValuesFrom rdf:resource="http://purl.obolibrary.org/obo/BM0_0000037"/>
                              </owl:Restriction>
                         </owl:unionOf>
                    </owl:Class>
               </owl:intersectionOf>
          </owl:Class>
     </owl:equivalentClass>
    ~\frac{\chick_resource}{\chick_resource} \text{"http://purl.obolibrary.org/obo/BMO_0009000"/>
<rdfs:label>speed-accuracy trade-off</rdfs:label>
```

Figure S1. This is the XML-RDF format of the OWL exported file from Protégé. <owl:Class> and </owl:Class> show the start and end of a subject, in here 'speed-accuracy' class.

```
query_with_placeholder=""" PREFIX obo_term: <http://purl.obolibrary.org/obo/>
SELECT ?subclassPrinciples ?someValuesFrom
where{
?s rdfs:label '$ENTITY_CODE$' .
?s a owl:Class .
{?s rdfs:subClassOf _:b. _:b rdf:first ?restriction}
UNION { ?s rdfs:subClassOf/(rdf:rest+/rdf:first+)* ?restriction.}
?restriction rdf:type owl:Restriction.
?restriction owl:onProperty ?onProp.
FILTER(regex(str(?onProp), "use_the_principle", "i"))
?restriction owl:someValuesFrom ?someValuesFrom.
?someValuesFrom rdfs:label ?subclassPrinciples .
}
....
if query_with_placeholder != None:
    new query=query_with_placeholder.replace("$ENTITY_CODE$",newSearch)
    predicate_query = g.query(new_query)
```

Figure S2. Red section of the code is SPARQL query. This query looks for objects connected to a class/subject using their properties. 'query_with_placeholder' passes the query string to 'g.query' from 'rdflib' library. "\$ENTITY_CODE" is a placeholder for the name of class provided by the user or other queries.

toad vision::F_37 Signal-to-noise ratio::F_09 Resolution::Rod phototransduction determines the foraging pheromone::F_25 May have to be done quickly in an emergency::F_27 Find best cor ant-lion::F_09 Strike speed is relatively low::F_28 The strike can be more accurate::Modulati false alarms::F_25 Less time for foraging::F_28 Bees survive predators::Speed-accuracy trade post-error dynamics::F_09 Speed::F_29 Accuracy::Can post-error dynamics explain sequential r synaptic depression::F_37 Sensitivity::F_27 Reliability::Functional roles for synaptic-depr€ piano finger::F_29 Accuracy::F_09 Speed::Rate effects on timing, key velocity, and finger kir ant decisions::F_31 Loss of accuracy::F_09 more rapid decision::Consensus decision making i neural threshold::F_28 . . . you're more likely to make mistakes::F_09 If you try to do somethi gene network size::F_29 in a slowly-changing environment better adaptations will have the advar optimal sensory processing::F_09 Speed::F_28 Accuracy::The optimality of sensory processing

Figure S3. This is an example of contents in final text file for 'speed-accuracy trade-off', each variable is separated by '::' which helps when extracting data from the file. It starts by name of biological model, its TRIZ thesis and antithesis, abstract of the paper, followed by IPs and Sub IPs and any other information needed

```
function readTextFile(file)
     var rawFile = new XMLHttpRequest();
rawFile.open("GET", file, false);
rawFile.onreadystatechange = function ()
            if(rawFile.readyState === 4)
                  if(rawFile.status === 200 || rawFile.status == 0)
                         var allText = rawFile.responseText;
var newData = (allText.split("\n"));
                         dataTable = new google.visualization.DataTable();
                         // determine the number of rows and columns.
                         var numRows = newData.length-1;
                         var rowData = newData[0].split(",");
                        dataTable.addColumn('number', rowData[0]);
dataTable.addColumn('string', rowData[1]);
dataTable.addColumn('number', rowData[2]);
dataTable.addColumn('number', rowData[3]);
dataTable.addColumn('string', rowData[4]);
                             // now add the rows.
                            for (var i = 1; i < numRows-1; i++)
{</pre>
                                     var rowData = newData[i].split(",");
var thisdata = [parseInt(rowData[0]), rowData[1], parseInt(rowData[2]),parseInt(rowData[3]),rowData[4]]
dataTable.addRow(thisdata);
console.log(newData[i]);
                               3
                        var options = {
  colors: ['black', 'red', 'blue', 'green', 'grey', 'orange', 'purple'],
                           maxFontSize: 20,
maxFontSize: 20,
fontName: 'Times-Roman',
wordtree: {
  format: 'explicit',
   type: 'suffix'
                            }
                         var wordtree = new google.visualization.WordTree(document.getElementById('wordtree_explicit'));
                         wordtree.draw(dataTable, options);
```

Figure S4. This is a portion of JavaScript code in HTML where E2BMO graph is created, we are using google Word-Tree visualization to develop the hierarchical graph shown in Figure 7.