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Abstract: Recent developments in design and manufacturing have greatly expanded the design
space for functional part production by enabling control of structural details at small scales to
inform behavior at the whole-structure level. This can be achieved with cellular materials, such as
honeycombs, foams and lattices. Designing structures with cellular materials involves answering an
important question: What is the optimum unit cell for the application of interest? There is currently
no classification framework that describes the spectrum of cellular materials, and no methodology
to guide the designer in selecting among the infinite list of possibilities. In this paper, we first
review traditional engineering methods currently in use for selecting cellular materials in design.
We then develop a classification scheme for the different types of cellular materials, dividing them
into three levels of design decisions: tessellation, element type and connectivity. We demonstrate
how a biomimetic approach helps a designer make decisions at all three levels. The scope of this
paper is limited to the structural domain, but the methodology developed here can be extended to
the design of components in thermal, fluid, optical and other areas. A deeper purpose of this paper is
to demonstrate how traditional methods in design can be combined with a biomimetic approach.

Keywords: cellular materials; biomimicry; biomimetics; bio-inpsiration; design principles; honeycombs;
foams; lattices

1. Introduction

The material world can, from a design standpoint, be divided into form (the bounding shape of a
structure) and pattern (the constituents of this form) [1]. Cellular materials are essentially patterns
that may be best defined in contrast to their homogeneous counterparts in that they are heterogeneous
materials that have the following two key requirements:

• A Unit Cell: Most cellular materials are defined by a unit cell that is some combination of material
and space. At its limit, a homogeneous material may be said to be a cellular material with a fully
dense unit cell.

• Repetition: The unit cell is repeated in space to create the larger structure or surface—the resulting
pattern need not be regular and may include more than one type of unit cell.
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Cellular materials offer advantages that cannot be easily availed of from homogeneous structures,
such as the ability to locally tune properties and to add multi-functionality to component parts [2].
This has been exploited in a wide range of structural, thermal, fluid and biomedical applications,
listed in Figure 1, adapted from a design guide for metal foams [3].
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Figure 1. Applications for cellular structures that can leverage their special properties to enhance
functional performance (adapted from a design guide on metal foams [3]).

Recent developments in manufacturing, such as with Additive Manufacturing (AM) technologies,
and design software, have now made it significantly easier to design and manufacture geometries
that were hitherto cost prohibitive, or simply not feasible to fabricate. While the advantages of
designing with cellular materials are increasingly apparent, several challenges limit the widespread
implementation of additively manufactured cellular materials in functional parts. One of these
challenges is the lack of a methodology for designing structures with cellular materials to optimize
function, including approaches to assess which cellular pattern might work best for a specific
application, which is the focus of this review. We identify traditional engineering approaches and
propose combining them with biomimicry for identifying optimal strategies when designing with
cellular materials. The former approaches have been developed by researchers over the past century
and are well documented in textbooks and literature, which are briefly reviewed in the next section.

Over 3.95 billion years of evolution [4], organisms have developed a variety of cellular geometries
that conserve material usage and enhance performance under the conditions where life thrives. As early
as the 1st century BC, the Roman scholar Varro postulated on the cellular design of honeycomb and
its material-saving properties [5], and in 1665, using microscopy, Robert Hooke speculated correctly
that the behavior of cork could be attributed to its cellular structure [6]. Since this time, scientists
have investigated a wide variety of cellular patterns in nature and postulated about their functions [7],
summarized in Figure 2. Imaging technology has also greatly improved and now commonly includes
X-ray tomography methods [8]. The similarities between Figures 1 and 2 are strongly suggestive of the
fact that nature and engineers have both used cellular materials to attain similar objectives.
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Section 2 of this paper discusses traditional engineering approaches to cellular material selection.
In Section 3, we present a three-level classification scheme to aid the designer of cellular materials.
Section 4 describes how a biomimetic approach can be used to guide the designer in the selection of
options at all three levels of the classification scheme. Finally, in Section 5, we discuss how combining
engineering and biomimetic approaches can help a designer traverse the design space and select an
optimum cellular shape.

2. Engineering Approaches to Cellular Material Selection

Broadly speaking, there are three types of approaches used by engineers to select an appropriate
unit cell for a specific application. The first is analytical in nature, where first principles are invoked to
represent behavior in the form of mathematical models. The second approach is empirical in nature,
where engineers rely on experimental or computational data to develop predictive models or compare
one material against another. The third approach involves the use of computational tools where the
material design is an emergent property. In practice, a combination of these approaches may be most
useful, especially in more complex, multi-objective contexts.

Before examining these approaches in more detail, however, it is useful to ask: what is the
figure of merit that is being compared? For the three structural properties of interest in this paper
(stiffness, strength and toughness), what is the appropriate metric? The next section first examines the
different ways this metric can be estimated, and then discusses the analytical and empirical methods
that may be used to compare shapes with these metrics in mind.

2.1. Figures of Merit

To select a homogeneous material (one that is not cellular), one simply looks up a material property
chart such as the one shown in Figure 3, and selects, for example, a Titanium alloy over an Aluminum
one if higher stiffness is desired. However, this is not as straightforward when it comes to cellular
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materials, since the observed property is a combination of both composition (material) and design
(cellular structure). A chart such as the one in Figure 3 provides little granularity regarding the relative
contributions of each, limiting the designer’s ability to make an insightful selection. An additional
complication is that cellular materials can respond differently depending on the specific loading
conditions—a specific shape that has a compressive strength may not be optimum under bending,
for example.
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The Ashby plot in Figure 3 can be used for cellular materials with the use of the effective property,
which is estimated just as properties of homogeneous materials would, typically through experimental
studies [6]. To address integration of this cellular material into a more realistic loading environment,
materials indices introduced by Ashby [10] can be used. These indices are a function of the structural
geometry (such as tie, beam, column or panel), the objective of interest (weight, cost) and the constraints
prescribed (stiffness, strength, buckling load). Given these three pieces of information, a material index
can be specified that enables selection among a range of materials. For strength-limited designs for
example, with the objective of minimizing mass, the index becomes [10]:

σy/ρ for a tie (rod) structure (1)

(σy)0.5/ρ for a panel structure (2)

where σy is the yield strength, and ρ is the density of the material. The designer would seek materials
that maximize these indices—and select the highest one available (all other things being equal).
For cellular materials, these indices would be composed of effective properties but otherwise the
process is identical. Material indices, while useful in selection for a given material composition, do not
enable an isolation of geometry from composition. Another critique of these indices is that they often
lack physical insight and possess unfamiliar units that can be difficult to interpret, depending on the
specific index under consideration.
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Another dimensionless metric called the relative effective property is simply expressed as the
effective property of interest divided (normalized) by the same property but for the material that
constitutes the cellular structure. Therefore, to cite one example, instead of comparing just the effective
moduli E* of two cellular materials, this metric would compare their relative effective moduli:

Relative Effective Modulus = E*/Es (3)

where Es represents the effective modulus of the solid material from which the cellular material is
composed. Normalizing the property being maximized (or minimized) by its equivalent bulk material
property isolates contributions of composition. A disadvantage of using the relative effective property
is that it does not address the material utilization (density) aspects in the figure of merit itself. For this
purpose, a metric that includes the benefits of normalization but also combines it with a consideration
of relative density, is needed.

Berger et al. [11] introduced a measure of geometric efficiency of the cellular material design,
which is independent of the composition of the material used to create it. For effective modulus of a
cellular material, for example [11]:

Geometric E f f iciency Index =
E∗/Es

ρ∗/ρs
(4)

where E* and ρ* represent the effective modulus and density of the cellular material, while Es

and ρs represent their bulk material counterparts. The power of such a metric is that it allows
a designer to answer a question such as what is the stiffest isotropic cellular material design.
Traditionally, in material selection handbooks, this answer can be obtained by a study of plots of
modulus vs density, where material indices are prescribed depending on the objective and constraint
of interest. However, as mentioned previously, this approach does not isolate the contributions of
material from geometry. Berger et al. [11] examined different metamaterials with the aim of identifying
ones near the theoretical limit for elastic stiffness.

In summary, if composition is fixed and loading conditions are well characterized by standard
testing procedures, the effective property (e.g., E*) may be adequate to compare cellular material
designs and select an appropriate cellular geometry. If composition is also allowed to vary, the
property of interest needs to be normalized with its bulk material counterpart (i.e., E*/Es). If the
objective with cellular material selection is to achieve the maximum performance with the lowest mass,
cellular materials should be compared using the geometric efficiency index.

2.2. Maxwell’s Stability Criterion

The 1800s were a period of expanding construction, and one of the concerns was developing
theories for how to design structures. Maxwell pioneered the field of the mathematical theory of
structural rigidity and 1864 published a paper developing a simple equation that discusses stability in
the context of rigid truss structures [12]—conveniently, this is also of relevance to cellular materials
when discussing lattice structures. The results developed by Maxwell have come to be known as
Maxwell’s stability criterion, and it involves the computation of a metric M for a lattice-like structure
with b struts and j joints as follows [12]:

In 2D structures: M = b − 2j + 3 and,
In 3D structures: M = b − 3j + 6.

(5)

Per Maxwell’s criterion, and assuming the joints are locked, the following three scenarios are
possible, which are graphically shown for a 2D structure in Figure 4:

• If M < 0, the structure is under-constrained
• If M = 0, the structure is a rigid framework
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• If M > 0, the structure is over-constrained
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The rigidity of the frame structure has a direct relationship to its behavior in a lattice.
This connection was made in the context of foam topology and demonstrated for a range of different
shapes specifically in the context of determining if a structure was stretch- or bending-dominated [13].
As shown in Figure 4, under-constrained structures are bending dominated while rigid structures are
stretch dominated. What this means from a design standpoint is that if stiff structures are desired,
lattice structures that have M = 0 are ideal for the task. If compliant structures are sought, structures
with M < 0 are more appropriate. To quote the cited paper, “the modulus and initial yield strength of
a stretching-dominated cellular solid are much greater than those of a bending-dominated cellular
material of the same relative density.” [13].

The main advantage of using Maxwell’s stability criterion in the context of cellular materials
is the significant insight it provides given its relative simplicity. However, it is also very limited
to beam-based structures, and only gives information into the expected nature of deformation.
This deformation mode is also limited to the very specific direction of uniaxial, in-plane loading.
Maxwell’s stability criterion also does not provide insight into the role of the base material and its
property (it assumes rigid, infinitely stiff rods), or how the dimensions of these rods influence behavior.
Nonetheless, it allows us to quickly categorize lattice structures into stretch- and bending-dominated
structures for such load cases, which is a crucial design consideration for structural applications.

2.3. Relative Density Scaling Laws

Relative density is one of the most important features of a cellular material and has been a
critical figure-of-merit in the use of foams. It can be used in conjunction with property equations to
make design decisions when density is of importance—in buoyancy or light-weighting applications,
for example. Relative density is expressed as ρ*/ρs, where ρ* is the density of the cellular material,
and ρs the density of the material of which the cellular structures are made [6]. Relative density can be
calculated from the geometry of the shape and for beam-based structures is typically some function of
the ratio of the thickness of the member (edge or wall) over its length (t/l). For honeycombs and foams,
for example, these relationships typically take the forms below, where C1, C2 and C3 are constants [6]:

Honeycomb :
ρ∗

ρs
= C1

t
l

(6)

Open Cell Foam :
ρ∗

ρs
= C2

(
t
l

)2
(7)
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Closed Cell Foam :
ρ∗

ρs
= C3

(
t
l

)3
(8)

A table of such relationships for different shapes can be found in [6]. For more complex shapes,
relative density can be computed from an output of the design file used to create it, and it can
also be measured experimentally. A designer is typically concerned with selecting a certain shape,
not in knowing its relative density per se. This is where relationships between a certain property
and the relative density are useful—these relationships are also commonly termed “Scaling Laws”.
Scaling laws are most well developed for making predictions on mechanical response. For effective
modulus, for example, the relationship typically takes the following form, where E* and Es are effective
modulus of the cellular material and of the bulk solid, respectively [6]:

E∗ = C Es

(
ρ∗

ρs

)n
(9)

Table 1 lists the relative densities and relative effective property equations based thereon for
different cellular materials and can be used as the basis for design selection when relative density is
important to the design. For example, for the same relative density, it is clear that an octet is a third as
stiff under compression as a triangular honeycomb loaded out-of-plane.

Table 1. Material property scaling for some cellular materials, from [14].

Relative
Density

ρ*/ρs

Young’s
Modulus

E*/Es

Compressive
Strength

σ*/σs

Fracture
Toughness
KIc/(σs

√
l)

Triangular
honeycomb—out-of-plane

2√
3

t
l

1
3

ρ∗

ρs
1
3

ρ∗

ρs
∼ 1

2
ρ∗

ρs

Octet truss lattice 6
√

2
( t

l
)2 1

9
ρ∗

ρs
1
3

ρ∗

ρs
0.32 ρ∗

ρs

In principle, scaling laws can be developed for any property where physical principles suggest a
relationship between that property and the relative density of the cellular material, by manufacturing
and testing materials at a range of relative density values and then fitting an appropriate relationship
to the observed datasets. This method, while empirical and likely geometry dependent, can prove to
be a useful design protocol in the absence of analytically derived relationships.

It is also important to recognize that scaling laws ignore geometric detail—thus, whether
the relative density is obtained using variation of parameters (changing thickness of walls and
struts, for example) or through changing cell sizes as shown in Figure 5, or a combination of both
strategies—these are all equivalent for the purposes of property estimation. For the effective properties
discussed here, these may be reasonable strategies. For studying the failure of cellular materials,
they are likely to be inadequate.
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Figure 5. Two different lattice designs with identical relative density: (a) the lattice has a small cell size
with a thin strut diameter, (b) the lattice has a larger cell size with a thicker diameter.

2.4. Empirical Methods

The most commonly used method of selecting a particular cell shape is to test them empirically,
either experimentally or computationally [15–19]. These datasets can also be used as the basis to
fit the aforementioned scaling laws to experimental data [20] and derive the parameters that can
then be used in design. Computational methods can also be used to study the relative merits of
cellular materials in a specific loading environment. This can be demonstrated for the case of a beam
bending problem. As shown in Figure 6a, this beam was simply supported on either end and had
a distributed edge load applied across the top surface. The beam was then populated with several
different cellular material designs, and displacement calculated, one example of which is shown in
Figure 6b. This displacement was used to solve for an effective flexural rigidity, (EI)*, where I is the
area moment of inertia. Following Berger et al.’s notion of geometric efficiency [11], this quantity
was normalized with respect to the flexural rigidity EsI of a solid beam constructed with material Es.
While the specific conclusions and differences are not relevant for the present discussion, Figure 6c
shows how different cellular materials can be compared for a specific loading condition and one
selected from a range of different options. In this specific study, for example, one may conclude that
the “tet oct edge” shape is the cellular material with the highest geometric efficiency with regard to
flexural rigidity, among the shapes studied.
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2.5. Simulation-Driven Cellular Material Design

While analytical and empirical methods help narrow down the field of cellular material selection,
there may be instances, particularly with regard to multi-functional design, where the optimum cellular
material is not one that is readily identifiable among available choices. In fact, there is work to suggest
that lattice structures may not be optimal for stiffness objectives at any length scale, including at the
cellular material level [22], and therefore it is only in multi-objective scenarios that cellular materials
may be worth the additional design cost. In such circumstances, a computational method based on
optimizing the design of the unit cell itself may prove to be useful since it may be challenging to
do so analytically, and cost-prohibitive to evaluate empirically. One of these approaches is to use a
multi-scale optimization approach as described by Osanov and Guest [23] and Cadman et al. [24].
In this approach, the unit cell domain is discretized into elements which are then optimized using
topology optimization methods [25]. Once a unit cell is designed, effective properties are determined.
Test fields are applied to the unit cell architecture along with periodic boundary conditions to compute
a response and estimate properties, typically using Finite Element Analysis (FEA), since analytical
models only exist for the simplest of geometries. In the final step, inverse homogenization is used
to upscale the cellular geometry to the level of the larger structure [26]. These ideas have been
extended to multi-material cellular optimization as well [27]. Recent work has looked at implementing
some of these ideas, inverse homogenization in particular, towards integration into commercial FEA
code [28,29]. Finally, cellular automata methods have also been proposed to design materials [30] and
microstructures [31], and machine learning methods are also beginning to be applied to materials
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design [32,33]. These latter methods do not require a repeated unit cell and in that sense are not within
scope, but may be said to represent a specific instance of cellular material design where each cell is
allowed to have an independently varying form.

3. A New Classification of Cellular Materials

A designer seeking to leverage cellular materials can select from, quite literally, an infinitely large
list of unit cells. One way to make the selection process tractable is to classify cellular materials based
on shape and then associate these classes of shapes with functional benefit. Several approaches have
been developed, either explicitly or implicitly, to classify cellular materials. The most common approach
follows the work done by Gibson and Ashby [6], who proposed classifying cellular materials as either
honeycombs or foams. Honeycombs are defined as prismatic cellular structures, where a two-dimensional
template is extruded in the third direction, and the name owes its origins to the nest constructed by the
honeybee, shown in Figure 7 (left). Honeycombs, in engineering parlance, need not always be hexagonal
and can assume square, triangular or irregular forms as well [6]. In contrast to a honeycomb, a foam
is a three-dimensional cellular material that is typically the result of a foaming process and often has a
stochastic form as a result—an example of this structure is shown in Figure 7 (right).
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Honeycombs [34] and foams [35] have dominated the landscape of engineering cellular materials
over the past two decades with little need for a more formal nomenclature since these were the two
classes of cellular materials that were readily manufacturable with existing technologies and therefore
most in use. However, as a comprehensive classification scheme, this simplistic separation of cellular
materials falls short of describing all the possibilities in the design space. Towards this end, two areas
of study that deal with unit cell shapes are mathematics and crystallography. Within mathematics,
the field of tessellation deals with the partitioning of space into smaller units or cells [36–38].
Crystallography, the science of crystal structure, has also developed nomenclature schemes that are
amenable to the study of ordered cellular materials. Examples of these include the BCC (Body Centered
Cubic) and FCC (Face Centered Cubic) crystal structures. This approach has been used as the basis for a
nomenclature scheme proposed by Zok et al. [39], which is, however, limited to truss-based structures.
Finally, there is at least one effort in the literature to develop design guidance for the selection of
prismatic cellular materials, but this does not include three-dimensional cellular materials [40]. In this
section, ideas from these sources are synthesized to develop a comprehensive classification scheme.
This is also the scheme that the subsequent discussion of natural cellular materials is based on.

At the outset, it helps to think of cellular materials at the following three levels:

1. Tessellation: The compartmentalization of space into independent volumes of a certain shape
2. Elements: The use of beams and/or shells and faces within the tessellated space
3. Connectivity: The actual arrangement of the elements within the tessellated space
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Within each of these levels, a designer can choose among a range of options. These options are
shown as a classification scheme in Figure 8. A designer thus must define a tessellation, specify what
elements lie within the tessellation, and finally describe how these elements are connected to each other.
In the following discussion, each of these design choices, represented as dots in Figure 8, are examined.
In subsequent sections these choices are discussed in more detail.
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3.1. Tessellation

Designing structures with cellular materials ultimately involves filling space. From a mathematical
perspective, this is a question that falls within the purview of geometry, and more specifically in
the domain of tiling, or tessellation. Broadly speaking, space can either be tessellated in periodic,
non-stochastic shapes (where the shape of each cell and its connectivity to others is prescribed,
such as the regular hexagon honeycomb pattern), or stochastic shapes (where the shape emerges as a
result of an underlying stochastic function, such as Voronoi patterns). Each of these two approaches
are discussed in turn, first for the simpler case of 2-dimensional (2D) tessellation, and then for
3-dimensions (3D).

3.1.1. Periodic Tessellation

Attempts have been made since the time of the ancient Greeks to develop a classification
scheme for tessellating space with pre-defined shapes, with approaches of the most rigor found
in mathematics [36,41,42]. From a designer’s perspective, periodic tessellation is about the selection
of one or more polygonal (in 2D) or polyhedral (in 3D) shapes and the relationships between their
connections. Thus, there are two levels of descriptors: the first is the type, and the second is the
relationship. Repeating unit cell entities may be constituted of one, two, three, four or more different
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polygons/polyhedra, and accordingly are termed Unary, Binary, Tertiary and Quaternary, respectively.
The relationship defines how these shapes are connected to each other. Examples of different types
and relationships are shown in Figure 9 for a few different tessellation schemes.
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following [36]).

The most commonly studied (and tractable) tessellations are Edge-to-Edge, which is a class of
tessellations that ensures that when two polygons intersect at more than one point, they always
share complete edges. This is true of the first three tessellations in Figure 9, but not of the fourth,
which is a Non-Edge-to-Edge configuration, since at least one shape shares a partial edge with
another. Within Edge-to-Edge tessellations, the polygons can be regular (all identical—of which
there are only three permissible shapes: hexagon, square and triangle) or semi-regular (when there
is more than one polygon). Focusing on the symmetry around vertices allows the introduction of a
k-uniform classification, where k represents broadly the different possible surroundings around a
vertex. Finally, an overlapping tessellation is a relationship where unit cells may lie on top of each
other with partial overlaps, much in the manner of rooftop tiling.

3.1.2. Stochastic Tessellation

Stochastic tessellation does not rely on the pre-supposition of one or more polygons (or polyhedral)
that form an aggregate structure. Instead, stochastic tessellations emerge from an underlying
function that has a random distribution specified within it. The most common way of representing
stochastic tiling is using the Voronoi diagram, attributed to Ukrainian mathematician Georgy Voronoi,
who defined and generalized the n-dimensional case in 1908 [37]. Other methods include using
the Poisson line method and crystal growth models [37,38]. In its simplest manifestation, a Voronoi
diagram emerges from a distribution of a finite number of randomly distributed points in space,
around which a cell is drawn such that every point is equidistant from the lines formed at the
intersections of the cells, as shown in Figure 10.
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3.1.3. Hierarchical Tessellation

A form of tessellation common in nature, but not often seen in engineering applications, emerges
around a hierarchy, which can take several forms. One such form is branching, as in the case of the
dragonfly wing in Figure 11a. It has been shown that a collection of so-called “primary” veins are such
dominant features that they may be used to identify species [43]. Cells in this context may be seen as
emerging from an overriding branching pattern.
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Figure 11. Branching patterns in dragonfly (a) and the Amazon water lily (b) demonstrate how
tessellation can be defined in the context of branches (Attr: lily by Laitr Keiows, Wikimedia Commons).

The examples discussed so far are two-dimensional (2D), or prismatic cellular materials—what
Gibson and Ashby term honeycombs [6]. These prismatic cellular materials have strong anisotropy
in the out-of-plane direction, i.e., the behavior of these materials is different depending on which
direction the property of interest is measured in. Thus, from an application standpoint, the 2D nature
of prismatic cellular materials means that their use is most often restricted to conditions where the
directionality of the environmental loads are predictable and the design can be oriented in a certain
way to extract maximum benefit. Examples of this include crash panels in the automotive industry,
sandwich panels in construction, and automotive radiator grilles. In all of these cases, the direction
of the environmental stimulus is unidirectional and predictable—whether it be mechanical load or
fluid flow. However, there are several applications where this is not the case, such as foam packaging
for energy absorption, commonly used in the shipping industry, and this is a key reason for needing
three-dimensional (3D) cellular materials.

3.1.4. Extension to 3D

For 3D cellular materials, Pearce [44] identifies 23 different space-filling polyhedra. Three of
these are prismatic: the cube, triangular prism and hexagonal prism. The remaining 20 space-filling
polyhedra include non-prismatic but commonly known forms, such as the tetrahedron. As before,
a cellular material tessellation could be unary, binary, ternary or quaternary. Pearce suggests that
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higher levels of tessellation do not occur in nature. Table 2 lists some space-filling tessellations that
have interesting properties and may form the basis of tessellation for cellular materials for designers.
For a more complete study, the reader is referred to the titles by Pearce [44,45].

Table 2. Examples of 3D space-filling with non-prismatic polyhedra.

Packing Arrangement Constituents Properties
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3.2. Elements

Tessellation is merely the first in a 3-step process to defining a 3D unit cell. The next step involves
deciding what physical elements will occupy that space. These can be broken down into two types of
elements: (1) beam elements, and (2) surface elements. Surface elements in turn can apply externally
to the skin of a structure, or may be distributed internally within the structure itself.

3.2.1. Beam Elements

Cellular materials composed of beams are among the most popular choices in design and
are commonly called lattice structures, or simply, lattices [46–49]. In a lattice, the length of the
beam is governed by the placement of vertices in space, which is discussed in the next section.
However, the beam itself has a cross-section that can take a range of shapes, including a variable
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section from one end to another. Figure 12 shows three possible cross-sections one can assign to
a beam. Depending on the scales involved, such nuances may not be resolvable, but if they are,
they become a design variable that can influence behavior as well as manufacturability. An example of
a design variable related to beam elements is the teardrop shape in Figure 12c, which is designed to
enable overhanging lattice beams to be self-supporting for processes that need support in Additive
Manufacturing processes such as laser powder bed fusion [50]. Others have also looked at introducing
waviness into these lattice beams to study their effects on mechanical performance [51].
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Figure 12. Different cross-sections for the beams that constitute the lattice: (a) circular section, (b) square
section and (c) teardrop shape to aid in self-supporting overhangs (screenshots from nTopology’s
Element software) [21].

3.2.2. Surface Elements

An alternative to beams is the use of surfaces to construct the unit cell. Here there are two further
possibilities—the use of flat surfaces or curved surfaces. An example of a flat surface cellular material
and a basic minimal surface are shown in Figure 13a,b, respectively.
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Figure 13. (a) Flat surface-based cellular material, screenshot from nTopology’s Element [21],
and (b) a saddle shaped surface showing minimal surface curvature planes and how a convex and concave
curvature result in a mean curvature of zero at every point (Attr: Eric Gaba, Wikimedia Commons).

A particular manifestation of curved surfaces is the use of minimal surfaces, which have an
average curvature of zero at every point on the surface. Figure 13b shows two planes of principal
curvature, that intersect the surface in question in two curves whose curvatures are equal and opposite,
which is true at every point of minimal surfaces. Minimal surfaces are energetically favorable ways of
weaving surfaces through space and mathematicians have developed several of these surfaces, some of
which are discussed in a review article by Han et al. [52].

3.3. Connectivity

Once the type of tessellation is chosen and the elements are specified, the last step is to integrate
the two. This is done by specifying a series of nodal co-ordinates and establishing connectivity between
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them. Alternatively, the designer can deploy an equation that assigns these to the unit cell, a method
commonly used for surface-based cellular materials. For beam-based cellular materials, examples
are shown in Figure 14 for cubic tessellations using beam elements, but with different nodes and
connectivity. Connectivity can be between vertices at the corners of the tessellation, or even connect
vertices along edges or faces. This form of connectivity can also be used to define surfaces between
edges, one example of which is shown in Figure 13a.
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4. A Biomimetic Approach to Cellular Material Selection 

Each node in the classification scheme in Figure 8 represents a decision a designer needs to make. 
At the highest level, these decisions have to deal with selecting a strategy for tessellation, deciding 
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Figure 14. For a given tessellation and element, there are several ways to establish connectivity, as
shown here for a cubic, beam element unit cell (screenshots from nTopology Element software [21]).

With regard to the previously discussed minimal surfaces, the surfaces of interest from a
space-filling perspective are called Triply Periodic Minimal Surfaces (TPMS). First dating back to
1865, there are now several types of TPMS structures [53], a selection of which are shown in Figure 15.
TPMS structures are developed from governing equations that can be implemented in CAD software,
but interestingly, they also occur in nature and have been found both in living creatures (sea urchins,
the scales on butterfly wings and beetle exoskeletons), as well as in zeolite and some liquid crystals [52].
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4. A Biomimetic Approach to Cellular Material Selection

Each node in the classification scheme in Figure 8 represents a decision a designer needs to
make. At the highest level, these decisions have to deal with selecting a strategy for tessellation,
deciding what type of elements to use, and finally, deciding how to connect these elements within
the tessellated unit cell. This section proposes that a biomimetic approach is ideal to help select the
best tessellation strategy, as well as inform the selection of beam or surface elements. Traditional
engineering methods can then be leveraged to define a connectivity for the identified elements using
analytical, computational and/or experimental techniques. Most of the applied work in cellular
material design tends to focus on selection of a connectivity scheme but forgoes addressing the first
two aspects of the design classification in sufficient detail, based on generalizations such as bending-or
stretch-dominated structures.

4.1. Tessellation

The first decision a designer encounters along the classification scheme in Figure 8 is whether to
tessellate space using a periodic, stochastic or hierarchical scheme. All three strategies are observed
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in nature, and some examples of each are compiled in Table 3, along with the functions typically
attributed to these structures in the literature.

4.1.1. Periodic Tessellation

Periodicity in natural cellular materials is most commonly observed in the nests of the social
insects, such as the honeybee and the paper wasp [54]. This is not surprising, since the cells in
these nests have a clear storage function, where each cell stores materials of a similar total volume;
in the case of the honeybee, this is the storage of brood, pollen or nectar. The design of these nests
is optimized to use material in efficient ways by forming hexagonal cells that have been shown
mathematically to be the most efficient way of tessellating 2D space into partitions of equal area [55].
Periodic tessellations are also found in natural structures that do not have a storage function. Several
radiolarian demonstrate periodic structures [56], as do the tesserae in rays [57] and scales on a wide
range of fish and reptiles. For two-dimensional or planar tessellation in protective structures, a key
function is to break up a continuous surface into inter-locking tiles that are less prone to fracture,
while also providing flexibility, often by the use of a secondary material that is softer than the primary
structural component, as discussed by Fratzl et al. [58].

In addition to serving a protective function against the external environment, these examples are
all constructed around axes or planes of symmetry at the level of the organism. The radiolarian shell
in Table 3, for example, has 3D radial symmetry. Scales on snakes and fish are constructed around a
plane of bilateral symmetry. Stochastic patterns that have a mechanical function and are distributed
about an axis or plane of symmetry could potentially violate this symmetry and its associated benefits,
in particular for motor function [59].

In Figure 8, periodic tessellation is divided into two further decision points: one relates to the
type of periodicity and the other the relationship between the periodic elements. A biological structure
that embodies both these aspects is the pattern of scales on a snake. The scales on a snake have several
functions: they provide a protective cover, minimize friction [60], provide flexibility and minimize
moisture loss. However, the size of these scales varies—in particular, the ventral (underlying) region
of the snake has long bands of scales as shown in Figure 16a, whereas the dorsal (top) side and the
head and tail regions have smaller scales, as shown in Figure 16b.

The majority of periodic cellular materials may thus have one or more of the following conditions
underlying their periodicity: (i) a storage function; (ii) use of a stiff-soft material hierarchy for fracture
resilience; and/or (iii) a need to form around axes or planes of symmetry at the level of the organism.
This raises the question: why bother with non-periodic tessellations at all?
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of smaller scale sizes, probably adapted for flexibility to enable the jaw to open wide.
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Table 3. Natural examples of periodic, stochastic and branching tessellation.

Periodic Stochastic Hierarchical

Honeybee Nest Trabecular Bone Dragonfly Wing Venation
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Table 3. Cont.

Periodic Stochastic Hierarchical

Honeybee Nest Trabecular Bone Dragonfly Wing Venation

Biological Protective case, light-weight to occupy surface
waters [56] Storage of sugars, photosynthesis [7] Carry nutrients and waste products

Elasmobranchii endoskeleton tesserae Veiled Lady indusium Phallus indusiatus Orange fruit
Hesperidium
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4.1.2. Stochastic Tessellation

Some structural cellular materials in nature do not follow the periodic regularity of structures
such as the honeybee nest. This lack of periodicity is what is termed here as stochastic, whether these
emerge from an underlying mathematical function (such as those resulting in the Voronoi pattern),
or not. The breaking of symmetry in biology has received increasing interest of late, summarized in
a review article by Li and Bowerman [68], who recognize that symmetry breaking occurs at various
scales from molecular assemblies to embryonic body axes, and that it is intimately linked to functional
diversification. This is well understood for molecular scales and for some examples of interest at
larger scales, such as trabecular bone, shown in Table 3. Trabecular bone does indeed have to perform
multiple functions: storage of bone marrow, nerves and blood vessels, as well as possess toughness
under compressive and impact load [7]. Bone tissue also undergoes active strain-adaptive remodeling
to allocate material where it is needed and remove it from where it is not [64]. This requirement to
adapt to local strain inherently breaks symmetry since the interactions between the environment and
the body do not result in a symmetric state of stress. Furthermore, this state of stress changes as the
individual ages or as the load-bearing environment changes. Additionally, trabecular bone does not
have a local symmetry requirement since an individual bone is not inherently symmetric, nor is there a
requirement of equal storage volume within each cellular region.

Another example of stochastic patterns can be found in the ground tissue system in plants,
which consists of parenchyma cells that store sugars and typically make up the bulk of non-woody
plants. These cells can have very irregular shapes, as shown in Table 3, that while approaching
a tetrakeidecahedron shape, have varying shapes and degrees of compaction. A final example of
stochastic cellular materials is the pattern of the indusium of the Veiled Lady fungus, shown in Table 3.
The functional benefits for this structure’s stochastic nature is not clear, but since it serves as a network
that enables several insect species to reach the fungal cap, it may be preferable to have a non-periodic
pattern that can accommodate a wide range of insect sizes and mobility mechanisms.

Natural cellular materials, it may be speculated, tend to be stochastic when there is a need for
one or more of the following conditions: (i) a high degree of multi-functionality; (ii) a need for the
structure to be adaptive to changing loading conditions in the environment; and, (iii) a high degree of
uncertainty in the magnitude and direction of these loads. This resonates well with what engineers
have been practicing for decades with regard to energy-absorbing foams used in packaging, where the
nature of the applied loads is uncertain.

While irregular cellular patterns suggest a lack of underlying relationships, empirical studies
of natural stochastic cellular materials have revealed at least two relationships between cells in a
certain neighborhood, which can then be generalized across a large area of interest. These two
relationships are discussed briefly below and may form the basis of a stochastic design methodology
for cellular materials.

• The Aboav-Weaire law: The Aboav-Weaire law relates the number of edges in a particular cell
to the number of edges in the cells in its neighborhood. A general observation of stochastic
cellular materials in nature is that a cell with more sides than average has neighbors which, when
considered together, have fewer sides than the average number. For 2-dimensional honeycombs,
this relationship was first given empirically by Aboav in 1970 (with a slightly different formulation)
and derived formally by Weaire in 1974 [6] is:

m = 5 +
6
n

(10)

where n is the number of edges of the candidate cell and m is the average number of edges of
its n neighbors (this is specific to edge-to-edge cells only). A fuller discussion of this law and its
historical journey can be found in a review paper by Chiiu [69].
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• The Lewis rule: F. T. Lewis studied cells in nature as a mathematical problem through the
mid-1900s, publishing several papers in this field. The “Lewis rule” relates area of a cell to its
number of edges [6]:

A(n)
A(n)

=
n− n0

n− n0
(11)

where A(n) is the area of a cell with n sides, A(n) is that of the cell with average number of sides
n, and n0 is a constant.

4.1.3. Hierarchical Tessellation

Cellular materials may also emerge around a hierarchy, such as a network of branches. This is
especially true in the context of multi-functional design. One example of this is the venation patterns
of the wing of the dragonfly. Veins in a dragonfly perform a circulatory function consistent with most
branching patterns in nature, but also play a role in stiffening the vein [62,70,71] and in increasing its
resilience to damage [63]. A similar stiffening effect has been attributed to the veins of the Amazon
water lily [66]. The key design relationships of branching involve the level of hierarchy, associated
branch thickness and branching angles. For the latter two, the following empirical relationships have
been proposed:

• Murray’s law: This law, first proposed by Murray in 1926 [72], states that when a parent blood
vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to
the sum of the cubes of the radii of daughter blood vessels. This law has been generalized to
fluidic networks of arbitrary shape and scale where for large scale channels, the ratio of the
cross-sectional areas of the daughter-to-parent channels is equal to N−2/3 where N is the number
of daughter channels (of constant cross-sectional shape) [73].

• Determination of Vertex angles: Thomson [74] studied the angles at the intersection of different
veins and postulated that the angle was related to the “tensions” experienced in the veins.
As shown in Figure 17, for a dragonfly wing, right angles (90◦) are formed at the intersection of a
thick, primary rib (presumably bearing more load) and a thin vein (with less load). Between these
primary branches, the thin veins tend to meet at 120◦ angles. Recent work on dragonfly venation
has added more weight to this hypothesis, with data showing a similar relationship between the
interior angles in a cell and the number of primary veins it is bounded by [43].
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Figure 17. Thompson [75] postulated that when the “tensions” in veins had large differences (T > t),
the veins would meet at right angles, approaching 120◦ as the tensions in coincident veins equaled
each other.

Not all hierarchical patterns have to physically manifest as branches—some may be the result of
segmentation, such as the packing of cells in a citrus fruit as shown in Table 3, where an overlying
high-level distribution into sections then influences the distribution of cells within each section.
Another example of hierarchy is visible in the structure of the Venus flower basket, a sea sponge
that has a silica lattice structure with multiple levels of cellularity, combining nested and overlaid
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strategies [75] for increased resilience to fracture. It is probable that most, if not all hierarchical
tessellation emerges from the need for the cellular structure to address more than one function.

4.2. Elements

The majority of cellular materials that have found engineering application have been honeycombs
and stochastic closed-cell foams, both shown previously in Figure 7. More recently, the growth in
Additive Manufacturing and design capabilities has greatly increased interest in lattice materials.
All three of these geometries employ one, or a combination of, two types of elemental features: beams
or surfaces. Honeycombs consist of a pattern extruded in the out-of-plane direction, and foams
resemble closely packed soap bubbles, and both are surface-based cellular structures. On the other
hand, lattices are beam-based cellular structures.

Table 4 shows examples representing each of the three options discussed above. These and
other natural cellular material examples suggest that nature tends to use surface elements either
when resorting to some storage function (sugars for plants, larvae for nests) or for providing physical
protection and acting as an external skin cover. When there is no storage or external protection
requirement, most natural cellular materials are constructed from beams, as shown in the lattice
structure of the Venus flower basket and the radiolarian, although more data is needed to confirm the
validity of this observation.

Table 4. Examples of beam and surface elements in nature.
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4.3. Connectivity

Unlike the previous two levels of the classification (tessellation and elements), there are infinitely
many choices when it comes to the decision of connectivity. To narrow down the window of selection,
the specific function(s) of interest needs to be articulated in order to identify natural models that
perform that function [76].
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4.3.1. Functional Specification

A common technique is to pose this as a question: “How would nature design for X function?” This
paper is limited in scope to the design of load-bearing structures, where the following mechanical
properties are of interest:

• Stiffness/rigidity (the ability to resist deformation),
• Strength (the ability to resist collapse), and
• Toughness (the ability to resist fracture)

These properties are defined in the context of the conditions experienced by the structure.
With regard to the nature of loads, these may be classified as gravity loading, compression, tension,
torsion, bending and shear, or some combination of these. Furthermore, these loads may be applied
in one or many directions (such as uniaxial, biaxial and hydrostatic), and with different durations
(such as at varying strain rates, fatigue and vibration). Thus, the loading condition may be adequately
described by specifying three pieces of information (see Figure 18): loading type, loading direction,
and period of application [9].
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4.3.2. Natural Models

This approach, while simplifying from an application standpoint, increases the likelihood of
finding studies in the literature of natural models that thrive in these conditions, whether through a
formal review of the literature, or using online resources like AskNature.org [77]. Table 5 shows how,
for eight identified natural cellular materials with an evident load bearing functional requirement,
the loading conditions can be identified within the framework in Figure 18, and the relevant design
choices described in Figure 8 may be extracted for each cellular material. Such a methodology is in
principle extendable to a range of structural cellular materials and also to non-structural functions
such as storage, thermal regulation, and acoustic modulation.
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Table 5. Biomimetic cellular materials design classification levels by loading conditions.

Loading Conditions
Natural Model

Cellular Material Design

Type Direction Duration Tessellation Elements Connectivity Schematic Diagram

Gravity
(Self-Weight) Uniaxial Creep

Honeybee nest
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Table 5. Cont.

Loading Conditions
Natural Model
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Type Direction Duration Tessellation Elements Connectivity Schematic Diagram

Compression Pressure,
Variable Impact
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Connectivity is the last decision in the process of cellular material selection, and it specifies the
actual shape of the unit cell. In that sense, this step provides the complete solution to the question
of selection of a specific shape. The reason this step is not sufficient is that the previous decisions
(tessellation and elements) can often provide functional insight that this final level of connectivity
may not. Consider the hexagonal honeycomb of the honeybee, for example: a focus on wall-based
connectivity along the edges of a hexagon for a self-supporting structure under gravity loads is not a
strong enough reason to use this pattern in every application. One may ask as to why the tessellation
is hexagonal (as opposed to stochastic or hierarchical), or why the structure is composed of surfaces
(walls) instead of beams, and get to the underlying biological and structural benefits for these forms.
For example, the hexagon is the best way of sub-dividing two-dimensional space into regions of equal
area, something that has been mathematically proven [55]. However, the need for equal area (in reality,
honeybee nests do not strictly have cells of equal area [61], but one may make this assumption for the
present discussion) may not be relevant—in the bee’s honeycomb, these cells serve a storage function
that may not be of interest in the engineering application. For the same reason, honeybee nests need
walls instead of just lattice-like struts. This is the reason a full comprehension of the design space must
include an examination of cellular materials at all three levels: tessellation, elements and connectivity,
and not just the last level alone.

5. Discussion

In this paper, we proposed a classification scheme for cellular materials from a designer’s perspective.
This classification scheme suggests three levels of decisions: tessellation, elements and connectivity, which
when considered together, are sufficient to describe most unit cell designs. Engineering approaches that
enable selection of cellular materials include analytical methods such as Maxwell’s stability criterion
and relative density-based scaling laws, as well as empirical methods such as experimentation and
simulation. Analytical tools, while powerful in the insight they provide, are often restricted to simple
shapes. Empirical methods can address complexity, but come with significant cost and time penalties, and
do not provide much direct insight into the circumstances that make one cellular material (e.g., stochastic)
preferable to another (e.g., periodic). We propose that natural cellular materials be considered as part of a
guiding approach for cellular material selection in design.

5.1. Design Methodology

A mechanical designer seeking to leverage cellular materials may well ask how best to reconcile
engineering and biomimetic approaches. A “biomimicry thinking” methodology has been proposed
for those seeking to emulate solutions from nature, wherein a challenge may be posed to biology
(“challenge to biology”), or natural models may be first discovered in nature and opportunities
identified (“biology to design”)—both approaches are shown graphically in Figure 19 [76].

These approaches involve four steps: scoping, discovering, creating, and evaluating and the
reader is advised to study the cited reference to learn more.

For the specific problem of selecting a cellular material for a specific function, we propose the
following approach inspired by the four steps in the “challenge to biology” methodology and shown
graphically in Figure 20 for a specific example of structural honeycomb:

- Scoping: In this phase, the application context is identified and specific details of the environment
(temperature, pressure, etc.) are also obtained. The functional requirements are then defined and
understood to be valid in these contexts. In Figure 20, for example, a context could be aircraft
paneling, where honeycomb structures are used to distribute stresses evenly.

- Discovering: Following this, natural models are identified that perform these functions in similar
environments—insect nests, in this example. Importantly, measurements are then made on the
natural model to abstract parameters and relationships between these parameters that may, in the
next step, lead to design principles.
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- Creating: Design principles are developed to translate the abstracted biological principle into
something of use to the engineering designer, which may result in an analytical and/or numerical
model that can then be exercised. In this example, the role of the corner radius is examined,
and a model is developed that incorporates it.

- Evaluating: In the final phase, the design principle is reconciled against other models, both in
engineering and nature. We can use numerical and experimental techniques to validate our
hypothesized design principle that the corner radius optimizes for specific stiffness, for example,
and reconcile our findings with other insect nests and methods, such as scaling laws.
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5.2. Limitations of Study

In addition to the limited scope of this work, restricted as it is to structural parameters only,
this work is also limited to the identification of a specific unit cell design. While this is arguably the
central question in cellular materials design, it is not the only one. Other questions include:

- How should the density of the cellular material be prescribed within the structure? Should it
be completely full of cellular materials, or are there benefits to including empty (or negative)
space [83]?

- How should local parameters such as thickness, beam shape be optimized? and
- What is the optimum termination strategy for the cellular material at the boundary of

the structure?

A second limitation of the study is that, for the most part, it ignores discussion of the contributions
of ancestry (phylogeny) and development (ontogeny) to the resulting form. We assume, therefore,
that the observed structure is optimal for the function at hand and that any constraints that phylogeny
and ontogeny have placed on it do not detract from the inherent benefit of that structure relative
to the function of interest. Finally, while this paper does develop a new classification scheme and
demonstrate a methodology for studying natural cellular materials relative to this scheme, we concede
that much work is needed in order to implement biomimetic cellular materials as a considered
option in mechanical design beyond just the conceptual design phase. A framework such as the one
proposed here has the potential to further accelerate discovery of biomimetic cellular materials and
their application in design.
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