
Citation: Behi, H.; Karimi, D.; Behi,

M.; Nargesi, N.; Aminian, M.;

Ghanbarpour, A.; Mirmohseni, F.;

Van Mierlo, J.; Berecibar, M. An

Enhanced Phase Change Material

Composite for Electrical Vehicle

Thermal Management. Designs 2022,

6, 70. https://doi.org/10.3390/

designs6050070

Academic Editor: Quanqing Yu

Received: 28 July 2022

Accepted: 19 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Enhanced Phase Change Material Composite for Electrical
Vehicle Thermal Management
Hamidreza Behi 1,2,* , Danial Karimi 1,2 , Mohammadreza Behi 3,4 , Niloufar Nargesi 5, Morteza Aminian 6,
Ali Ghanbarpour 7, Farid Mirmohseni 8, Joeri Van Mierlo 1,2 and Maitane Berecibar 1

1 Research Group MOBI—Mobility, Logistics, and Automotive Technology Research Centre,
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

2 Flanders Make, 3001 Heverlee, Belgium
3 Institute of Photonics and Optical Science, School of Physics, The University of Sydney,

Sydney, NSW 2006, Australia
4 METASENSE PTY LTD., 2/11 York Street, Sydney, NSW 2000, Australia
5 Department of Architecture, Qazvin Branch, Islamic Azad University, Qazvin 3414896818, Iran
6 Department of Architecture, Shahrood Branch, Islamic Azad University, Shahrood 3614773955, Iran
7 School of Mechanical Engineering, Babol University of Technology, Babol 4714871167, Iran
8 School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
* Correspondence: hamidreza.behi@vub.be; Tel.: +32-(497)-296-256

Abstract: Lithium-ion (Li-ion) battery cells are influenced by high energy, reliability, and robustness.
However, they produce a noticeable amount of heat during the charging and discharging process.
This paper presents an optimal thermal management system (TMS) using a phase change material
(PCM) and PCM-graphite for a cylindrical Li-ion battery module. The experimental results show
that the maximum temperature of the module under natural convection, PCM, and PCM-graphite
cooling methods reached 64.38, 40.4, and 39 ◦C, respectively. It was found that the temperature of
the module using PCM and PCM-graphite reduced by 38% and 40%, respectively. The temperature
uniformity increased by 60% and 96% using the PCM and PCM-graphite. Moreover, some numerical
simulations were solved using COMSOL Multiphysics® for the battery module.

Keywords: phase change materials; graphite; high thermal conductivity; thermal management;
electric vehicles

1. Introduction

The traditional combustion engine has been gradually replaced by electric vehicles
(EVs) and hybrid electric vehicles due to CO2 emissions, global warming, and fossil fuel
shortages. Lithium-ion (Li-ion) batteries are selected for EV energy storage due to their
tremendous features like high voltage, long cycle-life, high specific energy, and low self-
discharge [1,2]. Although Li-ion batteries are the ideal energy storage for EVs, they suffer
a number of drawbacks, like degradation and heat generation during the charging and
discharging process [3,4]. A battery thermal management system (TMS) is vital for EVs
as almost 50% of EV cost returns to the battery pack [5]. In this context, some techniques,
such as equivalent circuit modeling, are used for the parameter identification of Li-ion
batteries to analyze their thermal response numerically [6,7]. Moreover, online data-driven
techniques are employed for the health management of these batteries [8].

Different cooling systems, constituting active, passive, and hybrid systems, have
been used by researchers to cool the battery module/pack in EVs [9–11]. Active cooling
methods like liquid and air cooling systems use external power [12,13]. On the other hand,
passive cooling methods like a heat pipe [14], phase change materials (PCM) [15], and
heat sinks [16] do not use power. Hybrid cooling systems are a combination of active
and passive cooling systems which need external power [17,18]. Many analyses have
been presented on battery TMS to specify their effectiveness. The air cooling system is an
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effortless cooling system that benefits from low cost and a simple design [19]. However, an
air cooling system needs a power source and high volume [20]. This cooling system is not
successful in high-current profiles and high ambient temperatures [21]. The liquid cooling
system is a reliable cooling method in the application of EVs due to the high heat-transfer
coefficient of liquids [22]. Nevertheless, it suffers from high cost, complex design, high
energy consumption, and leakage [23]. The heat pipe cooling system is also a famous
method for battery cooling [24]. However, it needs secondary cooling for the continuous
process. It also suffers from a complex design, high cost, and high volume. The PCM
cooling system is a successful and common method for battery cooling. It benefits from
many advantages, constituting no power, uniform cooling, simple design, and low cost [25].
PCM is a material with the ability to receive or release a high amount of energy at an almost
constant temperature for a specific time [26]. Nevertheless, most PCMs suffer from low
thermal conductivity [22,26]. To remove such a problem, a supportive material can be
added to the pure PCM to enhance its thermal conductivity. Lots of methods, like adding
fins, heat pipes, aluminum and copper mesh, copper foil, and heat sinks, have been used
to remove this issue [27]. Behi et al. [28] investigated the thermal performance of PCM-
assisted heat pipe for electronic cooling. They found that using the heat pipe tremendously
increased the cooling ability of the PCM. Behi et al. [29] experimentally and numerically
studied the enhancement of PCM energy storage using heat pipe. Karimi et al. [30] designed
a passive TMS using PCM for a module. They considered the functioning of the system and
validated it using Simcenter AMEsim® and COMSOL Multiphysics®. In a different study,
they considered the effect of an aluminum grid mesh to enhance the thermal properties of
the PCM. They found that the maximum temperature of the module decreased to 36 ◦C
using the aluminum-PCM [31]. Behi et al. [32] experimentally and numerically considered
the effect of PCM-assisted heat pipe for battery cooling. They found that the combination
of the PCM and heat pipe could contribute to battery cooling of up to 40.7%.

However, most of the mentioned methods not only increase the volume of the cooling
system but also raise its weight. Therefore, one of the best solutions for improving the
thermal conductivity of pure PCMs is the addition of additive materials like graphite.
Yazici [33] experimentally studied the effect of a PCM-graphite composite on the thermal
management of a battery in low-temperature ambience. Behi et al. [34] considered the
cooling influence of the PCM graphite on an LTO battery cell under fast discharging. They
discovered that the PCM-graphite composite is a successful method for battery cooling
in passive TMS. Akula and Balaji [35] designed a novel passive PCM-E-graphite cooling
system for cylindrical battery cells. They found that adding the graphite has a direct effect
on the cooling effect. Yazici [33] considered the effect of a PCM-graphite matrix composite
on battery temperature. They found that the PCM composite, using preheating, is an
effective method for battery cooling at high discharge rates. In this study, the cooling effect
of PCM and PCM-graphite were considered regarding 24 cylindrical battery cells under a
1.5C discharging rate. The battery module is directly submerged in PCM and PCM-graphite
to reduce the module temperature. The thermal contact resistance is removed by applying a
submerged technique, which can contribute to better cooling performance. The maximum
temperature of the cells and the temperature uniformity of the module were investigated
experimentally and numerically. The thermal conductivity of the PCM increased using
graphite, which gives a better cooling performance. The PCM-graphite composite becomes
advanced via the high thermal conductivity of graphite and the high heat storage capacity
of the PCM. The void between the cells is used for PCM placement, with a zero-volume
increase. It was found that the temperature of the module using PCM and PCM-graphite
was reduced by 38% and 40%, respectively. Moreover, the temperature uniformity of the
module was increased by 60% and 96% using the PCM and PCM-graphite, respectively.

2. Experimental Test Setup

The experimental test setup in this study consisted of a cylindrical battery module
(18,650 cells) with a cell nominal capacity of 2200 mAh. The module consisted of 24 cells
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with every cell fixed by a cell holder, with a space of 2 mm. The module is arranged in
four columns and six rows. The test setup comprises an 18,650 battery module, a PVC
box, a power supply, PCM, two K-type thermocouples, a data logger, and a personal
computer. The module is connected to a PEC battery tester with a ±0.005 accuracy in order
to cycle the module. The PICO USB TC-08 was chosen as a data logger to record the module
temperature. In this study, the cooling effect of natural convection, PCM, and PCM-graphite
was considered. Figure 1 shows the schematic and dimensions of the battery module.
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Figure 1. Schematic of the battery module with dimensions.

Cylindrical cells are structured from multiple layers of the active portion of the Li-ion
battery. Therefore, there is anisotropic thermal conductivity in radial and axial directions.
The important physical features of the cells applied in the battery module are shown in
Table 1.

Table 1. The important physical features of the cell in the battery module are adapted from [36].

Parameters Value Unit

Nominal capacity 2.2 A

Nominal voltage 3.6 V

Density 2722 Kg m−3

Mass 0.045 kg

Specific heat capacity 1200 J kg−1 K−1

Length 65 mm

Diameter 18 mm

Thermal conductivity kr = 0.2, kz = 37.6 [37–40] W m−1 K−1

In order to conduct the tests, the setup was connected to the battery tester. The module
was discharged under a 1.5C rate for 2720 s. Two K-type thermocouples were linked to the
cells to measure the surface temperature of the cells. The picture of the test setup and the
location of the thermocouples is shown in Figure 2.
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Figure 2. (left) The picture of the test setup comprising (1) the battery module, (2) battery tester,
(3) data logger, (4) personal computer, (right) and the location of the thermocouples.

3. Experimental Results
3.1. Reflection of the Natural Convection

Natural convection caused by the buoyancy effect is the first cooling method that is
primarily utilized to take away heat dissipation. For this reason, the surface temperature of
the cells was measured under a 1.5C discharging rate. According to the data, the convection
coefficient was around 6.87 W/m2 K, which was calculated experimentally [25]. Natural
convection benefits from zero energy consumption, a simple design, and low cost. Figure 3
shows the temperature of the thermocouples of T1 and T2 under the initial temperature
of 25 ◦C. According to the results, the temperature of T1 and T2 reaches almost 57 ◦C and
65 ◦C. As can be seen, there is an 8 ◦C difference between the two thermocouples, which
is caused due to the location of the cells, the heat dissipation effect of other cells, and the
lowered effect of natural convection in the center of the module.
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Figure 3. The temperature curve of the battery module and an image of the test setup for natural
convection under a 1.5C discharging rate (EXP: Experimental).
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3.2. Reflection of the PCM

PCM cooling is commonly applied as an appropriate battery thermal management
method, owing to its simple design, low cost, and high performance. The PCM-based
cooling system is classified as a passive cooling system, which does not need any external
power source. According to the PCMs physical features, it can absorb heat at a constant
temperature within the normal operating range. Therefore, based on PCM latent heat,
it can keep the battery cell/module at a constant temperature for a specific time. In the
current study, a paraffin PCM was used for the thermal management of the module. The
PCM is classified as organic paraffin, which is produced by Shanghai Tianlan New Material
Technology Co., Ltd. (Shanghai, China). The main features of the PCM are mentioned in
Table 2.

Table 2. The main features of the PCM are adapted from [17].

Parameters Value Unit

Melting domain 35–42 ◦C
Max operation temperature 210 ◦C

Thermal conductivity (Solid-Liquid) 0.25–0.4 W/m K
Heat storage capacity 220 kJ/kg
Density (Solid-Liquid) 0.8–0.85 Kg/Lit
Specific heat capacity 2500 J/kg K

As can be seen in Figure 4, the module temperature was controlled perfectly by PCM
cooling. Moreover, the temperature uniformity increased. The maximum temperature
of the module reached 40.4 ◦C, which shows a 38% reduction compared with natural
convection. There is only a 3.2 ◦C difference between the two thermocouples, which
increased the temperature uniformity by 60%.
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Figure 4. The temperature curve for the battery module and an image of the test setup using PCM
under a 1.5C discharging rate.

Reflection of the PCM Graphite

Pure PCMs generally suffer from low thermal conductivity [7]. This drawback can be
compensated for by using composite materials. Graphite, as a high thermally conductive
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material, has superior advantages to increase the thermal conductivity of PCM. PCM-
graphite can advance the heat conductivity of the PCM cooling system, which may increase
the heat transfer efficiency. In this section, the module is in direct contact with the PCM-
graphite. The main physical features of the PCM-graphite are mentioned in Table 3.

Table 3. The main features of the PCM-graphite are adapted from [17].

Parameters Value Unit

Melting domain 35–42 ◦C
Max operation temperature 210 ◦C

Thermal conductivity (Solid-Liquid) 0.5–1 W/m K
Heat storage capacity 210 kJ/kg
Density (Solid-Liquid) 0.8–0.85 Kg/Lit
Specific heat capacity 2500 J/kg K

Figure 5 shows the temperature curve of the battery module and a picture of the test
setup using PCM-graphite. It is obvious that the module temperature has been completely
controlled by the PCM-graphite. The maximum temperature of the module reached
39 ◦C, which shows a 40% reduction compared with natural convection. Moreover, the
temperature uniformity also increased. There is only a 0.3 ◦C difference between the two
thermocouples, which improved the temperature uniformity by 96%.
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Figure 5. The temperature curve of the battery module and an image of the test setup using PCM
under a 1.5C discharging rate.

3.3. Comparison of Experimental Results

The transient temperature of the T2 thermocouple is now selected to examine the
performance of the proposed cooling systems. According to the Figure 6, the temperature
of T2 reached almost 65 ◦C, due to the natural convection effect. This temperature is far
from the acceptable Li-ion battery temperature (25–40 ◦C) and will definitely cause its life
span to decrease. The PCM cooling systems were introduced to control the heat generation
of the module. The temperature of T2 reached 40.4 ◦C and 39 ◦C for the PCM and PCM-
graphite methods, respectively. It was found that the module temperature decreased by
38% and 40% compared with natural convection, respectively.
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natural convection, PCM-g: PCM-graphite).

4. Simulation
4.1. Battery Thermal Model

In the current study, COMSOL Multiphysics® was selected to simulate the 3D thermal
behavior of the cell and the PCM. The thermal model makes it possible to enhance TMS and
use the battery cells in a module/pack. The internal and external resistances are the main
cause of heat generation in the battery. Generally, heat generation is divided into reversible
and irreversible heat. Reversible heat returns to the heat, which is generated in the cathodes
and anodes and is called entropic heating. Entropic heating is produced by electrochemical
reactions from reversible entropy change. It can be exothermic or endothermic based
on the state of charge (SOC). The reversible battery heat generation can be calculated as
follows [41]:

qrev = I
[

T
dUOC

dT

]
(1)

where I, T, and dUOC
dT are the current, battery temperature, and entropic heat coefficient,

respectively. Irreversible heat returns to joules or ohmic heating. It can be produced due
to the exchange of current within the internal resistance in the electrode, electrolyte, and
current collector. The irreversible heat is always exothermic, owing to quadratic current
dependence. The irreversible battery heat generation can be calculated as follows:

qirr = I[UOC − U] = RI2 (2)

where UOC, U, and R are the open-circuit voltage, battery voltage, and the battery internal
resistance, respectively. The internal resistance consists of the ohmic and polarization
resistances, which depend on the SOC and battery temperature.

qgen = qirr + qrev (3)

In the present study, using a 1.5C discharge rate, a volumetric heat generation of
48,750 W/m3 was selected for module simulation.
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4.2. Descriptive Equations for PCM

The descriptive equations of continuity, momentum, and energy for the thermal
response of the PCM are comprised as follows [7]:

∂ur

∂r
+

ur

r
+

∂uz

∂z
= 0 (4)

∂ur
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In the PCM melting process, T1 is known as an initial temperature, Tm as a melting
temperature, and T2 as a final temperature (T2 = Tm + ∆T). A mushy zone happens
between the solid and liquid phases during the operation of this function within the
interval of ∆T. Equation (11) shows the different phases of the PCM.

T∗ 6 T1 (Solid phase)
T1 < T∗ < T2 (Mushy phase)

T∗ > T2 (Liquid phase)
(8)

The heat capacity of the PCM is mentioned as a value of phase transition function,
which depends on the PCM temperature (s: solid; t: transition; l: liquid):

C =


cs T∗ 6 T1
ct T1 < T∗ < T2
cl T∗ > T2

(9)

COMSOL, based on the defined equations, tries to simulate the heat transfer for the
battery and PCM. The total amount of heat that can be received by the PCM is evaluated in
the following equation:

QPCM = mcs(T1 − Tm) + mL + mcl(T2 − Tm) (10)

where m is the mass of the PCM. Moreover, the thermal conductivity of the PCM can be
expressed as follows:

C =


ks T∗ 6 T1
ks + kl

2 T1 < T∗ < T2
kl T∗ > T2

(11)

4.3. Validation of the Thermal Model for Natural Convection, PCM, and PCM-Graphite
Cooling System

In order to validate the numerical modeling, the maximum temperature of the module
(T2) was selected to be compared with the simulation results. The simulation was conducted
at a module level under the 1.5C discharging rate and at an ambient temperature of
25 ◦C. Figure 7 displays the validation graphs for the natural convection, PCM, and
PCM-graphite cooling methods. According to the graph trends, there is an acceptable
agreement between the experimental and simulation results. The root mean square error
(RMSE) for natural convection, PCM and PCM-graphite cooling methods was 0.72%, 2.1%,
and 1.15%, respectively.
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Figure 7. Thermal model validation of the module (a) under natural convection, (b) PCM, and
(c) PCM-graphite at a 1.5C discharging rate (Sim: Simulation, NC: Natural convection, PCM-g:
PCM-graphite.

5. Simulation Results
5.1. Thermal Behavior Contour of the Module in Different Cooling Methods

The heat transfer contour at the end of the discharging process is shown in Figure 8
(under the different cooling methods). Temperature contour is a suitable way to display the
heat concentration inside the module. In natural convection cooling, the heat generation is
more dominant in the center of the module due to the heat gradient of the border cells and
the lower effectiveness of the free cooling. The maximum temperature reached almost 65 ◦C,
which is outside of the safe zone for batteries. PCM cooling enacted a tremendous effect
on the maximum temperature and temperature uniformity of the module. The maximum
module temperature reached 40.4 ◦C, which proved that PCM cooling is an acceptable
cooling method. In the third condition, the temperature of the module was considered
under the PCM-graphite effect. It can be seen the maximum temperature reaches 38.9 ◦C,
with more temperature uniformity, owing to the high thermal conductivity of the graphite.
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5.2. Liquid Fraction Contour of Module for PCM and PCM-Graphite Cooling Methods

Figures 9 and 10 show the liquid fraction of the PCM and PCM-graphite under a 1.5C
discharging process. The blue and red colors identify the solid and liquid forms of the PCM
(solid = 0, liquid = 1). At the beginning of the cooling process, heat generation, along with
the cells, is transferred via conduction within the PCM and PCM-graphite. In this current
stage, heat is absorbed in a sensible form until it reaches the phase change temperature
(mushy zone). In the mushy zone, a thin axial layer of PCM melts along the cell’s surface, as
shown at 2000 s. As time passes, the melting process continues, with more heat dissipation
inside the PCM (2740 s). At the phase change zone, the heat has been absorbed as a latent
form and at a constant temperature. This phenomenon is the main advantage of using
PCM as a cooling method. It is obvious the heat is dispersed more uniformly inside the
PCM-graphite, owing to the high thermal conductivity of the graphite.
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6. Conclusions

The present study experimentally and numerically explored the cooling effectiveness
of natural convection, PCM, and PCM-graphite methods for a cylindrical battery module
under a 1.5C discharging rate. The results are concluded as follows:

• The maximum temperature of the module in the presence of natural convection for
the initial temperature of 25 ◦C at a 1.5C discharging rate was measured. According to
the measured results the maximum module temperature reached 64.38 ◦C, which is
outside of the ideal Li-ion battery temperature;

• The PCM cooling system reduced the temperature of the module to 40.4 ◦C, which is
a 38% reduction in the maximum module temperature. Moreover, the temperature
uniformity of the module was increased by 60%;

• Using the PCM-graphite cooling system, the maximum module temperature reached
39 ◦C, which is a 40% reduction. Furthermore, the temperature uniformity of the
module increased by 96%;

• The CFD model for different cooling strategies was validated against the experimental
results and attained satisfactory agreement. The temperature contours and phase
change process have been investigated at different times for PCM and PCM-graphite
cooling systems.
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Nomenclature

∆t Time Interval (t)
T Battery Temperature (K)
I Discharge Current (Ah)
U Operating Voltage (V)
m Mass of the Cell (kg)
cp Specific Heat Capacity (J/kg K)
qrev Reversible Heat (W)
qirr Irreversible heat (W)
R Total Resistance of the Battery (K/W)
k Thermal Conductivity (W/m K)
p Pressure (Pa)
S Cross-section of the Tab and Cell (m2)
h Heat Transfer Coefficient (W/m2 K)
qconv Free Cooling Heat Transfer (W)
QCell Power Loss of Battery (W)
ρ Density (kg/m3)
qg Cell Heat Generation (W)
V Volume (m3)
H Height (m)
Tm Melting Temperature of the PCM (K)
u Velocity (m/s)
s Solid Phase of PCM
l Liquid Phase of PCM
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Acronyms
CFD Computational Fluid Dynamics
TMS Thermal Management System
EV Electric Vehicle
SoC State of Charge
PCM Phase Change Material
ESS Energy storage system
Li-ion Lithium-ion
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