Improved Local Scale Generic Cycle Model for Aerothermodynamic Simulations of Gas Turbine Engines for Propulsion
Abstract
:1. Introduction
2. Model Description
2.1. Design Point Model
2.2. Aerothermodynamic Design Point
2.3. Off-Design Model
2.4. Model Comparison
3. Results Discussion
4. Conclusions and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | flow area | Greek letters | |
c | speed of sound | α | step size |
B | mxn Broyden matrix | β | bypass ratio |
CD | flow coefficient | θ | dimensionless temperature |
Cp | specific heat at constant pressure | δ | dimensionless pressure |
Cv | specific heat at constant volume | η | efficiency |
CV | velocity coefficient | Δ | difference |
D | Diameter | Φ | equivalence ratio |
FAR | Fuel-to-Air Ratio | mass flow bleed fraction | |
Fg | gross thrust | λs | numerical tolerance |
FF | Flow Function | τ | error function improvement tolerance |
Fn | net thrust | γ | specific heat ratio |
Fram | ram drag | σ | standard deviation |
h | specific enthalpy | μ | convergence tolerance |
J | mxn Jacobian matrix | ε | m-vector of errors |
LHV | Lower Heating Value of the fuel | ρ | density |
maxIt | maximum number of iterations | ζ | thermodynamic state |
mass flow | Γ | scrubbing drag due to external engine wet surfaces | |
MFP | Mass Flow Parameter | Subscripts | |
MN | Mach Number | bleed | at bleed extraction port |
n | sample size | cool | cooling |
N | rotational speed | Comp | compressor |
Ncorr | corrected rotational speed for a compressor | Comb | combustor |
NLcorr | corrected rotational speed for the LP spool | corr | corrected |
NHcorr | corrected rotational speed for the HP spool | cust | customer (i.e., aircraft) |
NP | corrected rotational speed for a turbine | demand | demand of dependent parameter |
p | step direction m-vector | fuel | parameter associated with the fuel entering the combustor |
P | pressure | ideal | corresponding to ideal process |
Pf | pressure bleed fraction | in | at the inlet of an engine component |
PR | Pressure Ratio (i.e., PR = P0,out/P0,in) | mech | mechanical transmission |
shaft power extraction | par | parasitic | |
net heat transfer | pri | engine primary stream | |
R | gas constant | out | at the exit of an engine component |
R-line | auxiliary coordinate | real | corresponding to real process |
s | specific entropy | sec | engine secondary (or bypass) stream |
S | scaling factor | stoich | stoichiometric |
SFC | Specific Fuel Consumption | state | state of the dependent parameter |
t95 | inverse of student’s t distribution (95% confidence) | std | standard day condition |
T | Temperature | Th | inlet duct throat |
V | flow velocity | Turb | turbine |
w | specific work (i.e., work per unit mass) | 0 | representing a total (or stagnation) thermodynamic property (e.g., h0, T0, P0) |
wf | work bleed fraction | ||
WAR | Water-to-Air Ratio | ||
shaft power | |||
x | n-vector of independent parameters | ||
x* | solution n-vector | ||
X | generic map parameter | ||
y | m-vector of dependent parameters | ||
Z | generic thermodynamic property (e.g., T, P, h, etc.) |
Appendix A
Component | Inputs | Modeling |
Ambient free stream | Flight conditions: e.g., geometric altitude, MN, ΔTICAO-SA, engine flow ( or ), FAR (normally, FAR = 0.0 at ambient conditions) | ICAO standard atmosphere model: [PICAO-SA, TICAO-SA] = f(geometric altitude) Static properties P = PICAO-SA; T = TICAO-SA + ΔTICAO-SA Initialize FARin = 0.0 (i.e., dry air) [static] = ζ(FARin, P, T) Flight velocity V = f(MNin, γ, R) Total properties T0 = f(MNin, γ, T); P0 = f(T0/T, γ) [total] = ζ0(FARin, P0, T0) |
Subsonic inlet duct | ΔP/P, Aout (optional), CD | ; FARin = FARout Energy Conservation (EC): h0,in = h0,out P0,out = (1—ΔP/P) * P0,in [total]out = ζ0(FARout, P0,out, h0,out) If exit area (i.e., Aout = fan face area) is provided, go to P1 P1-begin and ). Initial guesses for MNout = 0.55 and hout = h0,out Hint. Use Matlab built-in function ‘fsolve’ [static]out = ζ(FARout, hout, ) , CD = 1.0 (for preliminary studies) MFPout,calc, Rout) h0,out,calc = f(hout, Tout, MNout, , Rout) P1-end Normalized entropy (s) Balance (NsB) ; λs = −0.0001 (allowance for small negative numerical error) |
Splitter | β | ; ; ; FARin = FARout,sec = FARout,pri EC: h0,in = h0,out,sec = h0,out,pri Assume no momentum loss, P0,in = P0,out,sec = P0,out,pri Secondary (bypass) stream [total]out,sec = ζ0(FARout,sec, P0,out,sec, h0,out,sec) Primary (core) stream [total]out,pri = ζ0(FARout,pri, P0,out,pri, h0,out,pri) |
Combustor | ΔP/P, η, T0,out, LHVfuel, hfuel | Exit pressure, P0,out = (1—ΔP/P) * P0,in EC: , iterating on FARout Initial guess for FARout = 0.005 Hint. Use Matlab built-in function ‘fsolve’ [total]out = ζ0(FARout, P0,out, T0,out) If solution attained, then |
Compressor (e.g., fan, LPC, HPC) | PR, η, Pf,i, | ; FARin = FARout; FARbleed,i = FARin Exit pressure after compression, P0,out = PR * P0,in ) [total]out,ideal = ζ0,ideal(FARout, P0,out, ) EC: No Bleed Extraction (NBE) Real compression, [total]out,real = ζ0,real(FARout, P0,out, h0,out,real) Energy compensation due to bleed fraction not compressed to Pout ith bleed extraction [total]bleed,i = ζ0,bleed,i(FARbleed,i, P0,bleed,i, h0,bleed,i) |
Duct (e.g., bypass duct) | ΔP/P | ; FARin = FARout EC: h0,in = h0,out Exit pressure, P0,out = (1–ΔP/P) * P0,in [total]out = ζ0(FARout, P0,out, h0,out) |
Turbine (e.g., HPT, LPT) | η, , | ; FARin = FARout EC: ) [total]out,ideal = ζ0,ideal(FARout, , ) ) [total]out,real = ζ0,real(FARout, , ) |
Nozzle (e.g., primary, secondary) | CD, CV | ; FARin = FARout EC: h0,in = h0,out P0,in = P0,out [total]out = ζ0(FARout, P0,out, h0,out) Static properties when nozzle throat is choked (i.e., MNout = 1.0) , iterating on Tout ) to ambient pressure Hint. Use Matlab built-in function ‘fsolve’ [static]out,chk = ζout,chk(FARout, Tout, ) If solution attained, then Determine if the nozzle is choked , nozzle is choked Then, Pout = Pout,chk Else, Pout = Pamb [static]out = ζ(FARout, Pout, ) ; MFPout = f(MNout,γout, Rout) Compute throat area, Compute nozzle gross thrust |
Bleed reinstatement to flow stream (e.g., chargeable and non-chargeable cooling flow) | ; EC: Assume flow mixing process occurs at constant pressure P0,in = P0,out = P0,bleed [total]out = ζ0,out(FARout, , ) NsB: | |
High-level performance | Γ, , V0 | Net thrust (Fn) For Fg,sec and Fg,pri see Nozzle calculations Note. Assumed Γ = 0.0, i.e., no scrubbing drag Specific Fuel Consumption (SFC) |
References
- Botez, R.M. Morphing Wing, UAV and Aircraft Multidisciplinary Studies at the Laboratory of Applied Research in Active Controls, Avionics and AeroServoElasticity LARCASE. Aerosp. Lab. 2018, 14, 1–11. [Google Scholar] [CrossRef]
- Ghazi, G.; Botez, R.M. Identification and Validation of an Engine Performance Database Model for the Flight Management System. J. Aerosp. Inf. Syst. 2019, 16, 307–326. [Google Scholar] [CrossRef]
- Ghazi, G.; Botez, R.; Achigui, J.M. Cessna Citation X Engine Model Identification from Flight Tests. SAE Int. J. Aerosp. 2015, 8, 203–213. [Google Scholar] [CrossRef]
- Rodriguez, L.F.; Botez, R.M. Generic New Modeling Technique for Turbofan Engine Thrust. J. Propuls. Power 2013, 29, 1492–1495. [Google Scholar] [CrossRef]
- Botez, R.M.; Bardela, P.-A.; Bournisien, T. Cessna Citation X simulation turbofan modelling: Identification and identified model validation using simulated flight tests. Aeronaut. J. 2019, 123, 433–463. [Google Scholar] [CrossRef]
- Andrianantara, R.P.; Ghazi, G.; Botez, R.M. Aircraft Engine Performance Model Identification using Artificial Neural Networks. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Online Event, 9–11 August 2021. [Google Scholar] [CrossRef]
- Zaag, M.; Botez, R.M.; Wong, T. CESSNA Citation X Engine Model Identification using Neural Networks and Extended Great Deluge Algorithms. INCAS Bull. 2019, 11, 195–207. [Google Scholar] [CrossRef]
- McKinney, J.S. Simulation of Turbofan Engine: Part I. Description of Method and Balancing Technique; AFAP-TR-67-125; Air Force Aero Propulsion Laboratory: Dayton, OH, USA, 1967. [Google Scholar]
- Koening, R.W.; Fishbasch, L.H. GENEG—A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines. Lewis Research Center, NASA; TN D-6552; 1972. Available online: https://ntrs.nasa.gov/api/citations/19720011133/downloads/19720011133.pdf (accessed on 1 July 2021).
- MacMillan, W.L. Development of a Modular-Type Computer Program for the Calculation of Gas Turbine Off-Design Performance; School of Mechanical Engineering, Cranfield Institute of Technology: Cranfield, UK, 1974. Available online: http://dspace.lib.cranfield.ac.uk/handle/1826/7401 (accessed on 3 February 2022).
- Lytle, J.K. The Numerical Propulsion System Simulation: An Overview; National Aeronautics and Space Administration. NASA TM-2000-209915; John H. Glenn Research Center at Lewis Field: Cleveland, OH, USA, 2000. Available online: https://ntrs.nasa.gov/api/citations/20000063377/downloads/20000063377.pdf (accessed on 4 December 2021).
- Kurzke, J. Advanced User-Friendly Gas Turbine Performance Calculations on a Personal Computer. In Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, Houston, TX, USA, 5 June 1995. [Google Scholar] [CrossRef]
- Visser, W. Generic Analysis Methods for Gas Turbine Engine Performance; Technical University Delft: Delft, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Alexiou, A.; Mathioudakis, K. Development of Gas Turbine Performance Models Using a Generic Simulation Tool. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005; pp. 185–194. [Google Scholar] [CrossRef]
- Alexiou, A. Introduction to Gas Turbine Modelling with PROOSIS. 2014. Available online: https://www.researchgate.net/publication/270742324_Introduction_To_Gas_Turbine_Modelling_With_PROOSIS_-_2nd_EDITION (accessed on 23 June 2022).
- Misté, G.A.; Benin, E. Performance of a Turboshaft Engine for Helicopter Applications Operating at Variable Shaft Spee. In Proceedings of the Asme 2012 Gas Turbine India Conference (GTINDIA2012), Mumbai, Maharashtra, India, 1 December 2012. Paper No. GTINDIA2012-9505. [Google Scholar] [CrossRef]
- Reed, J.A.; Afjeh, A.A. Computational Simulation of Gas Turbines: Part 1—Foundations of Component-Based Models. J. Eng. Gas Turbines Power 2000, 122, 366–376. [Google Scholar] [CrossRef]
- Chapman, J.W.; Lavelle, T.M.; May, R.; Litt, J.S.; Guo, T.-H. Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T MATS). In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar]
- DeCastro, J.; Litt, J.; Frederick, D. A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Hartford, CT, USA, 21–23 July 2008. [Google Scholar] [CrossRef]
- Chapman, J.W.; Lavelle, T.M.; Litt, J.S. Practical Techniques for Modeling Gas Turbine Engine Performance. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Chapman, J.W.; Lavelle, T.M.; Litt, J.S.; Guo, T.-H. A Process for the Creation of T-MATS Propulsion System Models from NPSS data. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar] [CrossRef]
- Svoboda, C. Turbofan engine database as a preliminary design tool. Aircr. Des. 2000, 3, 17–31. [Google Scholar] [CrossRef]
- Misté, G.A.; Benini, E.; Garavello, A.; Gonzalez-Alcoy, M. A Methodology for Determining the Optimal Rotational Speed of a Variable RPM Main Rotor/Turboshaft Engine System. J. Am. Helicopter Soc. 2015, 60, 1–11. [Google Scholar] [CrossRef]
- Garavello, A.; Benini, E. Preliminary Study on a Wide-Speed-Range Helicopter Rotor/Turboshaft System. J. Aircr. 2012, 49, 1032–1038. [Google Scholar] [CrossRef]
- Shakariyants, S.A.; van Buijtenen, J.P.; Visser, W.P.J.; Tarasov, A. Generic Airplane and Aero-Engine Simulation Procedures for Exhaust Emission Studies. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, QC, Canada, 14–17 May 2007; pp. 163–175. [Google Scholar] [CrossRef]
- Verbist, M.L.; Visser, W.P.J.; Van Buijtenen, J.P. Experience With Gas Path Analysis for On-Wing Turbofan Condition Monitoring. J. Eng. Gas Turbines Power 2013, 136, 011204. [Google Scholar] [CrossRef]
- Koskoletos, O.A.; Aretakis, N.; Alexiou, A.; Romesis, C.; Mathioudakis, K. Evaluation of Aircraft Engine Diagnostic Methods Through ProDiMES. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Lillestrøm, Norway, 11–15 June 2018. [Google Scholar] [CrossRef]
- Gordon, S. Thermodynamic and Transport Combustion Properties of Hydrocarbons with Air (I—Properties in SI Units). NASA TP-1906. 1982. Available online: https://ntrs.nasa.gov/api/citations/19820024310/downloads/19820024310.pdf (accessed on 14 June 2021).
- ICAO. Manual of the ICAO Standard Atmosphere—Calculations by the NACA; International Civil Aviation Organization: Montreal, QC, Canada, 1954. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930083952.pdf (accessed on 9 January 2020).
- Philpot, M.G. Practical Considerations in Designing the Engine Cycle, in Steady and Transient Performance Predictions of Gas Turbine Engines; AGARD-LS-183; Advisory Group for Aerospace Research and Development: Neuilly sur Siene, France, 1992; pp. 2–24. [Google Scholar]
- Kurzke, J.; Halliwell, I. Propulsion and Power: An Exploration of Gas Turbine Performance Modeling; Springer: Berlin/Heidelberg, Germany, 2018; Volume 95, p. 36. [Google Scholar]
- Walsh, P.P.; Fletcher, P. Gas Turbine Performance, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 35–188, 229–226. [Google Scholar]
- FAA. Type Certificate Data Sheet (E00063EN, rev. 8) GE CF34-8C/8E. 2016. Available online: https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgMakeModel.nsf/0/9acac768eea6c6cb86256c0800477e3b/$FILE/E00063en.pdf (accessed on 17 March 2020).
- General-Electric. CF34-8C Turbofan Propulsion System. Available online: https://www.geaviation.com/sites/default/files/datasheet-CF34-8C.pdf (accessed on 5 April 2020).
- Viall, W.S. The Engine Inlet on the 747. In Proceedings of the ASME 1969 Gas Turbine Conference and Products Show, Cleveland, OH, USA, 9–13 March 1969. [Google Scholar] [CrossRef]
- Streifinger, H. Fuel/oil system thermal management in aircraft turbine engines. In Design Principles and Methods for Aircraft Gas Turbine Engines (RTO Meeting Proceedings 8); Research and Technology Organization/NATO: Neuilly sur Siene, France, 1999. [Google Scholar]
- Council, C.R. Handbook of Aviation Fuel Properties; Coordinating Research Council (CRC): Atlanta, GA, USA, 1983; p. 58. [Google Scholar]
- Johnston, R.P.; Beitler, R.S.; Bobinger, R.O.; Broman, C.L.; Gravitt, R.D.; Heineke, H.; Holloway, P.R.; Klem, J.S.; Nash, D.O.; Ortiz, P. Energy Efficient Engine—Flight Propulsin System Preliminary Analysis and Design. 1979. Available online: https://ntrs.nasa.gov/citations/19810009532 (accessed on 11 January 2022).
- Lefebvre, A.H.; Ballal, D.R. Gas Turbine Combustion Alternative Fuels and Emissions, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Grey, R.E.; Wilsted, H.D. Performance of conical jet nozzles in terms of flow and velocity coefficients. NACA: Boston, MA, USA, 1949. Available online: https://ntrs.nasa.gov/citations/19930091998 (accessed on 28 December 2022).
- Kurzke, J. How to Get Component Maps for Aircraft Gas Turbine Performance Calculations. In Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK, 10–13 June 1996. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: New York, NY, USA, 1999; p. 280. [Google Scholar]
- Gurrola-Arrieta, M.D.J.; Botez, R.M. New Generic Turbofan Model for High-Fidelity Off-Design Studies. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- NPSS User’s Guide v3.2.2.
- FAA. Type Certificate Data Sheet No. A21EA-1, CL-600 (Reginal Jet Series 100-1000). Available online: https://rgl.faa.gov/Regulatory_and_Guidance_Library/rgMakeModel.nsf/0/7b91660cbfc4b517862586b900662131/$FILE/A21EA-1_Rev3.pdf (accessed on 17 March 2020).
Parameter | Assumed Value |
---|---|
Altitude | 35,000 ft (10,668 m) |
MN | 0.80 |
ΔTICAO-SA | 0.0 °F (0.0 °C) |
Combustor exit temperature (T0,040) | 2723.1 R (1512.8 K) |
Fan PR | 1.6 |
LPC PR | 1.6 |
HPC PR | 17.5 |
OPR | 28.0 |
β | 5.0 |
) | 177.11 lbm/s (80.34 kg/s) |
LHVfuel | 18,500 Btu/lbm (43,031 kJ/kg) |
hfuel | 176.0 Btu/lbm (409.4 kJ/kg) |
Parameter | Performance Metric | Assumed Value |
---|---|---|
Adiabatic fan efficiency | ηfan | 0.887 |
Adiabatic LPC efficiency | ηLPC | 0.892 |
Adiabatic HPC efficiency | ηHPC | 0.861 |
Combustor efficiency | ηComb | 0.995 |
Adiabatic HPT efficiency | ηHPT | 0.924 |
Adiabatic LPT efficiency | ηLPT | 0.917 |
HP spool mechanical efficiency | ηHP,mech | 0.975 |
LP spool mechanical efficiency | ηLP,mech | 0.975 |
Inlet duct normalized pressure loss | ΔP/Pinlet-duct | 0.0 |
Bypass-duct normalized pressure loss | ΔP/Pbypass-duct | 0.0 |
Combustor pressure normalized pressure loss | ΔP/PComb | 0.06 |
Primary nozzle velocity coefficient | CV,pri | 0.945 |
Secondary nozzle velocity coefficient | CV,sec | 0.945 |
Primary nozzle flow coefficient | CD,pri | 1.0 |
Secondary nozzle flow coefficient | CD,sec | 1.0 |
Parameter | Performance Metric | Assumed Value |
---|---|---|
HP parasitic shaft power extraction, hp (kW) | 155 (115.6) | |
HP customer shaft power extraction, hp (kW) | 0.0 | |
ECS mass fraction (none) | 0.0 | |
HPT non-chargeable cooling mass fraction (none) | 0.25 | |
HPT non-chargeable cooling pressure fraction (none) | Pf,cool | 0.9364 |
HPT non-chargeable cooling work fraction (none) | wf,cool | 0.9686 |
i, j | xi | ystate,j | ydemand,j |
---|---|---|---|
1 | |||
2 | β | ||
3 | Fan map R-line | ||
4 | LPC map R-line | ||
5 | HPC map R-line | ||
6 | HPC map Ncorr | ||
7 | |||
8 | HPT map PR | ||
9 | LPT map PR |
FAR | Φ | Δh Btu/lbm (kJ/kg) | Δs Btu/lbm/R (kJ/kg/K) | Δγ (None) | ΔR Btu/lbm/R (kJ/kg/K) |
---|---|---|---|---|---|
0.000000 | 0.00 | −130.2 (−302.85) | 0.053 (0.222) | 0.000 | 0.000 |
0.016907 | 0.25 | −455.0 (−1058.3) | 0.066 (0.276) | 0.000 | 0.000 |
0.033814 | 0.50 | −769.1 (−1788.9) | 0.072 (0.301) | 0.000 | 0.000 |
0.050721 | 0.75 | −1073.2 (−2496.3) | 0.073 (0.305) | 0.000 | 0.000 |
0.067628 | 1.00 | −1364.7 (−3174.3) | 0.065 (0.272) | 0.000 | 0.000 |
Parameter | Ground | Flight 1 | Flight 2 |
---|---|---|---|
Altitude, ft (m) | SL | 20,000 (6096) | 35,000 (10,668) |
MN, none | 0.00 | 0.60 | 0.80 |
ΔTICAO-SA, °F (°C) | 0.0 and +27 (+15) | 0.0 and +18 (+10) | 0.0 and +18 (+10) |
NLcorr, % | 50.0–100.0 | 57.5–100.0 | 67.5–100.0 |
ΔT0,041 (R) | ΔT0,041 (K) | |
---|---|---|
ΔHPC PR = +31.4% | 55.8 | 31.0 |
Δβ = +26.0% | 322.3 | 179.1 |
Total | 378.1 | 210.1 |
Parameter | Fan | LPC | HPC | HPT | LPT |
---|---|---|---|---|---|
Ncorr (compressors) NP (turbines) | 1.0000 | 1.0000 | 1.0000 | 3.4719 | 1.5518 |
(compressors) FF (turbines) | 0.2642 | 0.4060 | 0.4152 | 0.6711 | 0.4871 |
PR | 0.8863 | 0.8446 | 0.7132 | 0.8125 | 0.5996 |
η | 1.0192 | 0.9945 | 1.0480 | 1.0022 | 1.0000 |
Parameter | ΔFn (%) | ΔSFC (%) |
---|---|---|
0.67 | –3.59 | |
hp (–115.6 kW) | 0.10 | –1.53 |
Δhfuel = –176 Btu/lbm (–409.4 kJ/kg) | 0.02 | 0.97 |
Parameter | AGCM | Ref. [22] | Δ (%) |
---|---|---|---|
Dfan, in (m) | 46.2 (1.173) | 45.90 (1.165) | 0.65 |
, lbm/s (kg/s) | 421.08 (191.0) | 405.44 (183.9) | 3.86 |
β, none | 5.18 | 4.33 | 19.63 |
OPR, none | 23.83 | 20.23 | 17.80 |
Fn,CR, lbf (N) | 2790.44 (12,412.4) | 2734 (12,161.4) | 2.06 |
SFCCR, lbm/h/lbf (kg/h/N) | 0.6889 (0.07025) | 0.6919 (0.07056) | −0.43 |
SFCTKOF, lbm/h/lbf (kg/h/N) | 0.3592 (0.03663) | 0.4112 (0.04193) | −12.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurrola Arrieta, M.d.J.; Botez, R.M. Improved Local Scale Generic Cycle Model for Aerothermodynamic Simulations of Gas Turbine Engines for Propulsion. Designs 2022, 6, 91. https://doi.org/10.3390/designs6050091
Gurrola Arrieta MdJ, Botez RM. Improved Local Scale Generic Cycle Model for Aerothermodynamic Simulations of Gas Turbine Engines for Propulsion. Designs. 2022; 6(5):91. https://doi.org/10.3390/designs6050091
Chicago/Turabian StyleGurrola Arrieta, Manuel de Jesús, and Ruxandra Mihaela Botez. 2022. "Improved Local Scale Generic Cycle Model for Aerothermodynamic Simulations of Gas Turbine Engines for Propulsion" Designs 6, no. 5: 91. https://doi.org/10.3390/designs6050091
APA StyleGurrola Arrieta, M. d. J., & Botez, R. M. (2022). Improved Local Scale Generic Cycle Model for Aerothermodynamic Simulations of Gas Turbine Engines for Propulsion. Designs, 6(5), 91. https://doi.org/10.3390/designs6050091