CanDiag: Fog Empowered Transfer Deep Learning Based Approach for Cancer Diagnosis
Abstract
:1. Introduction
- The effectiveness of the proposed system is shown and evaluated in several scenarios, including predictive analysis, network capacity, low latency, bandwidth, secrecy, integrity, and protection;
- Automated remote diagnosis of benign and malignant breast cancer;
- Designed a TDL-based algorithm to analyze mammograms for the early detection of breast cancer;
- Installation of an IoT-based healthcare monitoring system utilizing Fog computing for real-time analysis;
2. Existing Works
3. Materials and Methods
3.1. Dataset Description and Acquisition
3.2. Methodologies Employed
4. Proposed Work
4.1. Components Employed
4.2. Experimental Set-Up and Implementation
4.3. Working Principle
Algorithm 1 Principal Function of the Proposed CanDiag Framework |
Require: UserInfo |
Ensure: BinaryResponse |
1: For Active GTDevices |
while (1) do |
Acquire UserInfo using IHCDevices |
Accept UserInfo to GTDevices |
if GTDevices connected to MP then |
Send UserInfo to MP using GTDevices |
Call Procedure ACTIVEDEVICES () |
Acquire BinaryResponse |
else |
Reboot to Acquire UserInfo and Accept to GTDevices again |
end if |
end while |
Algorithm 2 Function of Active Devices in the Proposed CanDiag Framework |
Require: UserInfo Acquired via MP |
Ensure: BinaryResponse Sent to MP |
procedure ACTIVEDEVICES () |
Acquire UserInfo |
if (MP (Accessible) ∨ (FWNodes(Accessible) ∨ CNNodes (Accessible))) then |
if BinaryResponse = = 0 then |
Reply ResultNormal |
else |
Reply ResultAbnormal |
end if |
end if |
Reply BinaryResponse to GTDevices using MP |
end procedure |
5. Simulations and Results
6. Conclusions and Future Scope
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Pati, A.; Parhi, M.; Pattanayak, B.K. IABCP: An Integrated Approach for Breast Cancer Prediction. In Proceedings of the 2022 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON), Bhubaneswar, India, 11–12 November 2022; pp. 1–5. [Google Scholar]
- Kshirsagar, P.R.; Manoharan, H.; Shitharth, S.; Alshareef, A.M.; Albishry, N.; Balachandran, P.K. Deep learning approaches for prognosis of automated skin disease. Life 2022, 12, 426. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Shukla, S.; Gyanchandani, M. Breast cancer histopathology image classification using kernelized weighted extreme learning machine. Int. J. Imaging Syst. Technol. 2021, 31, 168–179. [Google Scholar] [CrossRef]
- Goen, A.; Singhal, A. Classification of Breast Cancer Histopathology Image using Deep Learning Neural Network. Int. J. Eng. Res. Appl. 2021, 11, 59–65. [Google Scholar]
- Pati, A.; Parhi, M.; Pattanayak, B.K.; Singh, D.; Samanta, D.; Banerjee, A.; Biring, S.; Dalapati, G.K. Diagnose Diabetic Mellitus Illness Based on IoT Smart Architecture. Wirel. Commun. Mob. Comput. 2022, 2022, 7268571. [Google Scholar] [CrossRef]
- Mutlag, A.A.; Abd Ghani, M.K.; Mohammed, M.A.; Lakhan, A.; Mohd, O.; Abdulkareem, K.H.; Garcia-Zapirain, B. Multi-Agent Systems in Fog–Cloud Computing for Critical Healthcare Task Management Model (CHTM) Used for ECG Monitoring. Sensors 2021, 21, 6923. [Google Scholar] [CrossRef]
- Pati, A.; Parhi, M.; Pattanayak, B.K. HeartFog: Fog Computing Enabled Ensemble Deep Learning Framework for Automatic Heart Disease Diagnosis. In Intelligent and Cloud Computing; Springer: Singapore, 2022; pp. 39–53. [Google Scholar]
- Khan, S.; Hussain, M.; Aboalsamh, H.; Bebis, G. A comparison of different Gabor feature extraction approaches for mass classification in mammography. Multimed. Tools Appl. 2017, 76, 33–57. [Google Scholar] [CrossRef]
- Hepsag, P.U.; Ŏzel, S.A.; Yazıcı, A. Using deep learning for mammography classification. In Proceedings of the 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017; pp. 418–423. [Google Scholar]
- Ting, F.F.; Tan, Y.J.; Sim, K.S. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2019, 120, 103–115. [Google Scholar] [CrossRef]
- Mohanty, F.; Rup, S.; Dash, B.; Majhi, B.; Swamy, M.N.S. Mammogram classification using contourlet features with forest optimization-based feature selection approach. Multimed. Tools Appl. 2019, 78, 12805–12834. [Google Scholar] [CrossRef]
- Abd-Elmegid, L.A. A Proposed Architecture for Predicting Breast Cancer using Fog Computing. Communications 2019, 7, 32–35. [Google Scholar]
- Chougrad, H.; Zouaki, H.; Alheyane, O. Multi-label transfer learning for the early diagnosis of breast cancer. Neurocomputing 2020, 392, 168–180. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.; Shao, W.; Deng, K. Quantitative 3-D shape features based tumor identification in the fog computing architecture. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 2987–2997. [Google Scholar] [CrossRef]
- Zhu, G.; Fu, J.; Dong, J. Low-Dose Mammography via Deep Learning. J. Phys. Conf. Ser. 2020, 1626, 012110. [Google Scholar] [CrossRef]
- Rajan, J.P.; Rajan, S.E.; Martis, R.J.; Panigrahi, B.K. Fog computing employed computer-aided cancer classification system using deep neural network in internet of things-based healthcare system. J. Med. Syst. 2020, 44, 34. [Google Scholar] [CrossRef] [PubMed]
- Ragab, D.A.; Attallah, O.; Sharkas, M.; Ren, J.; Marshall, S. A framework for breast cancer classification using multi-DCNNs. Comput. Biol. Med. 2021, 131, 104245. [Google Scholar] [CrossRef]
- Saber, A.; Sakr, M.; Abo-Seida, O.M.; Keshk, A.; Chen, H. A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 2021, 9, 71194–71209. [Google Scholar] [CrossRef]
- Allugunti, V.R. Breast cancer detection based on thermographic images using machine learning and deep learning algorithms. Int. J. Eng. Comput. Sci. 2022, 4, 49–56. [Google Scholar]
- Rehman, K.U.; Li, J.; Pei, Y.; Yasin, A.; Ali, S.; Mahmood, T. Computer vision-based microcalcification detection in digital mammograms using fully connected depth-wise separable convolutional neural network. Sensors 2021, 21, 4854. [Google Scholar] [CrossRef]
- Canatalay, P.J.; Ucan, O.N.; Zontul, M. Diagnosis of breast cancer from X-ray images using deep learning methods. PONTE Int. J. Sci. Res. 2021, 77, 2505. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Y.; Li, L.; Pan, S.; Tariq, M.U.; Jan, M.A. IoHT-enabled gliomas disease management using fog Computing for sustainable societies. Sustain. Cities Soc. 2021, 74, 103215. [Google Scholar] [CrossRef]
- Kavitha, T.; Mathai, P.P.; Karthikeyan, C.; Ashok, M.; Kohar, R.; Avanija, J.; Neelakandan, S. Deep learning-based capsule neural network model for breast cancer diagnosis using mammogram images. Interdiscip. Sci. Comput. Life Sci. 2022, 14, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Jasti, V.; Zamani, A.S.; Arumugam, K.; Naved, M.; Pallathadka, H.; Sammy, F.; Raghuvanshi, A.; Kaliyaperumal, K. Computational technique based on machine learning and image processing for medical image analysis of breast cancer diagnosis. Secur. Commun. Netw. 2022, 2022, 1918379. [Google Scholar] [CrossRef]
- Nasir, M.U.; Khan, S.; Mehmood, S.; Khan, M.A.; Rahman, A.U.; Hwang, S.O. IoMT-Based Osteosarcoma Cancer Detection in Histopathology Images Using Transfer Learning Empowered with Blockchain, Fog Computing, and Edge Computing. Sensors 2022, 22, 5444. [Google Scholar] [CrossRef] [PubMed]
- Suckling, J.; Parker, J.; Dance, D.; Astley, S.; Al, E. The mammographic image analysis society digital mammogram database. Exerpta Medica. Int. Congr. Ser. 1994, 1069, 375–378. [Google Scholar]
- Khan, R.U.; Zhang, X.; Kumar, R. Analysis of ResNet and GoogleNet models for malware detection. J. Comput. Virol. Hacking Tech. 2019, 15, 29–37. [Google Scholar] [CrossRef]
- Theckedath, D.; Sedamkar, R.R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks. SN Comput. Sci. 2020, 1, 1–7. [Google Scholar]
- Ullah, A.; Elahi, H.; Sun, Z.; Khatoon, A.; Ahmad, I. Comparative analysis of AlexNet, ResNet18 and SqueezeNet with diverse modification and arduous implementation. Arab. J. Sci. Eng. 2022, 47, 2397–2417. [Google Scholar] [CrossRef]
- Selvaraj, T.; Rengaraj, R.; Venkatakrishnan, G.; Soundararajan, S.; Natarajan, K.; Balachandran, P.; David, P.; Selvarajan, S. Environmental Fault Diagnosis of Solar Panels Using Solar Thermal Images in Multiple Convolutional Neural Networks. Int. Trans. Electr. Energy Syst. 2022, 2022, 2872925. [Google Scholar] [CrossRef]
- Yu, Y.; Samali, B.; Rashidi, M.; Mohammadi, M.; Nguyen, T.N.; Zhang, G. Vision-based concrete crack detection using a hybrid framework considering noise effect. J. Build. Eng. 2022, 61, 105246. [Google Scholar] [CrossRef]
- Sahu, B.; Panigrahi, A.; Rout, S.K.; Pati, A. Hybrid Multiple Filter Embedded Political Optimizer for Feature Selection. In Proceedings of the 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Hyderabad, India, 21–23 July 2022; pp. 1–6. [Google Scholar]
- Yu, Y.; Liang, S.; Samali, B.; Nguyen, T.N.; Zhai, C.; Li, J.; Xie, X. Torsional capacity evaluation of RC beams using an improved bird swarm algorithm optimised 2D convolutional neural network. Eng. Struct. 2022, 273, 115066. [Google Scholar] [CrossRef]
- Pati, A.; Parhi, M.; Pattanayak, B.K. IHDPM: An integrated heart disease prediction model for heart disease prediction. Int. J. Med. Eng. Inform. 2022, 14, 564–577. [Google Scholar]
- Pati, A.; Parhi, M.; Pattanayak, B.K. A review on prediction of diabetes using machine learning and data mining classification techniques. Int. J. Biomed. Eng. Technol. 2023, 41, 83–109. [Google Scholar] [CrossRef]
- Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [Google Scholar] [CrossRef]
- Tuli, S.; Mahmud, R.; Tuli, S.; Buyya, R. FogBus: A Blockchain-based Lightweight Framework for Edge and Fog Computing. J. Syst. Softw. 2019, 154, 22–36. [Google Scholar] [CrossRef]
- Narula, S.; Jain, A. Cloud computing security: Amazon web service. In Proceedings of the 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 21–22 February 2015; pp. 501–505. [Google Scholar] [CrossRef]
- Vecchiola, C.; Chu, X.; Buyya, R. Aneka: A software platform for .NET-based cloud computing. High Speed Large Scale Sci. Comput. 2009, 18, 267–295. [Google Scholar]
- Pati, A.; Parhi, M.; Alnabhan, M.; Pattanayak, B.K.; Habboush, A.K.; Al Nawayseh, M.K. An IoT-Fog-Cloud Integrated Framework for Real-Time Remote Cardiovascular Disease Diagnosis. Informatics 2023, 10, 21. [Google Scholar] [CrossRef]
- Parhi, M.; Roul, A.; Ghosh, B.; Pati, A. Ioats: An intelligent online attendance tracking system based on facial recognition and edge computing. Int. J. Intell. Syst. Appl. Eng. 2022, 10, 252–259. [Google Scholar]
- Sahu, B.; Panigrahi, A.; Mohanty, S.; Sobhan, S. A hybrid cancer classification based on SVM optimized by PSO and reverse firefly algorithm. Int. J. Control Autom. 2020, 13, 506–517. [Google Scholar]
Dataset | Number of Images | Total Classes | |||
---|---|---|---|---|---|
Normal Class | Benign Class | Malignant Class | Total Images | ||
MIAS | 207 | 64 | 51 | 322 | 3 |
Dataset | Dataset Splits into Sets | Instances as per Class Variables | Total | ||
---|---|---|---|---|---|
Training Set | Test Set | Benign | Malignant | ||
MIAS | 901 | 387 | 836 | 452 | 1288 |
DCNN Architectures | InceptinV3 | GoogleNet | AlexNet | VGG16 | VGG19 | ResNet50 | ResNet101 |
---|---|---|---|---|---|---|---|
Training Time (in min) | 186 | 322 | 284 | 656 | 782 | 803 | 1109 |
Proposed TTM Approaches | Findings (in %) | ||||||
---|---|---|---|---|---|---|---|
Acc | MCR | Pre | Sen | Spc | F1S | MCC | |
TTM–1 | 93.27 | 6.73 | 95.24 | 96.19 | 82.33 | 95.71 | 80.05 |
TTM–2 | 93.49 | 6.51 | 95.38 | 96.33 | 83.33 | 95.85 | 80.71 |
TTM–3 | 93.71 | 6.29 | 95.52 | 96.47 | 83.84 | 95.99 | 81.36 |
TTM–4 | 93.93 | 6.07 | 95.66 | 96.61 | 84.34 | 96.13 | 82.02 |
TTM–5 | 94.15 | 5.85 | 95.81 | 96.75 | 84.85 | 96.28 | 82.67 |
TTM–6 | 94.37 | 5.63 | 95.94 | 96.89 | 85.35 | 96.42 | 83.33 |
TTM–7 | 94.59 | 5.41 | 96.08 | 97.03 | 85.86 | 96.56 | 83.98 |
TTM–8 | 94.81 | 5.19 | 96.22 | 97.18 | 86.36 | 96.71 | 84.64 |
TTM–9 | 95.03 | 4.97 | 96.36 | 97.32 | 86.87 | 96.84 | 85.29 |
TTM–10 | 98.12 | 1.88 | 98.33 | 99.29 | 93.81 | 98.81 | 94.38 |
TTM–11 | 98.34 | 1.66 | 98.47 | 99.44 | 94.33 | 98.95 | 95.04 |
TTM–12 | 99.01 | 0.99 | 98.89 | 99.86 | 95.85 | 99.37 | 97.02 |
TTM–13 | 96.79 | 3.21 | 97.49 | 98.45 | 90.86 | 97.96 | 90.49 |
TTM–14 | 97.02 | 2.98 | 97.63 | 98.59 | 91.37 | 98.11 | 91.15 |
TTM–15 | 97.24 | 2.76 | 97.77 | 98.73 | 91.88 | 98.25 | 91.81 |
TTM–16 | 95.92 | 4.08 | 96.92 | 97.88 | 88.89 | 97.39 | 87.91 |
TTM–17 | 96.14 | 3.86 | 97.06 | 98.02 | 89.39 | 97.54 | 88.57 |
TTM–18 | 96.36 | 3.64 | 97.21 | 98.16 | 89.91 | 97.68 | 89.22 |
TTM–19 | 95.25 | 4.75 | 96.51 | 97.46 | 87.37 | 96.98 | 85.95 |
TTM–20 | 95.47 | 4.53 | 96.64 | 97.61 | 87.88 | 97.12 | 86.59 |
TTM–21 | 95.69 | 4.31 | 96.78 | 97.74 | 88.38 | 97.26 | 87.26 |
Specifications | Network Parameters | |||||
---|---|---|---|---|---|---|
Latency (in ms) | Arbitration Time (in ms) | Processing Time (in ms) | Jitter (in ms) | Network Utilization (in Secs) | Energy Consumption (in Watt) | |
Specification-1 | 31.95 | 104.67 | 1986.52 | 3.95 | 8.26 | 3.72 |
Specification-2 | 36.68 | 689.42 | 2645.78 | 2.55 | 10.47 | 4.11 |
Specification-3 | 40.47 | 723.54 | 2543.67 | 3.45 | 13.92 | 5.63 |
Specification-4 | 40.21 | 1095.23 | 2489.45 | 4.35 | 16.76 | 5.87 |
Specification-5 | 45.97 | 1233.56 | 2889.34 | 5.85 | 18.62 | 6.49 |
Specification-6 | 2163.58 | 98.45 | 1023.16 | 58.65 | 24.82 | 21.53 |
Work | Methodologies Employed | Dataset(s) Employed | Performance Measures (in %) | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc | Pre | Sen | Spc | F1-S | MCR | MCC | |||
[9] | PCA, LDA, SVM | MIAS | 97.33 | - | - | - | - | - | - |
[10] | CNN | mini-MIAS and BCDR | 87.00 | 78.00 | 90.00 | - | 84.00 | - | - |
[11] | CNN | MIAS | 90.50 | - | 89.47 | 90.71 | - | - | - |
[12] | FOA, Contourlet, SVM, KNN, NB, and C4.5 | MIAS and DDSM | 100.00 | - | 100.00 | 100.00 | - | - | 100.00 |
[14] | CNN, VGG | CBIS-DDSM, BCDR, INBreast, and MIAS | - | - | - | - | 94.20 | - | - |
[16] | CNN | CBIS-DDSM | - | - | - | - | - | - | - |
[18] | DCNN, SVM, PCA | MIAS and DDSM | 97.90 | - | 98.00 | 98.00 | 96.00 | - | - |
[19] | CNN, InceptionV2, InceptionV3, ResNet50, VGG-19, VGG-16 | MIAS | 98.96 | 97.35 | 97.83 | 99.13 | 97.66 | - | - |
[20] | CNN, SVM, RF | Dataset from Kaggle | 99.65 | - | - | - | - | - | - |
[21] | DCNN, VGG-16, VGG-19 | DDSM and PINUM | 90.00 | 89.00 | 99.00 | 83.00 | 85.00 | - | - |
[22] | ResNet-164, AlexNet, InceptionV3, VGG-19 | Dataset from TCIA | 97.00 | - | - | - | 98.00 | - | - |
[24] | DLCN, SGO, BPNN | mini-MIAS and DDSM | 98.50 | - | 98.46 | 99.08 | 98.91 | - | - |
[25] | AlexNet, LS-SVM, KNN, RF, and NB | MIAS | 98.00 | 96.00 | 97.00 | 97.00 | 97.50 | - | - |
Proposed Work | DCNN, GoogleNet, ResNet50, ResNet101 InceptionV3, AlexNet, VGG16, VGG19, PCA, SVM | MIAS | 99.01 | 98.89 | 99.86 | 95.85 | 99.37 | 0.99 | 97.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pati, A.; Parhi, M.; Pattanayak, B.K.; Sahu, B.; Khasim, S. CanDiag: Fog Empowered Transfer Deep Learning Based Approach for Cancer Diagnosis. Designs 2023, 7, 57. https://doi.org/10.3390/designs7030057
Pati A, Parhi M, Pattanayak BK, Sahu B, Khasim S. CanDiag: Fog Empowered Transfer Deep Learning Based Approach for Cancer Diagnosis. Designs. 2023; 7(3):57. https://doi.org/10.3390/designs7030057
Chicago/Turabian StylePati, Abhilash, Manoranjan Parhi, Binod Kumar Pattanayak, Bibhuprasad Sahu, and Syed Khasim. 2023. "CanDiag: Fog Empowered Transfer Deep Learning Based Approach for Cancer Diagnosis" Designs 7, no. 3: 57. https://doi.org/10.3390/designs7030057
APA StylePati, A., Parhi, M., Pattanayak, B. K., Sahu, B., & Khasim, S. (2023). CanDiag: Fog Empowered Transfer Deep Learning Based Approach for Cancer Diagnosis. Designs, 7(3), 57. https://doi.org/10.3390/designs7030057