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Abstract: The goal of the trade-off design method presented in this study is to achieve newly targeted
performance requirements by modifying the current values of the design variables. The trade-
off design problem is formulated in the framework of Sequential Quadratic Programming. The
method is computationally efficient as it is gradient-based, which, however, requires the performance
functions to be differentiable. A new equation to calculate the scale factor to control the size of the
design variables is introduced in this study, which can ensure the new design achieves the targeted
performance objective. Three formal approaches are developed in this study for trade-off design to
handle various design scenarios, which include one that can handle cases with linearly dependent
constraints and with more constraints than the number of design variables. Three engineering design
problems are presented as examples to validate and demonstrate the use of these trade-off approaches
to find the best way to adjust the design variables to meet the revised performance requirements.

Keywords: gradient-based; trade-off design; sequential quadratic programming; scalar factor and
search directions

1. Introduction

Engineering design is an iterative process. The initial design usually reveals insuffi-
ciency in the existing design problem formulation, which includes design variables, options,
objectives, and constraints based on the demands and limits on the resources. A new set of
design variables, design performances, and requirements may be considered and taken
for comparison with existing ones through trade-offs. This may lead to the revision of
the existing problem formulation for the next phase of the design study. This review and
revision process of an existing design problem is called the trade-off design in this study.
Particularly, a trade-off can be defined as a balance or compromise between two or more
desirable but incompatible features. There has been some progress made in the devel-
opment of proper design optimization formulations for trade-off design. Multi-objective
design optimization is a common choice for trade-off design as it produces Pareto fronts,
which are the collection of the most favorable compromised designs. For example, multi-
objective design optimization was used by Tan et al. [1] for trade-offs between multiple
design performance measurements. The objectives are the design performance require-
ments, while the constraints are the limits on component performance. The paper indicated
that the optimal design under tight constraint limits might fail due to modeling errors
and operational uncertainties. Re-design was conducted after the multi-objective design
optimization finding a feasible design among the Pareto fronts that can meet the newly
targeted performance requirements and relaxed constraint limits. Otto and Antonsson [2]
proposed two different design optimization formulations to produce the most preferable
design by trading off different design goals. In their study, the objective was a vector of
preference ratings associated with each individual design variable and design performance
function. One approach, called the conservative design, produces the overall preference
by maximizing the design option with a minimal preference rating. The other, called the
aggressive design, identifies the optimal design that maximizes the geometric mean of the
vector of preference ratings.
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Most of the applications of trade-offs are concerned with the performance outcome of
a design. Particularly, Silveria and Slack [3] suggested measuring the significance of trade-
offs by their levels of importance and sensitivity of their impact on decision-making. Nassar
and Austin [4] addressed the importance of constructing consistent evaluation criteria to
measure the importance of every performance requirement in a multi-objective formulation
for trade-offs, regardless of whether it is a system-level option or a component-level one.
The trade-off considered by Bae et al. in [5] is the impact of design variable selection
on the final optimal solutions. In their design problem formulation, the probabilities of
failures of the components and the system were included as constraints. A Monte Carlo
simulation was employed in their study to find the probabilities of failures of components
in the system. The objective was formulated as a linear combination of terms associated
with the performance requirement of each component and the number of samples used for
reliability analysis. The number of samples was included in the objective, as they affected
the accuracy of variance estimation in the Monte Carlo simulation. In addition to using the
weighting coefficients to combine all performance alternatives together to form a single
performance aggregation function, Wang and Terpenny [6] applied fuzzy set theory to
count the uncertainty and added penalty coefficients to enforce the constraints that are
imposed upon each of the performance alternatives. Furthermore, a power index was
applied to all performance alternatives to represent the level of compensation. The goal
of the trade-off in [6] was to match the fuzzy-based performance aggregation function to
the targeted design output by adjusting the weighting coefficients and the compensation
factor based on a root-mean-square minimization strategy. The targeted design output was
determined by the designer’s decision, which can be quickly updated. Rojas et al. [7] set up
a utility function to measure the performance values of all technical components required
to build a wireless power transfer device and applied the analytic hierarchy process (AHP)
to determine the weighting factors of criteria for selection. The trade-off analysis used
the weighted sum of these utility functions to select the proper technical components that
could be assembled to produce the most suitable implanted medical device.

The common goal of the trade-off design mentioned in the most publication cited
above was to select the most suitable design among the existing design alternatives by
trading off different performance requirements. However, the goal of the current research
is to trade off the current values of the selected design variables to achieve newly targeted
performance function values. Particularly, the current trade-off design aims to modify
the existing values of the selected design variables to minimize the difference between
the targeted and the current values of the performance functions, regardless of whether
they are assigned as objectives or constraints. To this end, a gradient-based method for
trade-off design is developed in this study to investigate the impact of changes in the design
requirements on the values of the current design variables. This trade-off design method is
formulated based on the framework of Sequential Quadratic Programming (SQP) [8–12] to
find the minimal changes required in the design variables to achieve the targeted changes
to all specified performance requirements. The proposed method is computationally
efficient, as it is gradient-based. Consequently, it requires that all performance functions
are differentiable with respect to the selected design variables.

The rest of the paper is organized into three sections. Three different optimization
formulations will be presented in Section 2 for trade-offs in different design scenarios. All
performance measurements and limits are treated as equally important in the formulations.
The output of these formulations is the required changes in the selected design variables
to achieve the targeted values of the desirable performances and limits. Three examples
are presented in Section 3 to validate the proposed formulations and demonstrate their
applications for trade-offs. The first example is the design of a cubic box, the second is to
adjust the stiffness matrix of a vibration problem to achieve three targeted frequencies, and
the last is an I-beam design problem. The weight, the deflection, the bending stress, and
the frequencies of the I-beam are considered as performance requirements. Concluding
remarks are provided in the final section.
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2. Materials and Methods

Section 2 is made of three subsections, each of which investigates one mathematical
formulation to handle a specific trade-off scenario. All trade-off designs are formulated
here in the framework of the SQP but with different objectives and constraints in different
subsections. Section 2.1, named the Single Objective Approach (SOA), formulates the
trade-off problem by selecting only one performance function as the objective and the
rest as the constraints. Section 2.2, named the Constraint Only Approach (COA), counts
all performance functions equally as the constraints in the trade-off formulation. Both
formulations produce identical results, and both require the gradients of all involved
functions to be linearly independent of each other. Section 2.3, named the Multiple Objective
Approach (MOA), introduces a new formulation to resolve the problem with the linearly
dependent gradients as well as the over-constrained problem. The latter is the case when
the number of the performance function requirements is greater than that of the design
variables. Different equations are proposed in different subsections to compute scalar
factors to support the specific needs of trade-off designs. The scalar factor is an essential
element in the trade-off design investigated here, which enables a search direction to
accurately achieve the targeted change in the objective function.

Note that in all notations, matrices are denoted by upper case letters, vectors by bold
letters, and scalars by lower case letters.

2.1. Single Objective Approach (SOA)

The goal of the trade-off design is to find the change of the design variables, s, so
that the revised design x, x = x0 + s, about the current design, x0, can achieve the targeted
changes in the objective and constraint functions. Only one objective is considered in this
Single Objective Approach (SOA). The trade-off design is formulated in the framework
of SQP. Traditionally, the SQP plays a key role in supporting direct search design opti-
mization [8–13]. It aims to find the least change in the design variables that can reduce
the objective function, f (x0), and in the meantime, achieve the required corrections in
the current values of the inequality constraints, g(x0), and the equality ones, h(x0). Its
formulation can be stated below.

min
s ∈ Rn

(∇ f (x0))
Ts +

1
2

sTWs (1)

Subject to:
(∇g(x0))

Ts + g̃ ≤ 0

(∇h(x0))
Ts + h̃ = 0

where g̃ and h̃ are the gaps between the targeted and the current function values, defined
as g̃ ≡ g(x0)− gT and h̃ ≡ h(x0)− hT, where gT and hT represent the targeted values of
the performance requirements. The optimal solution, s, of Equation (1) is called the search
direction, which represents the most effective way to reduce the current objective and
correct the current constraint violations. A quadratic term of s is added to the objective to
control the size of s to ensure the validity of the first-order approximation. The diagonal
matrix W with positive diagonal terms is added to scale the design variables. The gradients
in the above formulation,∇ f ,∇g and∇h, are also evaluated at the current design variables,
x0. The row numbers of all gradients are equal to the number of design variables, while the
column numbers of ∇g and ∇h are equal to the respective numbers of the inequality and
equality constraints. Since only the violated or active inequality constraints, which yield
gi(x0) + ε > 0, are considered in the solution process, the above problem can be recast as
one with equality constraints as stated below.

min
s ∈ Rn

(∇ f )Ts +
1
2

sTWs
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Subject to:
(∇g)Ts + g̃ = 0

(∇h)Ts + h̃ = 0

where the number of columns of∇g is now equal to the number of active constraints. Note
that the total number of constraints must not be greater than the number of the design
variables. Furthermore, it is assumed that the gradients of the constraints are linearly
independent of each other. Since the inequality and equality constraints are all in the same
form in the formulation, only one is kept in the following derivation for simplicity. Thus,
the problem is simplified as

min
s ∈ Rn

(∇ f )Ts +
1
2

sTWs (2)

subject to:
(∇g)Ts + g̃ = 0

The Lagrange function of this problem is stated as

L = (∇ f )Ts +
1
2

sTWs + λT
(
(∇g)Ts + g̃

)
The Kuhn–Tucker necessary condition yields the following equation,

∇L = ∇ f + (∇g)λ + Ws = 0

which can be solved to obtain the optimal solution of Equation (2) in terms of the Lagrange
multipliers, λ, as

s = −W−1∇ f −W−1(∇g)λ (3)

Pre-multiplying (∇g)T to Equation (3), one has

(∇g)T s = −(∇g)TW−1∇ f − (∇g)TW−1(∇g)λ

Note that (∇g) Ts = −g̃ as required by the equality constraint statement in Equation (2),
the above equation becomes,

g̃ = (∇g)TW−1∇ f + (∇g)TW−1(∇g)λ

which yields an equation of λ as

(∇g)TW−1(∇g)λ = −(∇g)tW−1∇ f + g̃ (4)

Under the assumption that the columns of ∇g are linearly independent of each other,
Equation (4) can be solved uniquely for λ as

λ = −
{[

(∇g)TW−1(∇g)
]−1

(∇g)tW−1
}
∇ f +

[
(∇g)TW−1(∇g)

]−1
g̃

Substituting λ back to Equation (3) results in the search direction, s, expressed in terms
of ∇ f and ∇g as

s = −W−1
[

I − (∇g)
(
(∇g)W−1(∇g)T

)−1
(∇g)TW−1

]
∇ f −W−1(∇g)

[
(∇g)TW−1(∇g)

]−1
g̃

Set the matrices P and Q as

P ≡ I − (∇g)
[
(∇g)TW−1(∇g)

]−1
(∇g)TW−1 (5)
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and
Q ≡W−1(∇g)

[
(∇g)TW−1(∇g)

]−1
(6)

The search direction expression derived above can now be simplified as

s = −W−1P∇ f −Qg̃ (7)

It allows the search direction to be separated into two parts,

s = −s1 + s2

where s1 is related to the objective reduction,∇ f , while s2 corrects the constraint violation,

s1 ≡W−1P∇ f (8)

s2 ≡ −Qg̃ (9)

The matrix P is called the projection matrix, as it can be proved that PP = P. Moreover,
it can be shown that PTQ = 0, which implies that s1 is orthogonal to s2 with respect to the
weighting matrix, W. That is,

sT
1 Ws2 = (W−1P∇ f )

T
WQg̃ = (∇ f )T

(
PTQ

)
g̃ = 0

It can also prove the following relations,

−(∇ f )Ts1 ≤ 0

(∇g)Ts1 = 0

(∇g)Ts2 = −g̃

These relations indicate that −s1 is the part of the search direction that can reduce the
objective function without changing the values of the constraints. On the other hand, s2 is
the only part of the search direction that is responsible to reduce the constraint violations.
However, s2 may affect the value of the objective function as

(∇ f )Ts2 6= 0

A scalar factor α is introduced in the search direction to produce a search direction
that can achieve the targeted change in the objective function. That is,

s = −αs1 + s2 (10)

Assume that the desired correction, ∆ f, in the objective is represented by the difference
between the current objective, fC = f (x0), and the targeted objective, fT ; i.e., ∆ f ≡ fC − fT .
It is expected that the improved design, x0 + s, can meet the targeted objective. Thus, the
goal is to achieve f (x0 + s) = fT . The desired correction, ∆ f , can then be approximated by
the first-order expansion as

0 = f (x0 + s)− fT = (∇ f (x0))
Ts + f (x0)− fT = (∇ f )T(−αs1 + s2) + ∆ f (11)

Solving for α yields

α =
∆ f +∇ f Ts2

(∇ f Ts1)
(12)
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Note that the equation of the scalar factor is valid only if the gradient of the objective,
∇ f , is linearly independent of the columns of ∇g. Otherwise, ∇ f Ts1 = 0. Its proof is
presented in Appendix A.

The SQP formulations like the one reported in Equation (2) have been used by many
optimization algorithms recursively to find the search direction s that can locate an im-
proved design about the current design. The uniqueness of the current approach is the
use of the scalar factor. The scalar factor is called the step size, which is selected to reduce
the objective in the commonly used optimization algorithms rather than to achieve the
required changes in the objective in this study. In some published work [8,11], the scalar
factor, α, is calculated to reduce the objective function alone as

α =
∆ f

(∇ f Ts1)

The others set α up to adjust the entire search direction as

s = α(−s1 + s2)

In this case, the α is sought to minimize a user-defined merit function which is the
weighted combination of the objective function and the maximal violation [8–10].

Two special applications of the SOA are discussed hereafter that can handle certain
circumstances more effectively. In the first case, the goal is to find the search direction
that can reduce the objective by a certain amount without changing the constraints. In
this case, the constraints remain unchanged, g̃ = 0, s2 = 0. Consequently, the search
direction becomes.

s = −αs1 = −
(

∆ f
(∇ f Ts1)

)
s1

In the second case, the goal is to correct the violation without changing the objective
function. In this case, ∆ f = 0 and the search direction defined by Equation (10) is revised as

s = −
(
∇ f Ts2

∇ f Ts1

)
s1 + s2

2.2. Constraint-Only Approach (COA)

The objection function in this approach is treated as part of the constraint set with the
desired amount of reduction, ∆ f . Thus, the constraint set is expanded to include f as

∇g =
(
∇ f ∇g

)
and g̃ =

{
∆ f
g

}
(13)

where g represents the initial constraint set. The amount, ∆ f , presented in Equation (13) is
the same as that described in Equation (11). Particularly, ∆ f is the adjustment of the current
objective to meet the goal,

∆ f = fC − fT

Note that in this case, the total number of constraints must be less than the number of
design variables. Additionally, gradients of all functions involved, including f and g, must
be linearly independent of each other. Once f is removed from Equation (2), the sequential
quadratic programming problem becomes

min
s ∈ Rn

1
2

sTWs (14)

subject to:
(∇g)Ts + g̃ = 0
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where the change of the objective, ∆ f , is now part of g̃. Equation (14) is referred to as the
constraint correction algorithm in optimization [12], which also has been used for correcting
kinematic constraints in multibody dynamics [14–16].

The solution of Equation (14) is now found to be:

s = s2 = −Qg̃ = −W−1∇g
[
(∇g)TW−1(∇g)

]−1
g̃ (15)

Set the vector p to be the solution of the following matrix equation,[
(∇g)TW−1(∇g)

]
p = g̃ (16)

The search direction, s, in Equation (15) can be recast as

s = s2 = −Qg̃ = −W−1(∇g)p

To investigate the relation between the search directions described by Equation (15)
and Equation (10) of the SOA, one may expand Equation (16) in detail. This can be done by
decomposing Equation (16) into two parts to separate the objective reduction, ∆ f from the
rest of the constraint correction, g as[{

∇ f T

∇gT

}
W−1(∇ f ∇g

)]{p f
pg

}
=

{
∆ f
g

}
or more specifically, [

∇ f TW−1∇ f ∇ f TW−1∇g
∇gTW−1∇ f ∇TgW−1∇g

]{
p f
pg

}
=

{
∆ f
g

}
The above matrix equation can then be solved separately in two steps. The second

row of the above equation yields the solution as

pg = −
(
∇TgW−1∇g

)−1(
∇gTW−1∇ f

)
p f +

(
∇TgW−1∇g

)−1
g

while the first row produces the solution,

p f = −
(

∆ f +∇ f Ts2

∇ f Ts1

)
s1 + s2

Consequently, the search direction obtained from Equation (15) can be shown to be,

s = s2 = −Qg̃ = W−1(∇g)
[
(∇g)TW−1(∇g)

]−1
g̃ = −W−1(∇g)p

=
[
−W−1P∇ f p f −Qg

]
= −p f s1 + s2

(17)

where P, Q, s1, and s2 are the same as those defined by Equations (5)–(9) in terms of the
original constraint set, which does not include the objective function, f. Also, note that
p f is identical to the scalar factor, α, derived earlier in Equation (12). Equation (17) states
that the search direction, s, in the COA, is the same as Equation (10) derived for the SOA.
The COA provides an alternative to formulate and solve the trade-off problem defined by
Equation (2). Once the amount of the reduction in the objective is known and included as
part of constraint correction, the design change can be obtained alone by s2 of Equation (17)
in terms of the newly defined g̃ in Equation (13). The detailed proof of Equation (17) can be
found in Appendix A.
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2.3. Multiple-Objective Approach (MOA)

The formulation presented by either Equation (2) or (14) for trade-off design cannot
handle the cases when the number of functions is greater than the number of the design
variables nor some of the functions whose gradients are linearly dependent on each other.
In this case, one may set up an objective function that involves those linearly dependent or
over-constrained functions as

η(s) ≡ 1
2

(
(∇f)Ts + ∆f

)T(
(∇f)Ts + ∆f

)
(18)

The scalar objective function, η(s), in Equation (18) represents the magnitude of
adjustment of the objective function vector, f as,

f(x0 + s )− fT = (∇f)Ts + f(x0)− fT = (∇f)Ts + ∆f

Thus, the intention of Equation (18) is to measure the gap between the revised design,
f(x0 + s ) and the targeted fT. The gradient of η(s) is found to be,

∇η = −∇f∆f (19)

Note that the desirable changes in functions are now defined in a vector form,

∆f ≡ f(x0 )− fT

and the Jacobian ∇f is now a matrix. Its row number is equal to the number of design
variables, and its column number is the same as the number of functions involved in
Equation (19).

The SQP of Equation (2) can then be conveniently extended to include the new objec-
tive, η(s) for the case with multiple objective functions as,

min
s ∈ Rn

(∇η)Ts +
1
2

sTWs

subject to:
(∇g)Ts + g̃ = 0

where g is the collection of the rest of linearly independent constraints. The search direction
is now given by,

s = −αs1 + s2 = −αW−1P∇η −Qg̃ = −αW−1P∇f∆f−Qg̃

The scalar factor α is now determined by minimizing the gap between the revised
design and the targeted objectives, f(x0 + s )− fT. To this end, the value of α is found to
minimize the error measurement defined in Equation (18),

min
α

η(α) =
(
(∇f)Ts + ∆f

)T(
(∇f)Ts + ∆f

)
where s = −αs1 + s2. The scalar factor α is then found to be

α =
aTb
aTa

(20)

where a = (∇f)Ts1 and b = (∇f)Ts2 + ∆f.

3. Results

Three examples are presented in this section to demonstrate the use of methodologies
described in Section 2 for the trade-off. The first example trades off three design variables of
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a cubic box to match two different sets of performance requirements. The second example
uses the COA to adjust three design variables of an eigenvalue problem to match tightly
three targeted requirements. The third example uses trade-off design recursively to adjust
the dimensions of a cantilever beam to achieve different design requirements. The example
starts with an initial optimization that aims to reduce the weight of the beam as much as
possible while still satisfying constraints imposed upon the deformation, yielding stress,
shear stress, and geometry. New performance requirements are then added to problem
formulation in sequence. The MOA is used in the last part of Example 3 to handle the cases
with linearly dependent function gradients and overloaded constraints.

3.1. Example 1: Formulation and Design of a Cubic Box

The lengths of three edges of a box are assigned to be the design variables, x1, x2, and
x3. The performance functions considered here involve the volume, surface area, and weld
length of this box, which are defined by,

V = x1x2x3

A = 2(x1x2 + x2x3 + x3x1)

W = 4x1 + 4x2 + 4x3

The design starts with the given values as, x =
{

3.0 2.0 1.0
}

, which results in a
volume of 6, a surface area of 22, and a weld length of 24. Two scenarios will be investigated
here: one with two performance functions; volume and surface area, and the other with
three; volume, surface area, and weld length.

3.1.1. Two Performance Requirements: Volume and Surface Area

The goal here is to update the design variables that can reduce the current volume from
6 to 4 and the surface area from 22 to 18. The SOP will be used in the first attempt in which
the volume is assigned as the objective and the surface area the constraint. Consequently,
the values of ∆ f and g̃ are 2 and 4, respectively. The search direction for the objective
correction is given by,

s1 ≡ P∇ f =
(
−0.88 −0.84 1.20

)T

while the search direction for constraint correction is given by

s2 ≡ −Qg̃ =
(
−0.12 −0.16 −0.20

)T

On the other hand, the scalar factor α calculated by Equation (12) is found to be,

α =
−∆ f +∇ f Ts2

∇ f Ts1
= 0.0274

Therefore, the required changes in the design variables are found to be,

s = −αs1 + s2 =
(
−0.0959 −0.1370 −0.2329

)T

which produces the revised design as

x = x0 + s =
(
2.904 1.863 0.767

)T

As a result, the volume and the surface area of the revised design are obtained as 4.15
and 18.13, respectively, which are close to the target values of 4 and 20.
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The COA is used in the second attempt to solve the same design requirement. However,
in this case, both volume and surface area are counted as constraints, and their required
changes are set to be,

g̃ =

{
∆ f
g̃

}
=

{
2
4

}
This approach produces the same revised design as the SOA.
Note that the trade-off design proposed here is based upon the linearized approxima-

tion of all functions of concern. Therefore, it is expected that a better trade-off design can
be achieved with less amount of adjustment in the performance measurements. To demon-
strate this matter, an exercise was performed with the amount of adjustment in volume
being reduced in sequence from 2 to 1 and finally to 0.5, and the amount of adjustment in
the surface area was reduced from 4 to 2 and to 1. The results are summarized in Table 1.

Table 1. Fewer changes in function adjustments produce better results.

Cases x1 x2 x3 Volume/Target Surface
Area/Target

Initial 3 2 1 6 22
Reduction (−2, −4) 2.904 1.863 0.769 4.150/4.0 18.134/18
Reduction (−1, −2) 2.952 1.932 0.884 5.038/5.0 20.034/20

Reduction (−0.5, −1) 2.976 1.966 0.941 5.509/5.5 21.008/21

3.1.2. Three Performance Requirements: Volume, Surface Area, and Weld Length

A new performance is added to the constraint set in this example, which requires the
weld length to be 20. The special feature of this new example is that it is subjected to three
equality constraints which are equal to the number of the design variables. Therefore, the
constraint set can be directly employed to solve for three design variables. To this end,
a root-finding function, fsolve, in Matlab (R2023a) is applied here but failed to generate
a solution.

The COA is then employed to reach a revised design,

x = x0 + s2 =
(
0.5 4.0 0.5

)T (21)

The new design produces a cube with a volume, a surface area, and a weld length of
1.0, 8.5, and 20. The new design satisfies the linear constraint in the weld length but fails to
match the required volume and surface area. A second attempt is made to use the above
solution as the initial design to restart the new design revision process. The COA failed
as the Jacobian of the constraints is singular at this initial design stated in Equation (21).
This is because the gradient of the volume is now linearly dependent on the gradients of
the surface area and the weld length at the current design point. Specifically, the linear
dependence of gradients can be described as

∇V = 0.25×∇A− 0.625×∇W

The MOA was then used to find the revised design with linearly dependent constraint
gradients. The trade-off design starts with the design specified in Equation (21). The
performance requirements of the volume and the surface area will be included in the
composite function defined in Equation (18), while the weld length is kept as an equality
constraint. Since the initial design has the weld length matched with the targeted value,
it starts with g̃ = 0 in this case, which leads to s2 = 0. Consequently, the computation of
the search direction is simplified as s = −αs1, so does the scalar factor, which is stated
in Equation (21) with a = (∇f)Ts1 and b = ∆f. It takes three recursive runs to reach a
satisfactory solution. The largest gap between the final and the targeted performances was
found in the surface area.
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A Matlab built-in function, fgoalattain [17], which is a multi-objective goal attainment
program, is also applied here to solve the same problem. The volume and the surface area
are given as the objectives, with the goals being 2 and 4, respectively. The limit on the weld
length is provided as an equality constraint. It takes 10 iterations to reach the solution.
The results of these exercises are listed in the last row of Table 2 for comparison. The goal
attainment program produces a result with equal design variables. It performs better in
surface area but worse in volume in comparison with the results of the MOA.

Table 2. Multi-objective approach for dependent constraint gradients.

Cases x1 x2 x3 Volume/Target Surface
Area/Target

Weld
Length/Target

Initial 0.5 4.0 0.5 1.0/4.0 8.5/18.0 20.0/20.0
Run 1 1.1891 2.6218 1.1891 3.7070 15.2981 20.0
Run 2 1.5599 1.8803 1.5595 4.5753 16.5989 20.0004
Run 3 2.0220 0.9562 2.0220 3.9092 15.9101 20.0004

Goal Att. 1.6667 1.6667 1.6667 4.6296 16.6667 20.0

3.2. Example 2: Control Problem with Three Targeted Eigenvalues

The goal of this example is to modify the design to achieve multiple targeted changes
in the performance requirements. This is done with the recursive use of the Constraint
Only Approach (COA).

The performance of concern is the eigenvalues of a 3× 3 matrix equation,

Dy = λy

where matrix D is a matrix of 4 design variables, x1 , x2, x3 and x4, as specified below,

D =

 −0.5 + x1 0 x2
−2x1 + 2x3 −2 10− 2x2 + 2x4

x3 1 −2 + x4


With initial design values, x1 = x3 = x4 = −4, and x2 = −0.2564, the matrix D is

given by,

D =

−4.5 0 −0.2564
0 −2 2.5128
−4.0 1 −6


and the eigenvalue equation yields three eigenvalues, λ1 = −6.9314, λ2 = −4.1587 and
λ3 = −1.4099. The goal now is to modify D such that eigenvalues can match with the
targeted values; λ∗1 = −5.0, λ∗2 = −3.0 and λ∗3 = −1.0. To this end, the performance require-
ments can be expressed as a set of three equality constraints according to Equation (14):

g1 ≡ λ1(x + s)− λ∗1 = 0

g2 ≡ λ2(x + s)− λ∗2 = 0

g3 ≡ λ3(x + s)− λ∗3 = 0

The required change in this initial design is given by g̃ = −
(
1.931 1.159 0.410

)T .
The COA is employed here recursively to find the revised design. After four iterations, the
revised design can produce eigenvalues close to the targeted values with errors less than
10−4. The results of this trade-off design process are summarized in Table 3.
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Table 3. Recursive Trade-off Design History to Match Three Eigenvalues.

Study Case x1 x2 x3 x4 λ1 λ2 λ3

Initial −4 −0.2564 −4 −4 −6.9314 −4.1587 −1.4099
Run 1 −1.9544 0.2879 −3.9360 −2.8956 −5.6370 −2.2574 −1.4556
Run 2 −2.4562 0.5175 −3.8645 −2.0438 −4.9435 −3.0723 −0.9842
Run 3 −2.4196 0.4990 −3.8695 −2.0804 −4.9990 −3.0019 −0.9998
Run 4 −2.1486 0.4984 −3.8696 −2.0814 −4.9999 −3.0001 −1.0000

The goal attainment program, fgoalattain, is again employed here to resolve the above
problem. The object in its formulation is to have all three eigenvalues matched with the tar-
geted values. The results are found to be x =

(
−1.5954 1.2040 −0.4201 −2.9046

)T,
which is different from that presented in Table 3. The solution to the problem studied here
is not unique.

3.3. Example 3: Design Problem of an I-Beam

A design problem of an I-beam is used as a platform to demonstrate the trade-offs
between the values of design variables and the design performance requirements. The
cantilever I-beam, shown in Figures 1 and 2, is required to be as light as possible and be
able to support a uniformly distributed load, P, without failure.
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The design variables are those specifying the cross-sectional dimensions of the beam.
They are defined as x1, the width of the beam minus the web thickness, x2, the web
thickness, x3, the height minus the thickness of both flanges and x4, the total height of the
beam. Based on the definition of the variables, the cross sections area, the moment of inertia
I, and the area of the moment, Q, are expressed as:

A = x1x4 + x2x4 − x1x3

I =
x1x3

4 + x2x3
4 − x1x3

3
12

and

Q =
(x1 + x2)

(
x2

4 − x2
3
)
+ x2x2

3
8

The total distributed load ω on the beam is equal to the summation of the externally
distributed load and the weight density per unit length. Thus, the total distributed load is
given by

ω = P + ρA

where ρ is the density of the beam per unit volume, and A is the cross-sectional area. The
performance requirements in this I-beam design problem include the total weight, the
maximal deflection at the free end, δmax, the maximal bending stress, σmax, and the maximal
shear stress at the fixed end, τmax, and the two fundamental frequencies, f1 and f2.

For this example, the length of the beam ` is set to be 40 inches, and the uniformly
distributed load P is set at 25 lbf/in. The beam is made of steel with Young’s modulus E of
30× 106 psi and a density ρ of 29 lbf/in3. The maximum allowable yielding stress σyd is
equal to 12 kpsi, the maximal deflections δo, is 0.1 inches, and maximum shear stess τo, is
1500 lbf/in2. These performance measurements are expressed as

Wt = ρ`A

δmax =
ω`4

8EI

σmax =
ω`2x4

4I

τmax =
ω`
(
(x1 + x2)

(
x2

4 − x2
3
)
+ x2x2

3
)

8 x2 I

The fundamental frequencies are calculated from the eigenvalues of the I-beam. To
this end, the I-beam is discretized into two Euler beam elements, based upon which an
eigenvalue matrix equation is built as follows

Kyi = λi Myi (22)

where the inputs are K and M, the stiffness and the mass matrices, and the output is λi and
yi are the pair of the ith eigenvalue and eigenvector. Here the eigenvector is normalized.
That is yT

i Myi = 1. The equations of the first and second fundamental frequencies can then
be defined as,

f1 =

√
λ1

2π

f2 =

√
λ2

2π
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The gradients of the frequencies with respect to the design variables can then be found
by differentiating Equation (22) as

∂ fi
∂xk

=

√
λi

4π

(
1
I

∂I
∂xk
− 1

A
∂A
∂xk

)
(23)

By careful examination, the above equation reveals that the gradient vectors of distinct
eigenvalues of the I-beam problem are linearly independent of each other.

Three trade-off design examples are reported separately in Sections 3.3.2–3.3.4. They
are carried out using the result of an optimal design run as the initial design point. The
optimal design run is reported in Section 3.3.1. Example 1 in Section 3.3.2 deals with three
targeted constraint functions. Example 2 in Section 3.3.3 deals with four constraints, among
which two constraints exhibit linearly dependent gradients. Example 3 in Section 3.3.4
works with five constraints. The challenge in Example 3 is that the number of the tar-
geted constraints is greater than the number of the design variables. To demonstrate its
effectiveness, the MOA will be used to solve Examples 2 and 3.

3.3.1. Initial Design Optimization

The design process starts with an optimization problem to minimize the weight
subjected to constraints on deflection, normal stress, shear stresses, and geometry. The
geometry constraint ensures that the thickness of the flange is greater than 0.25 inches and
the bounds of the dimensions are in the range between 0.5 and 5 inches. The mathematical
formulation of the design optimization problem is expressed below

min
X1,X2,X3,X4

W = ρ`A = ρ`(x1x4 + x2x4 − x1x3)

subject to:

g1 =
ω`4

8EI
− δo ≤ 0

g2 =
ω`2X4

4I
− σyd ≤ 0

g3 =
ω`
(
(x1 + x2)

(
x2

4 − x2
3
)
+ x2x2

3
)

8 x2 I
− τo ≤ 0

and the geometry constraint and the bounds

g4 = x3 − x4 + 0.5 ≤ 0

5 ≥ x1, x2, x3, x4 ≥ 0.5

All performance constraints are weighted equally in the optimization process, which
is normalized with respect to their upper limits.

The initial optimization was solved using the Matlab built-in function, fmincon, with
the initial guess (2, 0.25, 1, 2). The optimal design was found to be (0.7469, 0.5, 3.1583, 3.6583).
This result produces an I-beam with a weight of 25.55 lbs, a deformation of 0.0875 inches,
a yielding stress of 12 kpsi, and a shear stress of 757.5 lbf/in2. More specifically, the
yielding stress of the final design hits the upper bound, the design variable, x2, which is the
thickness of the web, hits the lower bound, and the geometry constraint, or the difference
between x4 and x3, hits the bound. Thus, the thickness of the flange also reaches the lower
bound. In short, the four design variables of the I-beam problem are subjected to three tight
constraints, σmax = σyd, x3 − x4 + 0.5 = 0, and x2 = 5, at the optimal solution.
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3.3.2. Example 1: Trade-Offs with Three Performance Functions

The goal of this example is to modify the optimal design to have three selected
performance functions matched exactly with the targeted values. The first case will con-
sider the maximal deflection, the maximal yielding stress, and the geometry constraint,
while the second case will replace the geometry constraint with the constraint on the first
natural frequency.

The first case was solved by the SOA, in which the deformation is set as the objec-
tive function, while the yielding stress and the difference between X4 and X3, which is
referred to as the geometry constraint, were set as the targeted equality constraints. The
initial design is set at (0.7469, 0.5000, 3.1583, 3.6583), which is the optimal design result
obtained from Section 3.3.1. The SOA takes four iterations to produce a revised design,
(0.81341, 0.68104, 2.7, 3.2), which results in a deformation of 0.1 inches, yielding stress of
12 Kpsi, and the difference between x3 and x4 of 0.5 inches. Therefore, it accurately meets
all the desired requirements. The same problem is solved by the COA, which produces the
same result.

The second case will continue the previous study, with its starting design point setting
as (0.81341, 0.68104, 2.7, 3.2). In this case, though, the existing geometry constraint in the
existing constraint set will be replaced by the constraint imposed upon the first fundamental
frequency, which is required to be 80 Hz. The SOA took four iterations to match closely
to the targeted constraints. The final design is (1.0545, 0.3869, 2.3932, 3.2), which results
in a first fundamental frequency of 80 hertz, a deformation of 0.1 inches, a yielding stress
of 12 Kpsi, and a difference between x3 and x4 of 0.807 inches. It is important to note that
the geometry constraint is higher than the previous targeted value; however, the geometry
constraint is not being imposed in this case. Therefore, it accurately meets all the desired
performance requirements.

This case is also solved by using the COA. In this approach, the first fundamental
frequency, deformation, and yielding stress are all set as constraints. Like Example 1, the
results produced by the COA are the same as those by the SOA. The results of these two
cases are summarized in Table 4.

Table 4. Recursive trade-off design history for Example 3.3.

Cases x1 x2 x3 x4 Weight Defl. Stress x4−x3 Freq 1 Freq 2

Opt 0.747 0.5 3.158 3.658 25.55 0.0875 12,000 0.5 83.349 526.52
Ex. 1

Case 1 0.813 0.681 2.7 3.2 29.99 0.1 12,000 0.5 72.098 455.44

Ex. 1
Case 2 1.055 0.387 2.393 3.2 24.23 0.0999 11,999 0.8068 79.999 505.36

Ex. 2 1.024 0.414 2.409 3.2 24.75 0.1 12,000 0.7905 79.172 500.13
Goal att. 1.028 0.411 2.407 3.2 24.69 0.1 12,000 0.7926 79.267 500.73

Ex. 3 1.374 0.452 2.7 3.2 24.75 0.1 12,000 0.5 79.172 500.13
Goal att. 1.380 0.449 2.7 3.2 24.69 0.1 12,000 0.5 79.267 500.73

3.3.3. Example 2: Trade-Offs with Four Performance Functions

The goal for this example is to demonstrate the use of MOA to handle situations where
the gradients of involved functions are not all linearly independent of each other. Neither
the SOA nor the COA can work in these cases. This example will consider four performance
functions, including the first, the second fundamental frequencies, the maximal deflection,
and the maximal stress constraints. Note that the gradient of the second fundamental
frequency, which is newly added to the problem formulation, is parallel to the gradient of
the first fundamental frequency, as indicated by Equation (23).

The MOA will be employed in this case, in which the objective function is made
of both first and second fundamental frequencies, and the constraints include the max-
imal deflection and the maximal stress. The approach starts with an initial design at
(1.0545, 0.3869, 2.3932, 3.2), which is the result obtained at the end of Example 1. After
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two iterations, the approach reaches a design with an acceptable result. The design is
(1.0242, 0.41375, 2.4095, 3.2), which results in a first fundamental frequency of 79.172 Hz
and a second fundamental frequency of 500.1311 Hz and achieves the targeted constraints:
the maximal deflection, 0.1 inches, and the maximal stress, 12 Kpsi.

For comparison, this problem is also solved using the goal attainment function in
Matlab, fgoalattain. The goal is to enforce the two fundamental frequencies to be the same
as the respective targeted values. To this end, the EqualityGoalCount option is selected as an
input parameter for this run. The optimization was terminated after 20 iterations because
the maximal constraint violation was less than 10−6. The results are listed in Table 4, which
are close to those obtained by the MOA.

3.3.4. Example 3: Trade-Off with Five Performance Functions

Example 2 is repeated here with the same objective and the same initial design. How-
ever, one more equality constraint on geometry, x4 − x3 = 0.5, is added back to the
constraint set. Therefore, the number of the targeted functions is now 5, which is higher
than the number of the design variables. The problem will be solved by the MOA as well
as the goal attainment program, fgoalattain. The targeted objectives will be the fundamental
frequencies 1 and 2.

The MOA takes three iterations to reach the design (1.3739, 0.45209, 2.7, 3.2), which
results in a first fundamental frequency of 79.172 Hz, a second fundamental frequency of
500.131 Hz and achieves the targeted constraints; the maximal deflection, 0.1 inches, the
maximal stress, 12 Kpsi, and the newly added constraint, x4 − x3, 0.5. On the other hand,
the goal-attainment program produces the final design at (1.3804, 0.44944, 2.7, 3.2) after
seven iterations. The new design satisfies the targeted constraint values and produces the
two fundamental frequencies of 79.26 Hz and 500.73 Hz.

The results of all seven examples investigated in this I-beam problem are summarized
in Table 4. The four design variables of the I-beam problem are related to the sectional
geometry, while the performance requirements involve the weight, the maximal deflection,
the maximal stress, the thickness of the flange, and the first two fundamental frequencies.
The active performance constraints considered in each case are indicated by the bold
numbers in Table 4. The results show that adding the deflection and the first frequency
requirements in the constraint set will not affect the value of the design variable x4, which
is the height of the beam. Frequency 2 can be added as a new performance requirement
without causing too many changes in the design variables. On the other hand, adding
the geometry constraint as a new requirement will increase about 30% the values of the
design variables x1 and x3, which are related to the width of the flange and the depth of
the web. The weight of the I-beam remains stable throughout this trade-off study, which is
not considered here as a constraint.

4. Concluding Remarks

The goal of a trade-off methodology is to find a design balance between demands
and supplies. In common practice, the demands are the performance requirements, while
the supplies are the available design alternatives. The trade-off presented in this paper,
however, offers a different design problem formulation. The new trade-off process starts
with an existing design. The goal now is not to find an optimal design but rather to find
the most effective way to modify the current design variables to achieve the newly revised
or added performance requirements. To this end, three different trade-off formulations
and solution procedures were developed in this study, the Single Objective Approach
(SOA), the Constraint Only Approach (COA), and the Multi-objective Approach (MOA).
All these developments are solved by the traditional quadratic programming techniques to
produce a new design that can achieve the revised performance requirements with minimal
modification of the current design variables. An equation is developed in this study to
compute a scale factor that can adjust the size of the new design variables to accurately
achieve the required changes imposed upon the performance functions, regardless of
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whether they are formulated as objectives or constraints. This scale factor is the most
critical element in these proposed trade-off methods. Furthermore, two critical issues that
often prevent the use of gradient-based optimization algorithms are addressed by the MOA
approach in this study. One is when the gradients of some function requirements are
linearly dependent on each other, and the other is when the number of functions of concern
is greater than the number of design variables.

Three examples are documented in this study. The first example designs a cubic box
with concerns about its volume, surface area, and weld length. This example shows that the
SOA produces the same results as the COA. This result not only proves that the scalar factor
equation derived for objective function correction is accurate but also provide users with
more choices in formulating trade-off design for different engineering applications. The
same example also demonstrates that the trade-off methods developed here can produce a
reasonable design while the root-finding algorithm cannot in a case when the number of
the design variables is equal to that of the constraints.

The second example demonstrates the use of the COA to match three eigenvalues of
an eigenvalue equation by adjusting four design variables. The approach is compared well
to the goal-attainment algorithm in terms of accuracy and efficiency. The third example
demonstrates the success of using the MOA to handle the case with linearly dependent
gradients and oversaturated constraints.

These examples demonstrate the effectiveness of using the proposed methods to
find the revised design variables for a broad range of trade-off engineering applications.
The proposed methods can easily handle the addition or removal of the design variables
and the performance requirements. They are computationally efficient and can be easily
implemented, as the proposed methods are gradient-based, which require first-order
derivatives with respect to the design variables. Consequently, all performance functions
involved in the proposed methods must be continuous and differentiable. It will be
a challenge for future research to extend the proposed methodology to much broader
applications with non-differentiable functions.
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Appendix A

1. ∇ f Ts1 = 0 for ∇ f being linearly dependent on ∇g

Assume that the gradient of the objective, ∇ f , is linearly dependent of the columns
of ∇g. That is, ∇ f can be expanded as a linear combination of the columns of ∇g or
∇ f = (∇g)c with a nonzero vector c. One can then proceed to prove that ∇ f Ts1 = 0
as follows.

∇ f Ts1 = ∇ f T(W−1P∇ f
)
≡ cT(∇g)TW−1P(∇g)c

= cT(∇g)TW−1
{

I − (∇g)
[
(∇g)TW−1(∇g)

]−1
(∇g)TW−1

}
(∇g)c

= cT
[
(∇g)TW−1 (∇g)

]
c− cT

[
(∇g)TW−1 (∇g)

][
(∇g)TW−1(∇g)

]−1[
(∇g)TW−1 (∇g)

]
c

= cT
[
(∇g)TW−1 (∇g)

]
c− cT

[
(∇g)TW−1 (∇g)

]
c = 0

2. Scalar Factor and Search Direction of the Constraint Only Approach
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The scalar factor, p f , and the search direction, s2, can be derived based upon Equation (16),
which can be expanded as[

∇ f TW−1∇ f ∇ f TW−1∇g
∇gTW−1∇ f ∇TgW−1∇g

]{
p f
pg

}
=

{
∆ f
g

}
(A1)

The first row of Equation (A1) is found to be(
∇ f TW−1∇ f

)
p f +

(
∇ f TW−1∇g

)
pg = ∆ f (A2)

The solution of the second row of Equation (A1) is found to be

pg = −
(
∇TgW−1∇g

)−1(
∇gTW−1∇ f

)
p f +

(
∇TgW−1∇g

)−1
g (A3)

Substituting Equation (A2) for pg in the above equation yields a single equation of
p f as

[(∇ f TW−1∇ f )− (∇ f TW−1∇g)(∇TgW−1∇g)
−1

(∇gTW−1∇ f )]p f

= ∆ f − (∇ f TW−1∇g)(∇TgW−1∇g)
−1

g

which can be expanded to obtain the value of p f explicitly as

p f = [(∇ f TW−1∇ f )− (∇ f TW−1∇g)(∇TgW−1∇g)
−1

(∇gTW−1∇ f )]
−1

×[∆ f − (∇ f TW−1∇g)(∇TgW−1∇g)
−1

g]

= [∇ f TW−1(I −∇g(∇TgW−1∇g)
−1∇gTW−1)∇ f ]

−1
[∆ f −∇ f TQg]

= [∇ f TW−1P̃∇ f ]
−1

(∆ f −∇ f TQg)

= ∆ f−∇ f T Qg
∇ f Ts1

= ∆ f+∇ f Ts2
∇ f Ts1

where P, Q, s1, and s2 are those defined by Equations (5)–(9) in terms of the original
constraint set, g, which does not include the objective function, f. Consequently, p f derived
here is identical to the scalar factor, α, derived earlier in Equation (12). The search direction,
s2, defined in Equation (15), can now be expanded as,

s = s2 = −Qg̃ = W−1(∇g)
[
(∇g)TW−1(∇g)

]−1
g̃ = −W−1(∇g)p

= −W−1{ ∇ f ∇g
} p f

−
(
∇TgW−1∇g

)−1(
∇gTW−1∇ f

)
p f +

(
∇TgW−1∇g

)−1
g


= −W−1

[
(∇ f )p f −∇g

(
∇TgW−1∇g

)−1(
∇gTW−1∇ f

)
p f +∇g

(
∇TgW−1∇g

)−1
g
]

= −
[

W−1
{(

I −∇g
(
∇TgW−1∇g

)−1
)
∇gTW−1

}
∇ f p f +

{
W−1∇g

(
∇TgW−1∇g

)−1
}

g
]

=
[
−W−1P∇ f p f −Qg

]
= −p f s1 + s2 = −αs1 + s2

which provides the proof of Equation (17).
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