Digital Engineering Methods in Practical Use during Mechatronic Design Processes
Abstract
:1. Introduction
- Which use-cases of digital engineering methods are currently available for the application in product development?
2. Materials and Methods
2.1. Product Development Process According to VDI 2206
2.2. Digital Engineering
3. Literature Review
4. Results
4.1. System Design
4.2. Implementation
4.3. System Integration
4.4. Validation
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dworschak, F.; Kügler, P.; Schleich, B.; Wartzack, S. Integrating the Mechanical Domain into Seed Approach. In Proceedings of the Design Society: International Conference on Engineering Design, Delft, The Netherlands, 5–8 August 2019; Volume 2019, pp. 2587–2596. [Google Scholar]
- Gerschütz, B.; Sauer, C.; Kormann, A.; Wallisch, A.; Mehlstäubl, J.; Alber-Laukant, B.; Schleich, B.; Paetzold, K.; Rieg, F.; Wartzack, S. Towards customised Digital Engineering: Herausforderungen und Potentiale bei der Anpassung von Digital Engineering Methoden für den Produktentwicklungsprozess. In Proceedings of the Stuttgarter Symposium Für Produktentwicklung 2021 (SSP 2021), Stuttgart, Germany, 20 May 2021. [Google Scholar]
- Gerschütz, B.; Goetz, S.; Wartzack, S. AI4PD—Towards a Standardized Interconnection of Artificial Intelligence Methods with Product Development Processes. Appl. Sci. 2023, 13, 3002. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. VDI/VDE 2206:2021-11—Development of Mechatronic and Cyber-Physical Systems; Beuth: Berlin, Germany, 2021. [Google Scholar]
- Pahl, G.; Wallace, K.; Blessing, L.; Pahl, G. (Eds.) Engineering Design: A Systematic Approach, 3rd ed.; Springer: London, UK, 2007. [Google Scholar]
- Vajna, S.; Weber, C.; Zeman, K.; Hehenberger, P.; Gerhard, D.; Wartzack, S. CAx für Ingenieure: Eine Praxisbezogene Einführung, 3rd ed.; Springer: Berlin/Heidelberg Germany, 2018. [Google Scholar]
- Schumann, M.; Schenk, M.; Schmucker, U.; Saake, G. Digital Engineering-Herausforderungen, Ziele Und Lösungsbeispiele. In Proceedings of the Digital Engineering, 14. IFF Wissenschaftstage, Magdeburg, Germany, 28–30 June 2011. [Google Scholar]
- Künzel, M.; Schulz, J.; Gabriel, P. Engineering 4.0 Grundzüge Eines Zukunftsmodells; Technical Report; Institiut für Innovation und Technik: Berlin, Germany, 2016. [Google Scholar]
- Duigou, J.L.; Bernard, A.; Perry, N.; Delplace, J.C. Generic PLM System for SMEs: Application to an Equipment Manufacturer. Int. J. Prod. Lifecycle Manag. 2012, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Montáns, F.J.; Chinesta, F.; Gomez-Bombarelli, R.; Kutz, J.N. Data-Driven Modeling and Learning in Science and Engineering. Comptes Rendus Mécanique 2019, 347, 845–855. [Google Scholar] [CrossRef]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From Data Mining to Knowledge Discovery in Databases. AI Mag. 1996, 17, 37. [Google Scholar]
- Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson: Nueva Delhi, India, 2006. [Google Scholar]
- Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R. CRISP-DM 1.0 Step-by-Step Data Mining Guide; The CRISP-DM Consortium: Chicago, IL, USA, 2000; p. 76. [Google Scholar]
- Mariscal, G.; Marbán, Ó.; Fernández, C. A Survey of Data Mining and Knowledge Discovery Process Models and Methodologies. Knowl. Eng. Rev. 2010, 25, 137–166. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Breitsprecher, T.; Sauer, C.; Sperber, C.; Wartzack, S. Design-for-manufacture of sheet-bulk metal formed parts. In DS 80-4 Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol 4: Design for X, Design to X, Milan, Italy, 27–30 July 2015; The Design Society: Copenhagen, Denmark, 2015; pp. 183–192. [Google Scholar]
- Horber, D.; Schleich, B.; Wartzack, S. Ein Klassifizierungssystem zur Anforderungssystematisierung. In Proceedings of the DFX 2019: Proceedings of the 30th Symposium Design for X, Jesteburg, Germany, 18–19 September 2019. [Google Scholar]
- Bertoni, A.; Larsson, T.; Larsson, J.; Elfsberg, J. Mining Data to Design Value: A Demonstrator in Early Design. In DS 87-7 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 7: Design Theory and Research Methodology, Vancouver, BC, Canada, 21–25 August 2017; The Design Society: Copenhagen, Denmark, 2017; pp. 21–29. [Google Scholar]
- Menon, R.; Tong, L.; Sathiyakeerthi, S.; Brombacher, A.; Leong, C. The Needs and Benefits of Applying Textual Data Mining within the Product Development Process. Qual. Reliab. Eng. Int. 2004, 20, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Roy, U.; Saltz, J.S. Towards an Integrated Process Model for New Product Development with Data-Driven Features (NPD3). Res. Eng. Des. 2019, 30, 271–289. [Google Scholar] [CrossRef]
- Shabestari, S.S.; Herzog, M.; Bender, B. A Survey on the Applications of Machine Learning in the Early Phases of Product Development. Proc. Des. Soc. Int. Conf. Eng. Des. 2019, 1, 2437–2446. [Google Scholar] [CrossRef] [Green Version]
- Breitsprecher, T.; Kestel, P.; Küster, C.; Sprügel, T.; Wartzack, S. Einsatz von Data-Mining in modernen Produktentstehungsprozessen: Ganzheitliche Forschung für Ingenieure von morgen. Z. Wirtsch. Fabr. 2015, 110, 744–750. [Google Scholar] [CrossRef]
- Burggräf, P.; Wagner, J.; Weißer, T. Knowledge-Based Problem Solving in Physical Product Development––A Methodological Review. Expert Syst. Appl. X 2020, 5, 100025. [Google Scholar] [CrossRef]
- Trauer, J.; Schweigert-Recksiek, S.; Okamoto, L.; Spreitzer, K.; Mörtl, M.; Zimmermann, M. Data-Driven Engineering Definitions and Insights from an Industrial Case Study for a New Approach in Technical Product Development. In Proceedings of the NordDesign 2020, Copenhagen, Denmark, 11–14 August 2020. [Google Scholar]
- Belani, H.; Vukovic, M.; Car, Ž. Requirements Engineering Challenges in Building AI-Based Complex Systems. In Proceedings of the 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW), Jeju, Republic of Korea, 23–27 September 2019; pp. 252–255. [Google Scholar]
- Henriksson, A.; Zdravkovic, J. A Data-Driven Framework for Automated Requirements Elicitation from Heterogeneous Digital Sources. In The Practice of Enterprise Modeling; Grabis, J., Bork, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 400, pp. 351–365. [Google Scholar]
- Chan, C.C.-S.; Yu, K.-M.; Yung, K.-L. Green Product Development by Using Life Cycle Assessment (LCA), Theory of Inventive of Problems Solving (TRIZ). In Proceedings of the 2010 International Conference on Manufacturing Automation, Hong Kong, China, 13–15 December 2010; pp. 24–29. [Google Scholar]
- Trappey, A.J.; Trappey, C.V.; Wu, C.Y. Automatic Patent Document Summarization for Collaborative Knowledge Systems and Services. J. Syst. Sci. Syst. Eng. 2009, 18, 71–94. [Google Scholar] [CrossRef]
- Prajapati, S.P.; Bhaumik, R.; Kumar, T.; Sait, U. An AI-Based Pedagogical Tool for Creating Sketched Representation of Emotive Product Forms in the Conceptual Design Stages. In Advances in Intelligent Systems and Computing; Tuba, M., Akashe, S., Joshi, A., Eds.; Springer: Singapore, 2021; Volume 1270, pp. 649–659. [Google Scholar]
- Hoefer, M.J.; Frank, M.C. Automated Manufacturing Process Selection During Conceptual Design. J. Mech. Des. 2018, 140, 031701. [Google Scholar] [CrossRef]
- Kashkoush, M.; ElMaraghy, H. An Integer Programming Model for Discovering Associations between Manufacturing System Capabilities and Product Features. J. Intell. Manuf. 2017, 28, 1031–1044. [Google Scholar] [CrossRef]
- Kou, Z. Association Rule Mining Using Chaotic Gravitational Search Algorithm for Discovering Relations between Manufacturing System Capabilities and Product Features. Concurr. Eng. 2019, 27, 213–232. [Google Scholar] [CrossRef]
- Kretschmer, R.; Rulhoff, S.; Stjepandić, J. Design for Assembly in Series Production by Using Data Mining Methods. In Moving Integrated Product Development to Service Clouds in the Global Economy; Advances in Transdisciplinary Engineering; IOS Press: Amsterdam, The Netherlands, 2014; pp. 379–388. [Google Scholar]
- Yu, L.; Chen, Y. An Apriori-Based Knowledge Mining Method for Product Configuration Design. Adv. Mater. Res. 2010, 139–141, 1490–1493. [Google Scholar] [CrossRef]
- Zha, X.F.; Sriram, R.D. Knowledge-Intensive Collaborative Decision Support for Design Process. In Intelligent Decision-Making Support Systems; Springer: London, UK, 2006; pp. 301–320. [Google Scholar]
- Agard, B.; Kusiak, A. Data-Mining-Based Methodology for the Design of Product Families. Int. J. Prod. Res. 2004, 42, 2955–2969. [Google Scholar] [CrossRef]
- Arbabi, H.; Vahedi-Nouri, B.; Iranmanesh, S.; Tavakkoli-Moghaddam, R. A Data-Driven Multi-Criteria Decision-Making Approach for Assessing New Product Conceptual Designs. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 236, 1900–1911. [Google Scholar] [CrossRef]
- Chang, D.; Chen, C.H. Exploration of a Concept Screening Method in a Crowdsourcing Environment. In Moving Integrated Product Development to Service Clouds in the Global Economy; Advances in Transdisciplinary Engineering; IOS Press: Amsterdam, The Netherlands, 2014; pp. 861–870. [Google Scholar]
- Zhang, C.; Kwon, Y.P.; Kramer, J.; Kim, E.; Agogino, A.M. Concept Clustering in Design Teams: A Comparison of Human and Machine Clustering. J. Mech. Des. 2017, 139, 111414. [Google Scholar] [CrossRef]
- Zhang, C.; Kwon, Y.P.; Kramer, J.; Kim, E.; Agogino, A.M. Deep Learning for Design in Concept Clustering. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017; American Society of Mechanical Engineers Digital Collection: New York, NY USA, 2017. [Google Scholar]
- Geiger, C.; Sarakakis, G. Data-driven Design for Reliability. In Proceedings of the 2016 Annual Reliability and Maintainability Symposium (RAMS), Tucson, AZ, USA, 25–28 January 2016; pp. 1–6. [Google Scholar]
- Cheung, W.M.; Marsh, R.; Newnes, L.B.; Mileham, A.R.; Lanham, J.D. Cost Data Modelling and Searching to Support Low-Volume, High-Complexity, Long-Life Defence System Development. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 835–846. [Google Scholar] [CrossRef]
- Gussen, L.C.; Ellerich, M.; Schmitt, R.H. Prediction of Perceived Quality through the Development of a Robot-Supported Multisensory Measuring System. Procedia CIRP 2019, 84, 368–373. [Google Scholar] [CrossRef]
- Lindemann, M.; Nuy, L.; Briele, K.; Schmitt, R. Methodical Data-Driven Integration of Perceived Quality into the Product Development Process. Procedia CIRP 2019, 84, 406–411. [Google Scholar] [CrossRef]
- Wolf, A.; Binder, N.; Miehling, J.; Wartzack, S. Towards Virtual Assessment of Human Factors: A Concept for data-driven Prediction and Analysis of Physical User-product Interactions. In Proceedings of the Design Society: International Conference on Engineering Design; Cambridge University Press: Cambridge, UK, 2019; Volume 1, pp. 4029–4038. [Google Scholar]
- Lin, K.Z.; Chiu, M.C. Utilizing Text Mining and Kansei Engineering to Support Data-Driven Design Automation. In Transdisciplinary Engineering: A Paradigm Shift; Advances in Transdisciplinary Engineering; IOS Press: Amsterdam, The Netherlands, 2017; Volume 5, pp. 949–958. [Google Scholar]
- Lützenberger, J.; Klein, P.; Hribernik, K.; Thoben, K.D. Improving Product-Service Systems by Exploiting Information from The Usage Phase. A Case Study. Procedia CIRP 2016, 47, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, J. Bridging the Semantic Gap in Customer Needs Elicitation: A Machine Learning Perspective. In Proceedings of the 21st International Conference on Engineering Design (ICED 17), Vancouver, BC, Canada, 21–25 August 2017; ICED: British Columbia, Canada, 2017; Volume 4, pp. 643–652. [Google Scholar]
- Diestmann, T.; Broedling, N.; Götz, B.; Melz, T. Surrogate Model-Based Uncertainty Quantification for a Helical Gear Pair. In Uncertainty in Mechanical Engineering; Pelz, P.F., Groche, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 191–207. [Google Scholar]
- Przystałka, P.; Moczulski, W.; Timofiejczuk, A.; Kalisch, M.; Sikora, M. Development of Expert System Shell for Coal Mining Industry. In Advances in Condition Monitoring of Machinery in Non-Stationary Operations; Chaari, F., Zimroz, R., Bartelmus, W., Haddar, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 4, pp. 335–348. [Google Scholar]
- Pasqual, M.C.; de Weck, O.L. Multilayer Network Model for Analysis and Management of Change Propagation. Res. Eng. Des. 2012, 23, 305–328. [Google Scholar] [CrossRef]
- Dangwal, D.; Tzimpragos, G.; Sherwood, T. Agile Hardware Development and Instrumentation with PyRTL. IEEE Micro 2020, 40, 76–84. [Google Scholar] [CrossRef]
- Tine, B.P.; Yalamanchili, S.; Kim, H. Tango: An Optimizing Compiler for Just-In-Time RTL Simulation. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 157–162. [Google Scholar]
- Qin, Y.; Ji, Z. Parallel Strategy Based on Parameter Selection of Machine Learning Model. In Recent Developments in Mechatronics and Intelligent Robotics; Deng, K., Yu, Z., Patnaik, S., Wang, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 856, pp. 1199–1206. [Google Scholar]
- Liu, Z.; Jin, C.; Jin, W.; Lee, J.; Zhang, Z.; Peng, C.; Xu, G. Industrial AI Enabled Prognostics for High-speed Railway Systems. In Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 11–13 June 2018; pp. 1–8. [Google Scholar]
- Czauski, T.; White, J.; Sun, Y.; Turner, H.; Eade, S. NERD—Middleware for IoT Human Machine Interfaces. Ann. Telecommun. 2016, 71, 109–119. [Google Scholar] [CrossRef]
- Sartori, M.; Durandau, G.; Došen, S.; Farina, D. Robust Simultaneous Myoelectric Control of Multiple Degrees of Freedom in Wrist-Hand Prostheses by Real-Time Neuromusculoskeletal Modeling. J. Neural Eng. 2018, 15, 066026. [Google Scholar] [CrossRef] [Green Version]
- Horoschak, V.; Chaudhri, G.; Andzik, R. Lost-in-Translation: Towards a Database Standard Adoption. In Proceedings of the SpaceOps 2010 Conference, Huntsville, AL, USA, 25–30 April 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Daiker, R.; Ghatas, R.; Vincent, M.; Rippy, L.; Holbrook, J. A Cognitive Task Analysis of Safety-Critical Launch Termination Systems. In Advances in Human Aspects of Transportation; Stanton, N., Ed.; Springer International Publishing: Cham, Switzerland, 2019; Volume 786, pp. 207–214. [Google Scholar]
- Fredin, J.; Jönsson, A.; Broman, G. Holistic Methodology Using Computer Simulation for Optimisation of Machine Tools. Comput. Ind. Eng. 2012, 63, 294–301. [Google Scholar] [CrossRef]
- Ozer, E.; Kufel, J.; Biggs, J.; Brown, G.; Myers, J.; Rana, A.; Sou, A.; Ramsdale, C. Bespoke Machine Learning Processor Development Framework on Flexible Substrates. In Proceedings of the 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, UK, 8–10 July 2019; pp. 1–3. [Google Scholar]
- Settaluri, K.; Haj-Ali, A.; Huang, Q.; Hakhamaneshi, K.; Nikolic, B. AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 490–495. [Google Scholar]
- Murrell, N.; Bradley, R.; Bajaj, N.; Whitney, J.G.; Chiu, G.T.C. A Method for Sensor Reduction in a Supervised Machine Learning Classification System. IEEE/ASME Trans. Mechatronics 2019, 24, 197–206. [Google Scholar] [CrossRef]
- Li, Z.; Wu, G. A Text Mining Based Reliability Analysis Method in Design Failure Mode and Effect Analysis. In Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 11–13 June 2018; pp. 1–8. [Google Scholar]
- Luo, H.; Zhao, H.; Yin, S. Data-Driven Design of Fog-Computing-Aided Process Monitoring System for Large-Scale Industrial Processes. IEEE Trans. Ind. Inform. 2018, 14, 4631–4641. [Google Scholar] [CrossRef]
- Ivezic, N.; Garrett, J.H. Machine Learning for Simulation-Based Support of Early Collaborative Design. Artif. Intell. Eng. Des. Anal. Manuf. 1998, 12, 123–139. [Google Scholar] [CrossRef]
- Bork, D. Metamodel-Based Analysis of Domain-Specific Conceptual Modeling Methods. In The Practice of Enterprise Modeling; Buchmann, R.A., Karagiannis, D., Kirikova, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 335, pp. 172–187. [Google Scholar]
- Martin, M.G.; Hoey, W.A.; Alred, J.M.; Soares, C.E. Novel Contamination Control Model Development and Application to the Psyche Asteroid Mission. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–9. [Google Scholar]
- Rigger, E.; Shea, K.; Stankovic, T. Task Categorisation for Identification of Design Automation Opportunities. J. Eng. Des. 2018, 29, 131–159. [Google Scholar] [CrossRef]
- Kreis, A.; Hirz, M.; Rossbacher, P. CAD-Automation in Automotive Development—Potentials, Limits and Challenges. Comput.-Aided Des. Appl. 2020, 18, 849–863. [Google Scholar] [CrossRef]
- Patel, A.R.; Ramaiya, K.K.; Bhatia, C.V.; Shah, H.N.; Bhavsar, S.N. Artificial Intelligence: Prospect in Mechanical Engineering Field—A Review. In Data Science and Intelligent Applications; Kotecha, K., Piuri, V., Shah, H.N., Patel, R., Eds.; Springer: Singapore, 2021; Volume 52, pp. 267–282. [Google Scholar]
- Verhagen, W.J.; Bermell-Garcia, P.; van Dijk, R.E.; Curran, R. A Critical Review of Knowledge-Based Engineering: An Identification of Research Challenges. Adv. Eng. Inform. 2012, 26, 5–15. [Google Scholar] [CrossRef]
- Pilania, G. Machine Learning in Materials Science: From Explainable Predictions to Autonomous Design. Comput. Mater. Sci. 2021, 193, 110360. [Google Scholar] [CrossRef]
- Menezes, B.C.; Kelly, J.D.; Leal, A.G. Identification and Design of Industry 4.0 Opportunities in Manufacturing: Examples from Mature Industries to Laboratory Level Systems. IFAC-PapersOnLine 2019, 52, 2494–2500. [Google Scholar] [CrossRef]
- Prajapati, A.; Bechtel, J.; Ganesan, S. Condition Based Maintenance: A Survey. J. Qual. Maint. Eng. 2012, 18, 384–400. [Google Scholar] [CrossRef]
- Simonetto, A.; Dall’Anese, E.; Paternain, S.; Leus, G.; Giannakis, G.B. Time-Varying Convex Optimization: Time-Structured Algorithms and Applications. Proc. IEEE 2020, 108, 2032–2048. [Google Scholar] [CrossRef]
- Shan, D.; Li, Q. Development of a Smart-Client Based Bridge Management and Maintenance System for Existing Highway Bridges. In Proceedings of the International Conference on Transportation Engineering, Chengdu, China, 25–27 July 2009; Southwest Jiaotong University: Chengdu, China, 2009; pp. 3694–3699. [Google Scholar]
- Grishin, E.S. Development of Intelligent Algorithms for the Continuous Diagnostics and Condition Monitoring Subsystem of the Equipment as Part of the Process Control System of a Stainless Steel Pipe Production Enterprise. IOP Conf. Ser. Mater. Sci. Eng. 2020, 939, 012027. [Google Scholar] [CrossRef]
- Meyes, R.; Tercan, H.; Thiele, T.; Krämer, A.; Heinisch, J.; Liebenberg, M.; Hirt, G.; Hopmann, C.; Lakemeyer, G.; Meisen, T.; et al. Interdisciplinary data-driven Production Process Analysis for the Internet of Production. Procedia Manuf. 2018, 26, 1065–1076. [Google Scholar] [CrossRef]
- Hui, Z.; Bi-bo, J.; Zhuo-qun, Z. Fault Diagnosis of Industrial Boiler Based on Competitive Agglomeration and Fuzzy Association Rules. In Proceedings of the 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 24–26 August 2010; p. 5610212. [Google Scholar]
- Schreiber, T.; Netsch, C.; Eschweiler, S.; Wang, T.; Storek, T.; Baranski, M.; Müller, D. Application of Data-Driven Methods for Energy System Modelling Demonstrated on an Adaptive Cooling Supply System. Energy 2021, 230, 120894. [Google Scholar] [CrossRef]
- Bertoni, A.; Hallstedt, S.I.; Dasari, S.K.; Andersson, P. Integration of Value and Sustainability Assessment in Design Space Exploration by Machine Learning: An Aerospace Application. Des. Sci. 2020, 6, e2. [Google Scholar] [CrossRef] [Green Version]
- Kayama, M.; Ogata, S.; Nagai, T.; Yokoka, H.; Masumoto, K.; Hashimoto, M. Effectiveness of Model-Driven Development in Conceptual Modeling Education for University Freshmen. In Proceedings of the 2015 IEEE Global Engineering Education Conference (EDUCON), Tallinn, Estonia, 18–20 March 2015; pp. 274–282. [Google Scholar]
- Yin, W.; Wang, G.-Q.; Miao, W.-S.; Zhang, M.; Zhang, W.-G. Semi-Supervised Learning of Decision Making for Parts Faults to System-Level Failures Diagnosis in Avionics System. In Proceedings of the 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), Williamsburg, VA, USA, 14–18 October 2012; pp. 7C4–1–7C4–14. [Google Scholar]
- Kalita, H.; Thangavelautham, J. Automated Design of CubeSats Using Evolutionary Algorithm for Trade Space Selection. Aerospace 2020, 7, 142. [Google Scholar] [CrossRef]
- Huang, P.; Kar, P.; Fandrich, C. Using Modeling and Simulation for Rapid Prototyping and System Integration. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 3, pp. 2812–2817. [Google Scholar]
- Steck-Winter, H.; Stölting, C.; Unger, G. Vorausschauende Instandhaltung Mit Datengetriebener Zustandsüberwachung—Teil 1; Vulkan-Verlag GmbH: Essen, Germany, 2017. [Google Scholar]
- Osuna, R.V.; Tallinen, T.; Lastra, J.L.M.; Tuokko, R. Assembly and Task Planning in a Collaborative Web-Based Environment Based on Assembly Process Modeling Methodology. In Proceedings of the 2003 IEEE International Symposium onAssembly and Task Planning (ISATP2003), Besancon, France, 11 July 2003; pp. 79–84. [Google Scholar]
- Fietkau, P.; Sanzenbacher, S.; Kistner, B. Advantages of Digital Vehicle Powertrain Development in Planning of Reliability Demonstration Tests. Forsch. Ingenieurwesen 2021, 85, 101–113. [Google Scholar] [CrossRef]
- Zhang, X.; Goh, K.Y.; Laurent, P.; Formosa, K.; Teysseyre, J. Simulation Driven Physics-of-failure Analysis for System-in-Package Development. In Proceedings of the 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013), Singapore, 11–13 December 2013; pp. 612–617. [Google Scholar]
- Bricogne, M.; Troussier, N.; Rivest, L.; Eynard, B. Agile Design Methods for Mechatronics System Integration. In Product Lifecycle Management for Society: 10th IFIP WG 5.1 International Conference, PLM 2013, Nantes, France, 6–10 July 2013; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Patalano, S.; Vitolo, F.; Lanzotti, A. Automotive Power Window System Design: Object-Oriented Modelling and Design of Experiments Integration within a Digital Pattern Approach. Mech. Ind. 2016, 17, 505. [Google Scholar] [CrossRef]
- Tüchsen, J.; Pop, A.C.; Koch, M.; Schleich, B.; Wartzack, S. Data Driven Product Portfolio Analysis of Electric Motors Based on Product Platforms Using Knowledge-Based Systems. In Proceedings of the Design Society: International Conference on Engineering Design; Cambridge University Press: Cambridge, UK, 2019; Volume 1, pp. 2537–2546. [Google Scholar]
- Lachmayer, R.; Mozgova, I.; Sauthoff, B.; Gottwald, P. Evolutionary Approach for an optimised Analysis of Product Life Cycle Data. Procedia Technol. 2014, 15, 359–368. [Google Scholar] [CrossRef]
- Galgar, D.; Gustafson, A.; Tormos, B.; Berges, L. Maintenance Decision Making Based on Different Types of Data Fusion. Eksploat. Niezawodn. 2012, 14, 135–144. [Google Scholar]
- Krenczyk, D.; Kempa, W.; Kalinowski, K.; Grabowik, C.; Paprocka, I. Integration of Manufacturing Operations Management Tools and Discrete Event Simulation. In IOP Conference Series: Materials Science and Engineering; Placzek, M., Paunoiu, V., Cohal, V., Schnakovszky, C., Oanta, E., Nedelcu, D., Topala, P., Naito, M., Carausu, C., Eds.; Institute of Physics Publishing: Bristol, UK, 2018; Volume 400. [Google Scholar]
- Lawson, P.; Houldcroft, J.; Neil, A.; Balcombe, A.; Osborne, R.; Ciriello, A.; Graupner, W. Capability Assessment Process for the Optimisation of Testing Facilities for Powertrain Development. SAE Int. J. Engines 2016, 9, 1751–1762. [Google Scholar] [CrossRef]
- Jha, A.K. Development of Test Automation Framework for Testing Avionics Systems. In Proceedings of the 29th Digital Avionics Systems Conference, Salt Lake City, UT, USA, 3–7 October 2010; pp. 6.E.5–1–6.E.5–11. [Google Scholar]
- Helu, M.; Libes, D.; Lubell, J.; Lyons, K.; Morris, K.C. Enabling Smart Manufacturing Technologies for Decision-Making Support. In Proceedings of the Volume 1B: 36th Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; American Society of Mechanical Engineers: Charlotte, NC, USA, 2016; p. V01BT02A035. [Google Scholar]
- Baek, S. System Integration for Predictive Process Adjustment and Cloud Computing-Based Real-Time Condition Monitoring of Vibration Sensor Signals in Automated Storage and Retrieval Systems. Int. J. Adv. Manuf. Technol. 2021, 113, 955–966. [Google Scholar] [CrossRef]
- Praun, S. Integration of Manufacturing System and Product Design with DMU. In International Conference on Information Technology for Balanced Automation Systems; Springer: Boston, MA, USA, 1998; pp. 535–544. [Google Scholar]
- Abell, J.; Chakraborty, D.; Escobar, C.; Im, K.; Wegner, D.; Wincek, M. Big Data-Driven Manufacturing—Process-Monitoring-for-Quality Philosophy. J. Manuf. Sci. Eng. Trans. ASME 2017, 139, 101009. [Google Scholar] [CrossRef]
- Bohlin, R.; Hagmar, J.; Bengtsson, K.; Lindkvist, L.; Carlson, J.; Söderberg, R. Data Flow and Communication Framework Supporting Digital Twin for Geometry Assurance. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers (ASME): New York, NY, USA, 2018; Volume 2. [Google Scholar]
- Chen, Y.; Cheng, A.; Zhang, C.; Chen, S.; Ren, Z. Rapid Mechanical Evaluation of the Engine Hood Based on Machine Learning. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 345. [Google Scholar] [CrossRef]
- Hartmann, C.; Eder, M.; Opritescu, D.; Maier, D.; Santaella, M.; Volk, W. Geometrical Compensation of Deterministic Deviations for Part Finishing in Bulk Forming. J. Mater. Process. Technol. 2018, 261, 140–148. [Google Scholar] [CrossRef]
- Kano, M.; Fujiwara, K.; Hasebe, S.; Ohno, H. Data-Driven Approach for Product Quality/Yield Improvement: How to Specify Target of Qualitative Quality Variables. In Proceedings of the 2004 AIChE Annual Meeting, Austin, TX, USA, 7–12 November 2004. [Google Scholar]
- Kornas, T.; Knak, E.; Daub, R.; Bührer, U.; Lienemann, C.; Heimes, H.; Kampker, A.; Thiede, S.; Herrmann, C. A Multivariate KPI-based Method for Quality Assurance in Lithium-Ion-Battery Production. Procedia CIRP 2019, 81, 75–80. [Google Scholar] [CrossRef]
- Kunkel, M.; Gebhardt, A.; Mpofu, K.; Kallweit, S. Quality Assurance in Metal Powder Bed Fusion via Deep-Learning-Based Image Classification. Rapid Prototyp. J. 2020, 26, 259–266. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, F.; Xie, Q.; Hong, L.; Mellmann, J.; Sun, Y.; Gao, S.; Singh, S.; Venkatachalam, P.; Word, J. Machine Learning Based Wafer Defect Detection. In Proceedings of the Design-Process-Technology Co-Optimization for Manufacturability XIII, San Jose, CA, USA, 27–29 February 2019; Cain, J.P., Ed.; SPIE: Bellingham, WA, USA, 2019; Volume 10962. [Google Scholar]
- Olleak, A.; Xi, Z. Calibration and Validation Framework for Selective Laser Melting Process Based on Multi-Fidelity Models and Limited Experiment Data. J. Mech. Des. Trans. ASME 2020, 142, 081701. [Google Scholar] [CrossRef]
- Tsang, K.; Lau, H.; Kwok, S. Development of a Data Mining System for Continual Process Quality Improvement. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 179–193. [Google Scholar] [CrossRef]
- Chen, Y.; Han, C.; Shi, G.; Yuan, L.; Ying, X.; Liao, Y. A Computational Model for Electromagnetic Characteristics of Anisotropic Composites Based on Machine Learning. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 854–859. [Google Scholar]
- Chen, L.; Yao, X.; Xu, P.; Moon, S.; Bi, G. Rapid Surface Defect Identification for Additive Manufacturing with In-Situ Point Cloud Processing and Machine Learning. Virtual Phys. Prototyp. 2021, 16, 50–67. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Zhang, J.; Guo, G.; Fu, S.; Wang, C.; Li, X. Framework and Development of Data-Driven Physics Based Model with Application in Dimensional Accuracy Prediction in Pocket Milling. Chin. J. Aeronaut. 2021, 34, 162–177. [Google Scholar] [CrossRef]
- Cota, E.; O’Halloran, B. A Functional Reliability and Safety Approach for Analyzing Complex, Aerospace Systems. In Proceedings of the 2016 Annual Reliability and Maintainability Symposium (RAMS), Tucson, AZ, USA, 25–28 January 2016. [Google Scholar]
- Elgharbawy, M.; Schwarzhaupt, A.; Frey, M.; Gauterin, F. Ontology-Based Adaptive Testing for Automated Driving Functions Using Data Mining Techniques. Transp. Res. Part Traffic Psychol. Behav. 2019, 66, 234–251. [Google Scholar] [CrossRef]
- Ferreira, F.; Vieira, R.; Costa, R.; Santos, R.; Moret, M.; Murari, T. Data-Driven Hardware-in-the-Loop (HIL) Testing Prioritization. SAE Technical Paper; SAE: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- James, S.; Hale, B. What Do Virtual V&V and Digital Twins Have in Common? In AIAA Scitech 2021 Forum; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2021; pp. 1–21. [Google Scholar]
- Kalia, V.; Pawar, Y. Data-Driven Testing for HIL Systems; SAE Technical Paper; SAE: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Liguori, C.; Paciello, V.; Paolillo, A.; Pietrosanto, A.; Sommella, P. On Road Testing of Control Strategies for Semi-Active Suspensions. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay, 12–15 May 2014; pp. 1187–1192. [Google Scholar]
- Liguori, C.; Paciello, V.; Paolillo, A.; Pietrosanto, A.; Sommella, P. ISO/IEC/IEEE 21451 Smart Sensor Network for the Evaluation of Motorcycle Suspension Systems. IEEE Sens. J. 2015, 15, 2549–2558. [Google Scholar] [CrossRef]
- McCandless, W.B., Jr.; Dettwiller, I.D. Intelligent Black Box Verification, Validation, and Accreditation for Rotorcraft Performance Modeling. J. Am. Helicopter Soc. 2019, 66, 1–14. [Google Scholar] [CrossRef]
- Ota, Y.; Takahasi, H.; Maekawa, R. Development of Coated Gasoline Particulate Filter Design Method Combining Simulation and Multi-Objective Optimization. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 4, 204–210. [Google Scholar] [CrossRef]
- Peres, R.; Barata, J.; Leitao, P.; Garcia, G. Multistage Quality Control Using Machine Learning in the Automotive Industry. IEEE Access 2019, 7, 79908–79916. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yeh, S.S.; Ou, T.H.; Lin, H.Y.; Mai, Y.C.; Lin, L.; Lai, J.C.; Lai, Y.; Xu, W.; Hurat, P. A Fast Process Development Flow by Applying Design Technology Co-Optimization. In Proceedings of the Design-Process-Technology Co-Optimization for Manufacturability XI, San Jose, CA, USA, 26 February–2 March 2017; Volume 10148. [Google Scholar]
- Ding, D.; Torres, J.; Pan, D. High Performance Lithography Hotspot Detection with Successively Refined Pattern Identifications and Machine Learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2011, 30, 1621–1634. [Google Scholar] [CrossRef]
- Dinu, A.; Ogrutan, P. Opportunities of Using Artificial Intelligence in Hardware Verification. In Proceedings of the 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME), Cluj-Napoca, Romania, 23–26 October 2019; pp. 224–227. [Google Scholar]
- Gai, T.; Qu, T.; Su, X.; Wang, S.; Dong, L.; Zhang, L.; Chen, R.; Su, Y.; Wei, Y.; Ye, T. Multi-Level Layout Hotspot Detection Based on Multi-Classification with Deep Learning. In Proceedings of the Design-Process-Technology Co-Optimization XV, Online, 22–27 February 2021; Volume 11614. [Google Scholar]
- Venkatachar, A.; Rajakumar, S.; Chapman, M.; Basuru, S.; Parthasarathy, G.; Lin, C.C.; Hegde, A.; Li, T. Test Knowledge Data Base. In Proceedings of the 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 24–27 April 2017. [Google Scholar]
- Seon, G.; Makeev, A.; Nikishkov, Y.; Shonkwiler, B. DIC Data-Driven Methods Improving Confidence in Material Qualification of Composites. In International Digital Imaging Correlation Society: Proceedings of the First Annual Conference; Springer: New York, NY, USA, 2017; pp. 251–253. [Google Scholar]
- Abbas, H.; Jiang, Z.; Jang, K.; Beccani, M.; Liangy, J.; Mangharam, R. High-Level Modeling for Computer-Aided Clinical Trials of Medical Devices. In Proceedings of the 2016 IEEE International High Level Design Validation and Test Workshop (HLDVT), Santa Cruz, CA, USA, 7–8 October 2016; pp. 85–92. [Google Scholar]
- Li, Q.; Wei, H.; Yu, C.; Wang, S. Model and data-driven Complex Product Development: From V, Double Vs to Triple Vs. In Proceedings of the 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 6–8 December 2019; pp. 860–864. [Google Scholar]
- Shao, W.; Ding, H.; Tang, J.; Peng, S. A Data-Driven Optimization Model to Collaborative Manufacturing System Considering Geometric and Physical Performances for Hypoid Gear Product. Robot. Comput.-Integr. Manuf. 2018, 54, 1–16. [Google Scholar] [CrossRef]
- Zhang, X.; Bode, J.; Ren, S. Neural Networks in Quality Function Deployment. Comput. Ind. Eng. 1996, 31, 669–673. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, Y.; Ye, X.; Zhang, S. A Machine Learning Based Global Simulation Data Mining Approach for Efficient Design Changes. Adv. Eng. Softw. 2018, 124, 22–41. [Google Scholar] [CrossRef]
- Kalisch, M.; Przystałka, P.; Katunin, A.; Timofiejczuk, A. Performance Optimization of Model-Free Fault Diagnosis Schemes. Diagnostyka 2016, 17, 51–58. [Google Scholar]
- Castiblanco Jimenez, I.A.; Gomez Acevedo, J.S.; Marcolin, F.; Vezzetti, E.; Moos, S. Towards an Integrated Framework to Measure User Engagement with Interactive or Physical Products. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 17, 45–67. [Google Scholar] [CrossRef]
- Wolf, M.; Siewert, J.L.; Trentsios, P.; Gerhard, D. Practical Digital Engineering Education: Integration of Multiple Innovative Technologies in One Smart Factory Example. In Learning with Technologies and Technologies in Learning: Experience, Trends and Challenges in Higher Education; Auer, M.E., Pester, A., May, D., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 237–256. [Google Scholar]
- Barata, J.; Cardoso, J.C.S.; Cunha, P.R. Mass Customization and Mass Personalization Meet at the Crossroads of Industry 4.0: A Case of Augmented Digital Engineering. Syst. Eng. 2023. [Google Scholar] [CrossRef]
Area | Keywords |
---|---|
General | “data mining” | “machine learning” | “data-driven” | “digital engineering” & “product development” & NOT “construction” |
AND | |
System Design | “requirement” | “concept” | “system design” |
Implementation | “design” | “application” & “domain specific” | “subsystem” | “mechatronics” & “development” & “method” | “product” |
System Integration | “system integration” | (“component” & “integration” & “system”) & “method” | “product” |
Validation | (“data-driven” | “machine learning” | “data mining”) & (“design” | “application”) & (“development” & (method* | “product”) & “assurance”) & NOT “construction” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerschütz, B.; Sauer, C.; Kormann, A.; Nicklas, S.J.; Goetz, S.; Roppel, M.; Tremmel, S.; Paetzold-Byhain, K.; Wartzack, S. Digital Engineering Methods in Practical Use during Mechatronic Design Processes. Designs 2023, 7, 93. https://doi.org/10.3390/designs7040093
Gerschütz B, Sauer C, Kormann A, Nicklas SJ, Goetz S, Roppel M, Tremmel S, Paetzold-Byhain K, Wartzack S. Digital Engineering Methods in Practical Use during Mechatronic Design Processes. Designs. 2023; 7(4):93. https://doi.org/10.3390/designs7040093
Chicago/Turabian StyleGerschütz, Benjamin, Christopher Sauer, Andreas Kormann, Simon J. Nicklas, Stefan Goetz, Matthias Roppel, Stephan Tremmel, Kristin Paetzold-Byhain, and Sandro Wartzack. 2023. "Digital Engineering Methods in Practical Use during Mechatronic Design Processes" Designs 7, no. 4: 93. https://doi.org/10.3390/designs7040093
APA StyleGerschütz, B., Sauer, C., Kormann, A., Nicklas, S. J., Goetz, S., Roppel, M., Tremmel, S., Paetzold-Byhain, K., & Wartzack, S. (2023). Digital Engineering Methods in Practical Use during Mechatronic Design Processes. Designs, 7(4), 93. https://doi.org/10.3390/designs7040093