
Citation: Ahmed Jalil, B.; Kasim

Ibraheem, I. Multi-Robot SLAM

Using Fast LiDAR Odometry and

Mapping. Designs 2023, 7, 110.

https://doi.org/10.3390/

designs7050110

Academic Editors: Manés Fernández

Cabanas and Mariluz Gil-Docampo

Received: 22 August 2023

Revised: 12 September 2023

Accepted: 21 September 2023

Published: 25 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Multi-Robot SLAM Using Fast LiDAR Odometry and Mapping
Basma Ahmed Jalil 1,* and Ibraheem Kasim Ibraheem 2,*

1 Department of Computer Engineering, Faculty of Engineering, Mosul University, Mosul 41002, Iraq
2 Department of Electrical Engineering, College of Engineering, University of Baghdad, Baghdad 10071, Iraq
* Correspondence: basma.a.jalil@gmail.com (B.A.J.); ibraheemki@coeng.uobaghdad.edu.iq (I.K.I.)

Abstract: This paper presents an approach to implem enting centralized multirobot simultaneous
localization and mapping (MR-SLAM) in an unknown environment based on LiDAR sensors. The
suggested implementation addresses two main challenges faced in MR-SLAM, particularly in real-
time applications: computing complexity (solving the problem with minimum time and resources)
and map merging (finding the alignment between the maps and merging maps by integrating
information from the aligned maps into one map). The proposed approach integrates Fast LiDAR
and Odometry Mapping (FLOAM), which reduces the computational complexity of localization
and mapping for individual robots by adopting a non-iterative two-stage distortion compensation
method. This, in turn, accelerates inputs for the map merging algorithm and expedites the creation of a
comprehensive map. The map merging algorithm utilizes feature matching techniques, Singular Value
Decomposition (SVD), and the Iterative Closest Point (ICP) algorithm to estimate the transformation
between the maps. Subsequently, the algorithm employs a map-merging graph to estimate the global
transformation. Our system has been designed to utilize two robots and has been evaluated on
datasets and in a simulated environment using ROS and Gazebo. The system required less computing
time to build the global map and achieved good estimation accuracy.

Keywords: MR-SLAM; ROS; feature matching; liDAR SLAM; Map Merge; Gazebo

1. Introduction

The Simultaneous Localization and Mapping (SLAM) problem encompasses two
primary tasks: gathering environmental feature data using sensors like cameras, lidars,
and range finders and utilizing the acquired information to both construct the map and
estimate the robot’s position on that map [1].

A significant amount of research has been conducted to address the SLAM problem,
resulting in the categorization of SLAM into two types based on the methods employed
for information gathering: visual SLAM [2], which relies on camera sensors, and Lidar
SLAM. Visual SLAM encounters challenges stemming from environmental variations (such
as changes in illumination and weather conditions) [3]. These challenges lead to less
robustness and accuracy in pose estimation of the visual SLAM. Consequently, LiDAR
SLAM mitigates environmental variations and provides high-resolution point clouds that
cover a large volumetric field of view. Therefore, it has gained extensive adoption in
numerous robotic applications, including drone inspection [4], autonomous driving [5], and
warehouse manipulation [6]. Despite the achievements of existing Lidar SLAM approaches
in terms of performance, certain limitations remain, particularly the computational cost.
This concern arises due to the constrained computational resources of many robots [7].

The prevailing technique for scan matching in Lidar SLAM is the Iterative Closest
Point (ICP) method [8]. However, ICP is computationally inefficient due to its involvement
of a substantial number of points in the optimization process. An alternative approach
is Lidar Odometry and Mapping (LOAM) [9], which employs feature matching. LOAM
efficiently conducts computations by extracting edge and plane features for pose estimation.
Nonetheless, iterative calculations are necessary for distortion compensation. Subsequent

Designs 2023, 7, 110. https://doi.org/10.3390/designs7050110 https://www.mdpi.com/journal/designs

https://doi.org/10.3390/designs7050110
https://doi.org/10.3390/designs7050110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/designs
https://www.mdpi.com
https://orcid.org/0000-0001-7009-3634
https://doi.org/10.3390/designs7050110
https://www.mdpi.com/journal/designs
https://www.mdpi.com/article/10.3390/designs7050110?type=check_update&version=1

Designs 2023, 7, 110 2 of 13

advancements aimed at refining LOAM have been introduced, such as A-LOAM [10],
FLOAM [11], SA-LOAM [12], and several others. These developments strive to enhance
the efficiency and performance of the LOAM technique.

In recent times, there has been a growing emphasis on the development of Multirobot
Simultaneous Localization and Mapping (MR-SLAM) [13–21]. This focus has arisen due
to the adoption of multiple robots in crucial applications like coordination for monitoring
distributed issues, cooperation for evading traffic bottlenecks via robot communication,
and collaboration involving the joint execution of tasks beyond the capability of an in-
dividual robot. In the realm of MR-SLAM, the objective is to collaboratively map an
unknown environment utilizing multiple robots, even in cases where their initial positions
are unknown.

There are two main architectures to implement MR-SLAM: centralized MR-SLAM and
distributed MR-SLAM. In the first type, the robots send their collected data to the central
station for pose estimation and map building, while in the latter type, the robots share their
information to build the map partially [22].

As with single-robot SLAM, MR-SLAM can be categorized according to the sensor used
for collecting the data: camera-based MR-SLAM and LiDAR-based MR-SLAM. Although
employing multiple robots in SLAM offers a range of advantages, notably the reduction of
the overall time needed to explore extensive environments, enhanced system performance,
and heightened resilience against failures, it also introduces many challenges [23]. The
works [14,16,18,19,21] suffer from environmental variations that affect estimation accuracy
and do not provide a large volumetric field of view.

To address the challenges that arise when using a camera sensor for MR-SLAM, some
works utilize laser scanners, such as [13,17]. However, this approach does not provide a 3D
map, which is essential for indoor applications like warehouses and semantic mapping.
To achieve a 3D view, [20] uses a LiDAR sensor, but it faces computational complexity
issues on the server, making it unsuitable for real-time applications. Ref. [15] addresses the
computational complexity but requires further accuracy enhancement.

In this paper, we present a centralized MR-SLAM implementation that effectively
addresses the shortcomings associated with visual SLAM [3] by using a LiDAR sensor at
the same time, dealing with the computational cost (resources and time demands asso-
ciated with mapping expansive regions) by adopting a noniterative two-stage distortion
compensation method of F-LOAM [11].

Subsequently, a map merging algorithm centered around feature matching is em-
ployed. This algorithm facilitates the fusion of these local maps, culminating in the creation
of a comprehensive 3D global map. The synergy of high-speed processing and low compu-
tational complexity exhibited by each robot, combined with the attainment of an acceptable
level of global map accuracy, contributes to a reduction in the time needed for large-area
exploration and map creation.

The paper has been organized into five sections. The second section presents some of
the previous and related work for our work, and the third section presents the algorithms
(FLOAM and map merging) that are used in our suggested system. The fourth section
shows the simulation results, and the final section includes the conclusion.

2. Related Work

In the realm of multirobot SLAM implementation, two fundamental structures emerge:
a centralized approach, where robots transmit their measurements to a central server for
computation, and a distributed approach, where robots collaborate by sharing measure-
ments amongst themselves for computation.

Distributed MRSLAM: An example of a distributed MR-SLAM system was introduced
by Yosuke Kishimoto et al. [13], which leverages Moving Horizon Estimation (MHE) to
formulate the cost function on each robot. Additionally, the Continuation/Generalized
Minimum Residual (C/GMRES) method is employed to alleviate computational overhead.

Designs 2023, 7, 110 3 of 13

Another distributed system named Kimera-Multi is detailed in [14]. In this system,
each robot initiates distributed place recognition, pose graph optimization, and an innova-
tive incremental maximum clique outlier rejection method. Collectively, these components
contribute to the creation of an accurate environmental representation.

In 2023, Pierre-Yves Lajoie and Giovanni Beltrame [15] unveiled a sparse MR-SLAM
system incorporating inter-robot loop closure detection. A notable characteristic of this
system is its complete decentralization, accommodating a variety of sensor types while
minimizing communication requirements. However, this framework hinges on pose graph
sparsification, which could potentially result in the omission of critical information crucial
for semantic mapping.

Centralized MRSLAM: Patrik Schmuck and Margarita Chli presented Centralized Col-
laborative Monocular SLAM (CCM-SLAM) [16]. Their focus centered on enhancing the
scalability and robustness of CCM-SLAM, addressing concerns like information loss and
communication delays that frequently emerge during real-world applications.

Elizabeth R. et al. [17] introduced a centralized pose graph optimization technique,
enabling localization and constructing a coherent map, even in scenarios where visual loop
closures are absent. Interestingly, this approach demonstrates comparable performance to
scenarios where visual loop closures are available.

Weilian Liu [18] presented an approach that relies on the particle filter for estimating
the pose of each robot and constructing local maps. These local maps are then transmitted
to perform map fusion, utilizing the ORB feature detector to create a comprehensive
global map.

In a similar vein, Yanjiang Chen et al. [19] introduced a fusion algorithm tailored
for MR-SLAM based on a combination of feature matching and Iterative Closest Point
(ICP). Despite the algorithm’s favorable accuracy, the computational demands it incurs are
directly proportional to the map’s scale. Consequently, as the map’s size increases, both the
computational complexity and processing time rise accordingly.

In 2022, Yun Chang et al. [20] implemented an MR-SLAM system in underground
environments. In this approach, LiDAR data undergoes preprocessing at the front end of
individual robots and is subsequently transmitted to the front end of a central station for
loop closure detection. The back end of the central station then engages in outlier-resilient
pose graph optimization and map generation. However, the central station in this work
suffers from the risk of potential overloading and bottleneck issues.

A novel multirobot active mapping algorithm is proposed in [21]. A notable feature
of this algorithm is its application of a multiplex graph neural network (mGNN). This
neural network learns the neural distance to populate the affinity matrix, enhancing the
effectiveness of graph matching.

Table 1 provides an overview of the sensors employed and the types of constructed
maps in each of the aforementioned studies.

The total time and computational complexity necessary for the implementation of
MR-SLAM can be segmented into two distinct components. The initial part pertains
to the efforts undertaken by each robot to execute SLAM, while the subsequent phase
encompasses the time and computational resources needed by the central station for the
purpose of map fusion. In light of this, our contribution can be summarized as follows:

• We have developed an online centralized MR-SLAM approach based on lidar SLAM.
• We have effectively tackled the challenges associated with speed and computational

complexity in MR-SLAM, rendering it suitable for real-time applications. This is
achieved by incorporating two key adaptations: firstly, the integration of FLOAM
SLAM, enhancing the rapidity of local map construction and robot localization; sec-
ondly, the refinement of the fusion algorithm on the central workstation to expedite
the merging process of local maps.

• The output of our system materializes as a 3D global map represented in the form of a
point cloud within the spatial context.

Designs 2023, 7, 110 4 of 13

Table 1. Simple briefs of the related works.

Work Sensor Map Type Computation Efficiency

[13] laser range scanner 2D-Grid map Reasonable

[14] IMU + Stero Camera 3D-metric-semantic
Meshes

Efficient computation compared
with other distributed system

[15] Lidar, Camera 3D-Feature map Need to enhance the accuracy
[16] Monocular camera 3D-Feature map KF is costly for large spaces
[17] UWB range sensor 2D-Feature map Reasonable

[18] RGB camera 2D-Occupancy map Reasonable but increases for
large spaces

[19] Camera 2D-Feature map Became efficient for large scale

[20] Lidar 3D-Feature map Its centralized architecture may
not scale to large robot teams

[21] Camera 2D-Occupancy map
Efficient computation compared
with other systems that use the
neural network

Our work VLP-16
(Velodyne Puck) 3D-Feature map Low computing time compared

with others

Through comprehensive experiments conducted on both real-world datasets and
simulated environments, we have substantiated that our system achieves performance
levels that are competitive with those of state-of-the-art methods.

Building a 3D map and utilizing a point cloud representation offers numerous advantages:

1. Compatibility between mapping approaches: The point cloud representation facili-
tates seamless data exchange among diverse mapping methodologies, even if they
internally employ distinct representations. The flexibility of point clouds, devoid of
constraints on point geometry, enables easy integration of metadata associated with
each point.

2. Enhanced cooperation among robots: A 3D map promotes efficient collaboration
among robots that operate within a space unbounded by a 2D plane. This versatility
allows robots with varying capabilities and mobility (e.g., humanoid robots, aerial
vehicles, ground-based platforms, outdoor robots) to contribute effectively to the task
at hand. By leveraging the diverse strengths and weaknesses of different robot types,
the collective can perform tasks more efficiently.

Incorporating these benefits, the use of 3D maps and point cloud representations
stands as a valuable asset in robotics, enabling interoperability, adaptability, and efficient
task execution across a range of robot platforms.

3. Methodology

The implementation pipeline of the proposed system is depicted in Figure 1. In this
setup, two robots collaborate to construct individual local maps. These local maps are
then transmitted to the central station, where they undergo a fusion process to generate
a comprehensive map. Each robot employs FLOAM-SLAM for position estimation and
local map construction. Subsequently, the fusion algorithm leverages the matching process,
along with ICP, to seamlessly merge the local maps. This holistic process ensures the
creation of a unified and complete map.

3.1. F-LOAM SLAM

A feature-based method, which builds upon point-to-edge/plane matching [11], rep-
resents an advancement over LOAM [9]. This improved version effectively conducts
localization and mapping tasks with minimized computational costs (time and memory).
It achieves this by employing a two-stage approach for distortion compensation, thereby
circumventing the need for iterative transformations between successive laser scans that
waste time and memory.

Designs 2023, 7, 110 5 of 13
Designs 2023, 7, x FOR PEER REVIEW 5 of 13

Figure 1. Proposed system overview.

3.1. F-LOAM SLAM
A feature-based method, which builds upon point-to-edge/plane matching [11], rep-

resents an advancement over LOAM [9]. This improved version effectively conducts lo-
calization and mapping tasks with minimized computational costs (time and memory). It
achieves this by employing a two-stage approach for distortion compensation, thereby
circumventing the need for iterative transformations between successive laser scans that
waste time and memory.

The process involves the extraction of features based on their smoothness value,
which is determined using the following equation:

Smoothness(α) = ଵ.∥∥ ∥∑ୀଵ,ஷ (𝑝 − 𝑝)∥ (1)

where 𝑝 represents the target point, and 𝑝 is in the same ring. The points with high
smoothness represent the edge feature points, while the points with small smoothness
represent the surface feature points, and then all features are subjected to motion distor-
tion removal before being used in motion estimation as: 𝑇∗ = 𝑚𝑖𝑛்ೖ∑(w𝑑) + ∑(w𝑑) (2)

Figure 2. Comparison of FLOAM with LOAM and A-LOAM on KITTI dataset sequence 00–10. The
orange color represents the Average Rotational Error, the blue color represents the Average Trans-
lational Error, and the gray color represents the Computing Time.

3.2. Map Fusion

Figure 1. Proposed system overview.

The process involves the extraction of features based on their smoothness value, which
is determined using the following equation:

Smoothness(α) =
1

n.‖ pi ‖
‖∑n

j=1,j 6=i (pj − pi) ‖ (1)

where pi represents the target point, and pj is in the same ring. The points with high
smoothness represent the edge feature points, while the points with small smoothness
represent the surface feature points, and then all features are subjected to motion distortion
removal before being used in motion estimation as:

T∗k = minTk ∑(wdei) + ∑
(
wdpj

)
(2)

T∗k represents the current pose estimation, w represents the weights, dei represents the
distance between the ith edge feature and the corresponding line, and dpj represents the
distance between the jth plane feature and the corresponding plane. The estimated pose
T∗k is used in the second stage to recompute the undistortion features and update the final
map. The FLOAM algorithm was selected for this work due to its demonstrated accuracy
and performance, as shown in Figure 2.

3.2. Map Fusion

The map fusion algorithm collects the local maps and builds the 3D-global map.
This can be implemented by detecting the overlapped area utilizing the feature matching
technique, and then the initial transform is found among the matched features by using
SVD, which is then optimized through ICP. The global transform is estimated by using a
map-merging graph (“A graph whose nodes correspond to robots maps and whose edges
represent pair-wise transformation estimates between the maps”). The global merged
map can be computed by finding a spatial configuration of the nodes (maps) that is
consistent with the transformations represented by the edges. We utilized the ROS package
‘map_merge_3d’ [24], which relies on detecting overlapping areas between the maps. Some
parameters (confidence value, neighbor value) for the merged package have been modified
to be compatible with F-LOAM SLAM. The algorithm is illustrated in the diagram shown
in Figure 3.

Designs 2023, 7, 110 6 of 13

Designs 2023, 7, x FOR PEER REVIEW 5 of 13

Figure 1. Proposed system overview.

3.1. F-LOAM SLAM
A feature-based method, which builds upon point-to-edge/plane matching [11], rep-

resents an advancement over LOAM [9]. This improved version effectively conducts lo-
calization and mapping tasks with minimized computational costs (time and memory). It
achieves this by employing a two-stage approach for distortion compensation, thereby
circumventing the need for iterative transformations between successive laser scans that
waste time and memory.

The process involves the extraction of features based on their smoothness value,
which is determined using the following equation:

Smoothness(α) = ଵ.∥∥ ∥∑ୀଵ,ஷ (𝑝 − 𝑝)∥ (1)

where 𝑝 represents the target point, and 𝑝 is in the same ring. The points with high
smoothness represent the edge feature points, while the points with small smoothness
represent the surface feature points, and then all features are subjected to motion distor-
tion removal before being used in motion estimation as: 𝑇∗ = 𝑚𝑖𝑛்ೖ∑(w𝑑) + ∑(w𝑑) (2)

Figure 2. Comparison of FLOAM with LOAM and A-LOAM on KITTI dataset sequence 00–10. The
orange color represents the Average Rotational Error, the blue color represents the Average Trans-
lational Error, and the gray color represents the Computing Time.

3.2. Map Fusion

Figure 2. Comparison of FLOAM with LOAM and A-LOAM on KITTI dataset sequence 00–10.
The orange color represents the Average Rotational Error, the blue color represents the Average
Translational Error, and the gray color represents the Computing Time.

Designs 2023, 7, x FOR PEER REVIEW 6 of 13

The map fusion algorithm collects the local maps and builds the 3D-global map. This
can be implemented by detecting the overlapped area utilizing the feature matching tech-
nique, and then the initial transform is found among the matched features by using SVD,
which is then optimized through ICP. The global transform is estimated by using a map-
merging graph (“A graph whose nodes correspond to robots maps and whose edges rep-
resent pair-wise transformation estimates between the maps”). The global merged map
can be computed by finding a spatial configuration of the nodes (maps) that is consistent
with the transformations represented by the edges. We utilized the ROS package
‘map_merge_3d’ [24], which relies on detecting overlapping areas between the maps.
Some parameters (confidence value, neighbor value) for the merged package have been
modified to be compatible with F-LOAM SLAM. The algorithm is illustrated in the dia-
gram shown in Figure 3.

Figure 3. Map fusion process details.

The fusion process on the central station shows three main parts:
• Discovering the Robots: This is performed by searching for all map topics in the ROS

environment and then storing the maps.
• Estimate the Transform: This consists of two main parts. The first part estimates the

transform between two maps, which includes the following process:
1. The maps are down-sampled by using a voxal filter to reduce the computation time

and deal with some noise and inaccuracies.
2. Outliers are removed; this will help to remove far-lying key points.
3. Surface normal is computed based on the neighborhood of the point.
4. Since we deal with point cloud, which does not have color information, we should

use a detector algorithm that deals with geometrical information, such as Harries 3D
point detector [25]. The determined surface normal will be used to detect these
points.

5. Compute Fast Point Feature Histogram (FPFH) descriptors [26].
6. Match the descriptors of the two maps by finding the k-nearest descriptor.
7. Use Random Sample Consensus (RANSAC) [27] algorithm to find the inlier de-

scriptors and then estimate the transform between the matched inlier descriptors by
using Singular-Value Decomposition (SVD) [28].

Figure 3. Map fusion process details.

The fusion process on the central station shows three main parts:

• Discovering the Robots: This is performed by searching for all map topics in the ROS
environment and then storing the maps.

• Estimate the Transform: This consists of two main parts. The first part estimates the
transform between two maps, which includes the following process:

1. The maps are down-sampled by using a voxal filter to reduce the computation time
and deal with some noise and inaccuracies.

2. Outliers are removed; this will help to remove far-lying key points.

Designs 2023, 7, 110 7 of 13

3. Surface normal is computed based on the neighborhood of the point.
4. Since we deal with point cloud, which does not have color information, we should

use a detector algorithm that deals with geometrical information, such as Harries 3D
point detector [25]. The determined surface normal will be used to detect these points.

5. Compute Fast Point Feature Histogram (FPFH) descriptors [26].
6. Match the descriptors of the two maps by finding the k-nearest descriptor.
7. Use Random Sample Consensus (RANSAC) [27] algorithm to find the inlier descrip-

tors and then estimate the transform between the matched inlier descriptors by using
Singular-Value Decomposition (SVD) [28].

8. Align the transform with FAST_VGICP [8].

The second part relies on the node graph to estimate the transformation between the
local maps and the global reference frame. This is achieved through the following steps
within the match graph:

1. Identification of the largest connected component, with matches having confidences
less than 1.0 being discarded.

2. Construction of a maximum spanning tree to select the global reference frame and
provide only one path from the nodes to the selected reference.

3. Determination of the global transform through the tree and pair-wise transforms.

• Merge the Maps: Obtaining the maps and their transform, then combining them to
generate the 3D-global map.

The step involving transformation estimation is inherently computationally demand-
ing and time intensive, representing a pivotal aspect of this algorithm. To tackle this
concern, an efficient approach lies in the adoption of an asynchronous architecture utilizing
ROS nodes.

Instead of repetitively re-estimating map transformations, a more streamlined strategy
involves updating the merged map based on prior estimations. This optimization can be
realized through an asynchronous map composition and transformation estimation frame-
work. The merged node, functioning asynchronously, performs periodic map composition
and transformation estimation. Specifically, the composition process can operate at high
frequencies since it is already equipped with the prior transformation estimates, enabling
the transformation of input maps and their subsequent concatenation. This accelerates
the composition process and facilitates high update rates for the merged map, swiftly
assimilating newly discovered areas.

On the other hand, the transformation estimation process, characterized by its compu-
tational intensity, operates at lower frequencies to conserve computational resources. This
strategic allocation ensures that the algorithm efficiently manages computational demands
while concurrently achieving a balanced trade-off between real-time responsiveness and
resource optimization.

In Summary: Instead of repeatedly recalculating map transformations, the approach
updates the merged map using prior estimations. This is achieved through an asynchronous
framework where map composition is frequent, utilizing prior estimates, while transforma-
tion estimation, computationally intensive, occurs less often to save resources, maintaining
real-time responsiveness.

4. Simulation Results

The proposed work is implemented using a laptop (Intel(R) Core(TM) i7-7500U CPU @
2.70 GHz 2.90 GHz processor, 12.0 GB RAM, 64-bit operating system) and virtual machine
software VirtualBox (Workstation Pro with four processors and 8 GB memory) to install
Ubuntu 20.04 and ROS (Robotic Operating System) noetic version. First, the real-world
dataset is used to compare our system with other LIDAR-based SLAM to show its per-
formance and accuracy, and then it is implemented in a virtual environment designed
by Gazebo.

Designs 2023, 7, 110 8 of 13

VirtualBox Software: Provides a platform for testing software, running multiple operating
systems on a single machine, and developing and experimenting with various environ-
ments without affecting the host system. In our paper, we used the VirtualBox to install the
Ubuntu operating system, which provides a better environment for ROS.
Ubuntu 20.04 Operating System: A popular choice for roboticists and provides the most
seamless and well-supported environment for ROS applications. Many ROS packages and
libraries are built and tested primarily on Ubuntu, ensuring compatibility and stability.
Noetic version of ROS: A preferred choice for roboticists because it offers compatibility
with both Python 2 and Python 3, making it easier to transition from legacy code. It
is a Long-Term Support (LTS) release with extended community support for five years,
ensuring stability for long-term projects. Noetic is compatible with Ubuntu 20.04, a stable
LTS operating system, and provides a migration path for existing ROS projects. Despite its
Python 2 focus, it includes new features and benefits from an active community ecosystem.
Gazebo: is a widely used simulator for robotics due to its realistic, open-source, and exten-
sible nature. It integrates seamlessly with ROS, supports multirobot scenarios, provides
accurate sensor simulation, and enjoys strong community support. This makes Gazebo an
invaluable tool for developing and testing robotic systems.
Part 1. The method was initially assessed using a bag file dataset [29], a widely recognized
benchmark for outdoor localization evaluation. The dataset originates from six robots
equipped with Velodyne VLP-16 LiDAR, cameras, and GPS, which were used for driving
data collection. Within our study, we focused on a subset of the dataset involving only two
robots. Their respective ground truth trajectories are visualized in Figure 4, distinguished
by blue and purple colors. A comprehensive breakdown of the dataset particulars can be
found in Table 2.

Designs 2023, 7, x FOR PEER REVIEW 8 of 13

Noetic version of ROS: A preferred choice for roboticists because it offers compatibility
with both Python 2 and Python 3, making it easier to transition from legacy code. It is a
Long-Term Support (LTS) release with extended community support for five years, ensur-
ing stability for long-term projects. Noetic is compatible with Ubuntu 20.04, a stable LTS
operating system, and provides a migration path for existing ROS projects. Despite its
Python 2 focus, it includes new features and benefits from an active community ecosys-
tem.
Gazebo: is a widely used simulator for robotics due to its realistic, open-source, and ex-
tensible nature. It integrates seamlessly with ROS, supports multirobot scenarios, pro-
vides accurate sensor simulation, and enjoys strong community support. This makes Ga-
zebo an invaluable tool for developing and testing robotic systems.
Part 1. The method was initially assessed using a bag file dataset [29], a widely recognized
benchmark for outdoor localization evaluation. The dataset originates from six robots
equipped with Velodyne VLP-16 LiDAR, cameras, and GPS, which were used for driving
data collection. Within our study, we focused on a subset of the dataset involving only
two robots. Their respective ground truth trajectories are visualized in Figure 4, distin-
guished by blue and purple colors. A comprehensive breakdown of the dataset particulars
can be found in Table 2.

Table 2. The details of the used dataset in the experiment.

Sequence Robot’s Type Size Velodyne Points Topic
1 Acl_Jackal.bag 8.0 GB /acl_jackal /lidar_points
2 Acl_Jackal2.bag 12.6 GB /acl_jackal2/lidar_points
3 thoth.bag 5.86 GB /thoth/lidar_points

4 sparkal1-001.bag 10.86 GB /sparkal1-001/li-
dar_points

5 Sparkal2-001.bag 12 GB
/sparkal2-001/li-
dar_points

6 Hathor 8.81 GB /hathor/lidar_points

Figure 4. The ground truth trajectories for the used robots: the blue color represents robot1 path and
the purple color represents robot2 path.

To comprehensively evaluate our proposed system, we opted to compare it with an-
other lidar-based solution, namely A-LOAM [10]. This comparison was aimed at show-
casing the effectiveness of our system. In this evaluation, both MR-ALOAM and MR-
FLOAM systems were deployed, each involving two selected robots (sequences 2 and 4).
Both sequences present excellent challenges to assess the effectiveness of our proposed
system. Sequence 2, in particular, offers an extended path, serving as a robustness test for
our system. Additionally, the second sequence includes loop closures, further enhancing

Figure 4. The ground truth trajectories for the used robots: the blue color represents robot1 path and
the purple color represents robot2 path.

To comprehensively evaluate our proposed system, we opted to compare it with an-
other lidar-based solution, namely A-LOAM [10]. This comparison was aimed at showcas-
ing the effectiveness of our system. In this evaluation, both MR-ALOAM and MR-FLOAM
systems were deployed, each involving two selected robots (sequences 2 and 4). Both
sequences present excellent challenges to assess the effectiveness of our proposed system.
Sequence 2, in particular, offers an extended path, serving as a robustness test for our
system. Additionally, the second sequence includes loop closures, further enhancing the

Designs 2023, 7, 110 9 of 13

evaluation of our system’s performance. The resulting constructed maps for both systems
are visually depicted in Figure 5.

Table 2. The details of the used dataset in the experiment.

Sequence Robot’s Type Size Velodyne Points Topic

1 Acl_Jackal.bag 8.0 GB /acl_jackal /lidar_points
2 Acl_Jackal2.bag 12.6 GB /acl_jackal2/lidar_points
3 thoth.bag 5.86 GB /thoth/lidar_points
4 sparkal1-001.bag 10.86 GB /sparkal1-001/lidar_points
5 Sparkal2-001.bag 12 GB /sparkal2-001/lidar_points
6 Hathor 8.81 GB /hathor/lidar_points

Designs 2023, 7, x FOR PEER REVIEW 9 of 13

the evaluation of our system’s performance. The resulting constructed maps for both sys-
tems are visually depicted in Figure 5.

(a) (b)

(c) (d)

Figure 5. The maps on each robot and the final merged map: (a,b) the local maps on each robot, (c)
the complete map built by MR-ALOAM, and (d) the complete map built by MR-FLOAM.

Table 3 shows the computing time (in milliseconds) for both methods, and Table 4
shows the Root Mean Square Error for each robot (RMSE); in both methods, RMSE values
are calculated according to the following formula:

RMSE =ටଵ ∑ (𝑥௦௧ − 𝑥௧)ଶୀଵ (𝑦௦௧ − 𝑦௧)ଶ (𝑧௦௧ − 𝑧௧)ଶ (3)

where (𝑥௦௧, 𝑦௦௧, 𝑧௦௧) represents the estimated pose coordinates and (𝑥௧, 𝑦௧, 𝑧௧) rep-
resents the ground truth coordinates.

Table 3. The computing time of both MR-FLOAM and MR-ALOAM.

MR-Implementation Method Computing Time
MR-ALOAM 53,782.476562 ms
MR-FLOAM 18,360.228516 ms

Table 4. The RMSE results for the MR-FLOAM method.

 RMSE (MR-ALOM) RMSE (MR-FLOM)
ROBOT1 8.685816 13.122269
ROBOT2 2.914255 2.745622

Discussion for Part 1: MR-FLOAM notably outperforms MR-ALOAM in terms of map-
matching accuracy with the ground truth path of the robots, a distinction clearly visible

Figure 5. The maps on each robot and the final merged map: (a,b) the local maps on each robot,
(c) the complete map built by MR-ALOAM, and (d) the complete map built by MR-FLOAM.

Table 3 shows the computing time (in milliseconds) for both methods, and Table 4
shows the Root Mean Square Error for each robot (RMSE); in both methods, RMSE values
are calculated according to the following formula:

RMSE =

√
1
n∑n

i=1

(
xest − xgt

)2
+
(
yest − ygt

)2
+
(
zest − zgt

)2 (3)

where (xest, yest, zest) represents the estimated pose coordinates and (xgt, ygt, zgt) represents
the ground truth coordinates.

Designs 2023, 7, 110 10 of 13

Table 3. The computing time of both MR-FLOAM and MR-ALOAM.

MR-Implementation Method Computing Time

MR-ALOAM 53,782.476562 ms
MR-FLOAM 18,360.228516 ms

Table 4. The RMSE results for the MR-FLOAM method.

RMSE (MR-ALOM) RMSE (MR-FLOM)

ROBOT1 8.685816 13.122269
ROBOT2 2.914255 2.745622

Discussion for Part 1: MR-FLOAM notably outperforms MR-ALOAM in terms of map-
matching accuracy with the ground truth path of the robots, a distinction clearly visible
in Figure 5d compared to Figure 5c. This outcome highlights MR-FLOAM’s superior
alignment capabilities. Furthermore, our proposed method exhibits a commendable reduc-
tion in computing time, as demonstrated in Table 3, ensuring its efficiency for real-time
mapping applications.

However, the calculation of RMSE values for the robot’s path, as per the equation
provided, leads to interesting observations in Table 4. Specifically, for ROBOT1 in our
proposed MR-FLOAM, the RMSE value increases. This issue arises due to the absence
of a loop closure detection algorithm in our system. Loop closure refers to the process
of identifying and closing loops in the robot’s path within the constructed map. A loop
occurs when the robot revisits a location it has previously explored during its mission.
Detecting loop closure becomes particularly vital during extended operation times or in
large environments, where minor errors can accumulate and lead to deviations from the
robot’s actual trajectory.

The significance of loop closure detection lies in its ability to address the accumulation
of pose estimation errors for ROBOT1. In the absence of this algorithm, these errors
can persist and compromise the accuracy of ROBOT1’s path and map. Therefore, the
implementation of a loop closure detection algorithm is pivotal for rectifying these errors
and ensuring consistency within the map generated by ROBOT1.

Part 2. To implement the proposed system in a virtual environment, we used the follow-
ing requirements:

1. Gazebo simulator to simulate the environment, which is shown in Figure 6.

Designs 2023, 7, x FOR PEER REVIEW 10 of 13

in Figure 5d compared to Figure 5c. This outcome highlights MR-FLOAM’s superior
alignment capabilities. Furthermore, our proposed method exhibits a commendable re-
duction in computing time, as demonstrated in Table 3, ensuring its efficiency for real-
time mapping applications.

However, the calculation of RMSE values for the robot’s path, as per the equation
provided, leads to interesting observations in Table 4. Specifically, for ROBOT1 in our
proposed MR-FLOAM, the RMSE value increases. This issue arises due to the absence of
a loop closure detection algorithm in our system. Loop closure refers to the process of
identifying and closing loops in the robot’s path within the constructed map. A loop oc-
curs when the robot revisits a location it has previously explored during its mission. De-
tecting loop closure becomes particularly vital during extended operation times or in large
environments, where minor errors can accumulate and lead to deviations from the robot’s
actual trajectory.

The significance of loop closure detection lies in its ability to address the accumula-
tion of pose estimation errors for ROBOT1. In the absence of this algorithm, these errors
can persist and compromise the accuracy of ROBOT1’s path and map. Therefore, the im-
plementation of a loop closure detection algorithm is pivotal for rectifying these errors
and ensuring consistency within the map generated by ROBOT1 .
Part 2. To implement the proposed system in a virtual environment, we used the following
requirements:
1. Gazebo simulator to simulate the environment, which is shown in Figure 6.
2. Neor_mini robot code [30]: Provides simulation for a four-wheel robot equipped with

LiDAR (Velodyne-16), a camera, and a laser sensor. The two robots start to navigate
through the simulated environment to build the local maps and the global map, as
shown in Figure 7.

Figure 6. Simulated museum and robots.

Discussion for Part 2: Figure 7a,b portray the partially constructed maps of individual
robots. These separate maps are subsequently collated by the fusion algorithm residing at
the server. The outcome of this fusion process is evident in Figure 7c,d, wherein the
merged map emerges as a comprehensive depiction of the environment, culminating in a
cohesive and holistic representation.

Figure 6. Simulated museum and robots.

Designs 2023, 7, 110 11 of 13

2. Neor_mini robot code [30]: Provides simulation for a four-wheel robot equipped with
LiDAR (Velodyne-16), a camera, and a laser sensor. The two robots start to navigate
through the simulated environment to build the local maps and the global map, as
shown in Figure 7.

Designs 2023, 7, x FOR PEER REVIEW 11 of 13

(a) (b)

(c) (d)

Figure 7. The constructed maps for each robot and the final global map at the workstation: (a) and
(b) the trajectory and the local map of Robot1 and Robot2, respectively; (c) the top view of the con-
structed global map and (d) the side view of the constructed global map.

Additionally, the system excels in delivering precision pose estimation, particularly
evident in indoor environments, as underscored in Table 5. This performance affirms the
robustness and accuracy of our system’s pose estimation capabilities, further validating
its suitability for various operational scenarios.

Table 5. RMSE results and computing time.

 RMSE Global Map Computation Time
Robot1 0.960604

296.395529 ms
Robot2 0.707429

5. Conclusions
We have presented a centralized MR-SLAM, where the robots construct the local

maps and send them to the central station to merge the maps to create the global map.
Our system utilizes the LiDAR sensor to eliminate the environmental variations that are
associated with visual SLAM, which affects the robustness and accuracy of the system, as
well as provides high-resolution point clouds that cover a large volumetric field of view.
In addition, our system deals with computation costs by exploiting F-LOAM and map
merging by using feature matching.

Figure 7. The constructed maps for each robot and the final global map at the workstation:
(a) and (b) the trajectory and the local map of Robot1 and Robot2, respectively; (c) the top view
of the constructed global map and (d) the side view of the constructed global map.

Discussion for Part 2: Figure 7a,b portray the partially constructed maps of individual
robots. These separate maps are subsequently collated by the fusion algorithm residing at
the server. The outcome of this fusion process is evident in Figure 7c,d, wherein the merged
map emerges as a comprehensive depiction of the environment, culminating in a cohesive
and holistic representation.

Additionally, the system excels in delivering precision pose estimation, particularly
evident in indoor environments, as underscored in Table 5. This performance affirms the
robustness and accuracy of our system’s pose estimation capabilities, further validating its
suitability for various operational scenarios.

Designs 2023, 7, 110 12 of 13

Table 5. RMSE results and computing time.

RMSE Global Map Computation Time

Robot1 0.960604
296.395529 msRobot2 0.707429

5. Conclusions

We have presented a centralized MR-SLAM, where the robots construct the local maps
and send them to the central station to merge the maps to create the global map. Our system
utilizes the LiDAR sensor to eliminate the environmental variations that are associated with
visual SLAM, which affects the robustness and accuracy of the system, as well as provides
high-resolution point clouds that cover a large volumetric field of view. In addition, our
system deals with computation costs by exploiting F-LOAM and map merging by using
feature matching.

Integrating F-LOAM and utilizing feature-matching techniques in the fusion algorithm
reduces computation time and complexity while providing a 3D map. These improvements
are crucial for real-time applications, such as warehouse management and interactive
guidance systems.

However, it is vital to acknowledge a notable limitation: the absence of a loop closure
detection algorithm, which affects the system’s accuracy, especially in large environments.
A loop closure detection algorithm is essential for reducing the accumulated pose estima-
tion error.

Therefore, in the future, we aim to address the loop closure limitation by incorporating
a loop closure detection algorithm. This algorithm will help identify loops in the robot’s
path, allowing us to find the transformation between the detected loops and add it as
a constraint to the pose graph for consistent map generation. As we move forward, we
remain committed to advancing MR-SLAM technology, intending to make robotic mapping
more efficient and precise for an array of applications by including semantic information in
the map.

Author Contributions: Conceptualization, I.K.I.; methodology, B.A.J.; software, B.A.J.; formal analy-
sis, I.K.I. and B.A.J.; validation, I.K.I. and B.A.J.; writing—original draft, B.A.J.; writing—review and
editing, I.K.I.; draft preparation, B.A.J.; supervision, I.K.I. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moura, A.; Antunes, J.; Dias, A.; Martins, A.; Almeida, J. Graph-SLAM Approach for Indoor UAV Localization in Warehouse Lo-

gistics Applications. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 4–11. [CrossRef]

2. Kazerouni, I.A.; Fitzgerald, L.; Dooly, G.; Toal, D. A survey of state-of-the-art on visual SLAM. Expert Syst. Appl. 2022, 205, 117734.
[CrossRef]

3. Debeunne, C.; Vivet, D. A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping. Sensors 2020, 20, 2068.
[CrossRef]

4. Cunha, F.; Youcef-Toumi, K. Ultra-Wideband Radar for Robust Inspection Drone in Underground Coal Mines. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 86–92.
[CrossRef]

5. Milz, S.; Arbeiter, G.; Witt, C.; Abdallah, B.; Yogamani, S. Visual SLAM for Automated Driving: Exploring the Applications
of Deep Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, Salt Lake City, UT, USA, 18–23 June 2018; Volume 2018-June, pp. 360–370. [CrossRef]

6. Ito, S.; Hiratsuka, S.; Ohta, M.; Matsubara, H.; Ogawa, M. Small Imaging Depth LIDAR and DCNN-Based Localization for
Automated Guided Vehicle. Sensors 2018, 18, 177. [CrossRef] [PubMed]

https://doi.org/10.1109/icarsc52212.2021.9429791
https://doi.org/10.1016/j.eswa.2022.117734
https://doi.org/10.3390/s20072068
https://doi.org/10.1109/icra.2018.8461191
https://doi.org/10.1109/cvprw.2018.00062
https://doi.org/10.3390/s18010177
https://www.ncbi.nlm.nih.gov/pubmed/29320434

Designs 2023, 7, 110 13 of 13

7. Li, R.; Liu, J.; Zhang, L.; Hang, Y. LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor
environments. In Proceedings of the 2014 DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 16–17 September 2014;
pp. 18–32.

8. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256.
[CrossRef]

9. Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robot. 2017, 41, 401–416. [CrossRef]
10. Gonzalez, C.; Adams, M. An improved feature extractor for the Lidar Odometry and Mapping (LOAM) algorithm. In Proceedings

of the 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), Chengdu, China, 23–26 October
2019; pp. 1–7. [CrossRef]

11. Wang, H.; Wang, C.; Chen, C.-L.; Xie, L. F-LOAM: Fast LiDAR Odometry and Mapping. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021;
pp. 4390–4396. [CrossRef]

12. Li, L.; Kong, X.; Zhao, X.; Li, W.; Wen, F.; Zhang, H.; Liu, Y. SA-LOAM: Semantic-aided LiDAR SLAM with Loop Closure. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 7627–7634. [CrossRef]

13. Kishimoto, Y.; Takaba, K.; Ohashi, A. Moving Horizon Multi-Robot SLAM Based on C/GMRES Method. In Proceedings of the
International Conference on Advanced Mechatronic Systems (ICAMechS), Kusatsu, Japan, 26–28 August 2019.

14. Chang, Y.; Tian, Y.; How, J.P.; Carlone, L. Kimera-Multi: A System for Distributed Multi-Robot Metric-Semantic Simultaneous
Localization and Mapping. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an,
China, 30 May–5 June 2021; pp. 11210–11218. [CrossRef]

15. Lajoie, P.Y.; Beltrame, G. Swarm-SLAM: Sparse Decentralized Collaborative Simultaneous Localization and Mapping Framework
for Multi-Robot Systems. arXiv 2023, arXiv:2301.06230.

16. Schmuck, P.; Chli, M. CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and
mapping for robotic teams. J. Field Robot. 2019, 36, 763–781. [CrossRef]

17. Boroson, E.R.; Hewitt, R.; Ayanian, N.; de la Croix, J.-P. Inter-Robot Range Measurements in Pose Graph Optimization. In
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29
October 2020; pp. 4806–4813. [CrossRef]

18. Liu, W. Slam algorithm for multi-robot communication in unknown environment based on particle filter. J. Ambient. Intell.
Humaniz. Comput. 2021, 1–9. [CrossRef]

19. Chen, Y.; Wang, Y.; Lin, J.; Chen, Z.; Wang, Y. Multi-Robot Point Cloud Map Fusion Algorithm Based on Visual SLAM.
In Proceedings of the 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE),
Guangzhou, China, 15–17 January 2021; pp. 329–333. [CrossRef]

20. Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Palieri, M.; Shi, J.; Chatterjee, A.; Morrell, B.; et al.
LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments. IEEE
Robot. Autom. Lett. 2022, 7, 9175–9182. [CrossRef]

21. Ye, K.; Dong, S.; Fan, Q.; Wang, H.; Yi, L.; Xia, F.; Wang, J.; Chen, B. Multi-Robot Active Mapping via Neural Bipartite Graph
Matching. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans,
LA, USA, 18–24 June 2022; pp. 14819–14828. [CrossRef]

22. Kshirsagar, J.; Shue, S.; Conrad, J.M. A Survey of Implementation of Multi-Robot Simultaneous Localization and Mapping. In
Proceedings of the SoutheastCon 2018, St. Petersburg, FL, USA, 19–22 April 2018; IEEE: Washington, DC, USA, 2018.

23. Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 2016, 33,
3–46. [CrossRef]

24. Hörner, J. Automatic Point Clouds Merging. Master’s Thesis, Faculty of Mathematics and Physics, Charles University, Prague,
Czech Republic, 2018.

25. Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the AVC, Manchester, UK, 31 August–2
September 1988.

26. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217.

27. Fischler, M.A.; Bolles, R.C. Random sample consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

28. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14, 403–420. [CrossRef]
29. Tian, Y.; Chang, Y.; Quang, L.; Schang, A.; Nieto-Granda, C.; How, J.P.; Carlone, L. Resilient and Distributed Multi-Robot Visual

SLAM: Datasets, Experiments, and Lessons Learned. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018.

30. Neor_Mini Ackerman Mobile Base. Available online: https://github.com/COONEO/neor_mini (accessed on 3 March 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/34.121791
https://doi.org/10.1007/s10514-016-9548-2
https://doi.org/10.1109/iccais46528.2019.9074665
https://doi.org/10.1109/iros51168.2021.9636655
https://doi.org/10.1109/icra48506.2021.9560884
https://doi.org/10.1109/icra48506.2021.9561090
https://doi.org/10.1002/rob.21854
https://doi.org/10.1109/iros45743.2020.9341227
https://doi.org/10.1007/s12652-021-03020-3
https://doi.org/10.1109/iccece51280.2021.9342251
https://doi.org/10.1109/LRA.2022.3191204
https://doi.org/10.1109/cvpr52688.2022.01442
https://doi.org/10.1002/rob.21620
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/BF02163027
https://github.com/COONEO/neor_mini

	Introduction
	Related Work
	Methodology
	F-LOAM SLAM
	Map Fusion

	Simulation Results
	Conclusions
	References

