Conventional and Switched Capacitor Boost Converters for Solar PV Integration: Dynamic MPPT Enhancement and Performance Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Switched Capacitor Boost Converter Based on Fibonacci
2.2. Conventional Boost Converter
2.3. Analysis of Proposed Maximum Power Point Tracking Algorithms
2.3.1. P&O-MPPT
2.3.2. INC-MPPT
2.3.3. PSO-MPPT
2.3.4. GA-MPPT
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BA | Bat algorithm |
DE | Differential Evaluation |
EMI | Electromagnetic interference |
FSSC | Fibonacci Sequence Switched Capacitor converter |
FSSC | Fibonacci Sequence Switched Capacitor converter |
GA | Genetic Algorithm |
INC | Increment Conductance |
MPPT | Maximum Power Point Tracking |
P&O | Perturb & Observe |
PSO | Particle Swarm Optimization |
SCBC | Switch Capacitor Boost Converter |
SMPS | Switched-Mode Power Supply |
References
- Qian, T.; Yang, Y.; Zhao, W. A Boost-Type Three-Port Resonant Forward Converter with Flexible Power Flow Path Optimization for PV Systems. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 161–165. [Google Scholar] [CrossRef]
- Yoon, D.; Cho, Y.; Bae, S.; Lee, J. An Input-Series Output-Series Noninverting Buck–Boost Converter for 1500 V DC Bus with Wide Input and Output Voltage Ranges. IEEE Trans. Ind. Electron. 2023, 70, 11231–11241. [Google Scholar] [CrossRef]
- Mouselinos, T.P.; Tatakis, E.C. Investigation of Highly Efficient Five Level Asymmetrical Inverter Family with Embedded Buck-Boost Converter. IEEE Access 2022, 10, 88750–88768. [Google Scholar] [CrossRef]
- Saafan, A.A.; Khadkikar, V.; El Moursi, M.S.; Zeineldin, H.H. A New Multiport DC-DC Converter for DC Microgrid Applications. IEEE Trans. Ind. Appl. 2023, 59, 601–611. [Google Scholar] [CrossRef]
- Li, B.; Zhang, B.; Zhang, Y.; Li, L.; Xu, D. Design and Implementation of a High-Power DC/DC Converter for HVDC Interconnections with Wide DC Voltage Range and Fault-Blocking Capability. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 785–799. [Google Scholar] [CrossRef]
- Khan, M.S.; Nag, S.S.; Das, A.; Yoon, C. Analysis and Control of an Input-Parallel Output-Series Connected Buck-Boost DC–DC Converter for Electric Vehicle Powertrains. IEEE Trans. Transp. Electrification 2023, 9, 2015–2025. [Google Scholar] [CrossRef]
- Alhawsawi, E.Y.; Habbi, H.M.D.; Hawsawi, M.; Zohdy, M.A. Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University. Energies 2023, 16, 5830. [Google Scholar] [CrossRef]
- Chappell, P.H. Introduction to power electronics. In Artech House Power Engineering Library; Artech House: Boston, UK; Massachusetts, UK, 2013. [Google Scholar]
- Law, K.; Cheng, K.; Yeung, Y. Design and analysis of switched-capacitor-based step-up resonant converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 943–948. [Google Scholar] [CrossRef]
- Rashid, M.H. Power Electronics Handbook; Elsevier Science & Technology: Saint Louis, MS, USA, 2017; Available online: http://ebookcentral.proquest.com/lib/oakland/detail.action?docID=5043418 (accessed on 16 June 2023).
- Xue, W.; Zhang, Y.; Lu, Y.; Fang, J.; Ren, J. A Two-Phase Hybrid Switched Capacitors Converter with Interleaving Control Scheme for Flying Capacitors Self-Balancing. In Proceedings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 19–23 March 2023; pp. 2111–2115. [Google Scholar] [CrossRef]
- Sagpazar, N.B.; Cho, W.; Kim, K.; Choi, S. Three-level Resonant Switched Capacitor Boost Converter. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019—ECCE Asia), Busan, Republic of Korea, 27–30 May 2019; pp. 2868–2873. [Google Scholar] [CrossRef]
- Evzelman, M.; Ben-Yaakov, S. The effect of switching transitions on switched capacitor converters losses. In Proceedings of the 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 14–17 November 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, J. Transformerless Stacked Active Bridge DC-DC Converters: Analysis, Synthesis and Design. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2020. Available online: https://www.proquest.com/dissertations-theses/transformerless-stacked-active-bridge-dc/docview/2474854084/se-2?accountid=12924 (accessed on 26 July 2023).
- Thota, P.R.; Jeevananthan, S. A New Switched Capacitor Nine-Level Inverter with Quadruple Voltage Boosting and Capacitor Voltage Balancing Capabilities. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–5. [Google Scholar]
- SinghNeti, S.; Singh, V. A Reduce Device Count Nine Level MLI Using Switched Capacitors. In Proceedings of the 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 3–5 January 2020; pp. 210–214. [Google Scholar] [CrossRef]
- Khorasani, R.R.; Jazi, H.M.; Chaudhuri, N.R.; Khoshkbar-Sadigh, A.; Shaneh, M.; Adib, E.; Wheeler, P. An Interleaved Soft Switched High Step-Up Boost Converter with High Power Density for Renewable Energy Applications. IEEE Trans. Power Electron. 2022, 37, 13782–13798. [Google Scholar] [CrossRef]
- Mondal, S.; Biswas, S.P.; Islam, R.; Muyeen, S.M. A Five-Level Switched-Capacitor Based Transformerless Inverter with Boosting Capability for Grid-Tied PV Applications. IEEE Access 2023, 11, 12426–12443. [Google Scholar] [CrossRef]
- Ali, M.; Tayyab, M.; Sarwar, A.; Khalid, M. A Low Switch Count 13-Level Switched-Capacitor Inverter with Hexad Voltage-Boosting for Renewable Energy Integration. IEEE Access 2023, 11, 36300–36308. [Google Scholar] [CrossRef]
- Rahimi, R.; Habibi, S.; Shamsi, P.; Ferdowsi, M. A Three-Winding Coupled-Inductor-Based Dual-Switch High Step-Up DC–DC Converter for Photovoltaic Systems. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 3, 1106–1117. [Google Scholar] [CrossRef]
- Khorasani, R.R.; Jazi, H.M.; Khoshkbar-Sadigh, A.; Chaudhuri, N.R.; Shaneh, M.; Nourieh, N.; Adib, E.; Wheeler, P. ZVT High Step-Up Boost Converter With Wide Input Voltage and Wide Output Power for Renewable Energy Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 6057–6069. [Google Scholar] [CrossRef]
- Zheng, L.; Kandula, R.P.; Divan, D. Soft-Switching Solid-State Transformer with Reduced Conduction Loss. IEEE Trans. Power Electron. 2021, 36, 5236–5249. [Google Scholar] [CrossRef]
- Murtaza, A.F.; Sher, H.A.; Khan, F.U.; Nasir, A.; Spertino, F. Efficient MPP Tracking of Photovoltaic (PV) Array Through Modified Boost Converter with Simple SMC Voltage Regulator. IEEE Trans. Sustain. Energy 2022, 13, 1790–1801. [Google Scholar] [CrossRef]
- Murtaza, A.F.; Sher, H.A. A Series Resonant Network based Boost Converter. In Proceedings of the 2023 International Conference on Emerging Power Technologies (ICEPT), Topi, Pakistan, 6–7 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Lin, H.; Chan, W.C.; Lee, W.K.; Chen, Z.; Chan, M.; Zhang, M. High-Current Drivability Fibonacci Charge Pump With Connect–Point–Shift Enhancement. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2164–2173. [Google Scholar] [CrossRef]
- Mahnashi, Y.; Peng, F.Z. A Monolithic Voltage-Scalable Fibonacci Switched-Capacitor DC–DC Converter With Intrinsic Parasitic Charge Recycling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1105–1113. [Google Scholar] [CrossRef]
- Mahnashi, Y.; Peng, F.Z. Generalization of the Fundamental Limit Theory in a Switched-Capacitor Converter. IEEE Trans. Power Electron. 2017, 32, 6673–6676. [Google Scholar] [CrossRef]
- Makowski, M. Realizability conditions and bounds on synthesis of switched-capacitor DC-DC voltage multiplier circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 1997, 44, 684–691. [Google Scholar] [CrossRef]
- Mahnashi, Y. A New Approach to Improve the Voltage Conversion Ratio in Topological Switched-Capacitor DC–DC Converters Using Negator Stage. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 1465–1469. [Google Scholar] [CrossRef]
- Uno, M.; Igarashi, R.; Sato, Y. Switched Capacitor-Based PWM- and Phase Shift-Controlled Multiport Converter With Differential Power Processing Capability for Standalone Photovoltaic Systems Under Partial Shading. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6019–6032. [Google Scholar] [CrossRef]
- Farsi, M.; Liu, J. An Application to Solar Photovoltaic Systems. In Model-Based Reinforcement Learning: From Data to Continuous Actions with a Python-Based Toolbox; IEEE: Hoboken, NJ, USA, 2023; pp. 147–185. [Google Scholar] [CrossRef]
- Deboucha, H.; Shams, I.; Belaid, S.L.; Mekhilef, S. A Fast GMPPT Scheme Based on Collaborative Swarm Algorithm for Partially Shaded Photovoltaic System. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 5571–5580. [Google Scholar] [CrossRef]
- Kacimi, N.; Idir, A.; Grouni, S.; Boucherit, M.S. Improved MPPT Control Strategy for PV Connected to Grid Using IncCond-PSO-MPC Approach. CSEE J. Power Energy Syst. 2023, 9, 1008–1020. [Google Scholar] [CrossRef]
- Elgharib, A.O.; Alhasheem, M.; Swief, R.A.; Naamane, A. Wind Turbine Performance Assessment Boost Converter Based Applying PI Controller Integrating Genetic Algorithm. In Proceedings of the 2021 International Conference on Microelectronics (ICM), New Cairo City, Egypt, 19–22 December 2021; pp. 236–241. [Google Scholar] [CrossRef]
- Joisher, M.; Singh, D.; Taheri, S.; Espinoza-Trejo, D.R.; Pouresmaeil, E.; Taheri, H. A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions. IEEE Access 2020, 8, 38481–38492. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Al-Saud, M.S.; Abokhalil, A.G. A Novel Bat Algorithm Strategy for Maximum Power Point Tracker of Photovoltaic Energy Systems Under Dynamic Partial Shading. IEEE Access 2020, 8, 10048–10060. [Google Scholar] [CrossRef]
- Murtaza, A.F.; Sher, H.A.; Chiaberge, M.; Boero, D.; De Giuseppe, M.; E Addoweesh, K. Optimization of the perturb and observe maximum power point tracker for a distributed photovoltaic system. In Proceedings of the INMIC, Lahore, Pakistan, 19–20 December 2013; pp. 77–82. [Google Scholar] [CrossRef]
- de Souza, A.F.; Tofoli, F.L.; Ribeiro, E.R. Switched Capacitor DC-DC Converters: A Survey on the Main Topologies, Design Characteristics, and Applications. Energies 2021, 14, 2231. [Google Scholar] [CrossRef]
- Chan, C.-Y. A Nonlinear Control for DC–DC Power Converters. IEEE Trans. Power Electron. 2007, 22, 216–222. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, A.; Padmanaban, S. Modeling and analysis of complex dynamics for dSPACE controlled closed-loop DC-DC boost converter. Int. Trans. Electr. Energy Syst. 2019, 29, e2813. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Ang, S.P.; Dani, M.N.; Rahman, M.I.; Petra, R.; Sulthan, S.M. Optimizing Step-Size of Perturb & Observe and Incremental Conductance MPPT Techniques Using PSO for Grid-Tied PV System. IEEE Access 2023, 11, 13079–13090. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Amjad, M.; Mekhilef, S. An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation. IEEE Trans. Power Electron. 2012, 27, 3627–3638. [Google Scholar] [CrossRef]
- Habbi, H.M.; Alhamadani, A. Implementation of Power System Stabilizer Based on Conventional and Fuzzy Logic Controllers. J. Eng. 2018, 24, 97–113. [Google Scholar] [CrossRef]
- Koh, J.S.; Tan, R.H.G.; Lim, W.H.; Tan, N.M.L. A Modified Particle Swarm Optimization for Efficient Maximum Power Point Tracking Under Partial Shading Condition. IEEE Trans. Sustain. Energy 2023, 14, 1822–1834. [Google Scholar] [CrossRef]
- Yap, K.Y.; Sarimuthu, C.R.; Lim, J.M.-Y. Artificial Intelligence Based MPPT Techniques for Solar Power System: A review. J. Mod. Power Syst. Clean Energy 2020, 8, 1043–1059. [Google Scholar] [CrossRef]
Step | Switches to Turn ON | Switches to Turn OFF |
---|---|---|
Mode 1 | S1, S3, S5, S7, S9 | S2, S4, S6, S8, S10 |
Mode 2 | S2, S4, S6, S8, S10 | S1, S3, S5, S7, S9 |
Symbol | Definition | Value |
---|---|---|
PV solar (switched capacitor Boost) | ||
Np | parallel strings | 3 |
Ns | series connected modules per string | 3 |
C1, C2, C3, C4, C5 | capacitors | 20 μF |
C6 | capacitor | 100 μF |
R1 | Input resistance | 0.1 Ω |
RL | Load resistance | 130 Ω |
PV solar (conventional Boost) | ||
Np | parallel strings | 7 |
Ns | series connected modules per string | 6 |
Cin, Cout | capacitors | 1000, 100 μF |
L1 | inductance | 0.9 mH |
RL | Load resistance | 50 Ω |
PSO parameters (for switched capacitor boost converter) | ||
w | weight | 0.79 |
c1 | constant | 1.725 |
c2 | constant | 1.725 |
PSO parameters (for conventional boost converter) | ||
w | weight | 0.7 |
c1 | constant | 1.025 |
c2 | constant | 1.025 |
GA parameters (for switched capacitor boost converter) | ||
Population Size | constant | 50 |
Mutation Rate | constant | 0.01 |
GA parameters (for conventional boost converter) | ||
Population Size | constant | 100 |
Mutation Rate | constant | 0.001 |
Boost Configuration Type | MPPT Method | Settling Time (s) | Output Oscillation % |
---|---|---|---|
Conventional | P&O | 0.2 | 0.5 |
Switched capacitor | 0.008 | 0.02 | |
Conventional | INC | 0.05 | 70 |
Switched capacitor | 0.008 | 25 | |
Conventional | PSO | 0.02 | 0.8 |
Switched capacitor | <1 ms | 1.02 | |
Conventional | GA | 0.04 | 0.5 |
Switched capacitor | 0.03 | 0.02 |
Boost Configuration Type | Maximum Output Current (A) |
---|---|
Conventional | 10 |
Switched capacitor | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawsawi, M.; Habbi, H.M.D.; Alhawsawi, E.; Yahya, M.; Zohdy, M.A. Conventional and Switched Capacitor Boost Converters for Solar PV Integration: Dynamic MPPT Enhancement and Performance Evaluation. Designs 2023, 7, 114. https://doi.org/10.3390/designs7050114
Hawsawi M, Habbi HMD, Alhawsawi E, Yahya M, Zohdy MA. Conventional and Switched Capacitor Boost Converters for Solar PV Integration: Dynamic MPPT Enhancement and Performance Evaluation. Designs. 2023; 7(5):114. https://doi.org/10.3390/designs7050114
Chicago/Turabian StyleHawsawi, Mansour, Hanan Mikhael D. Habbi, Edrees Alhawsawi, Mohammed Yahya, and Mohamed A. Zohdy. 2023. "Conventional and Switched Capacitor Boost Converters for Solar PV Integration: Dynamic MPPT Enhancement and Performance Evaluation" Designs 7, no. 5: 114. https://doi.org/10.3390/designs7050114
APA StyleHawsawi, M., Habbi, H. M. D., Alhawsawi, E., Yahya, M., & Zohdy, M. A. (2023). Conventional and Switched Capacitor Boost Converters for Solar PV Integration: Dynamic MPPT Enhancement and Performance Evaluation. Designs, 7(5), 114. https://doi.org/10.3390/designs7050114