Comparative Analysis of the Fracture Resistance of a Polymeric Material for 3D Printing and a Milled Polymethylmethacrylate Material as Interim Material for Fixed Partial Dentures: New Material Updated
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Fracture Resistance Test
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pantea, M.; Ciocoiu, R.C.; Greabu, M.; Ripszky Totan, A.; Imre, M.; Țâncu, A.M.C.; Sfeatcu, R.; Spînu, T.C.; Ilinca, R.; Petre, A.E. Compressive and Flexural Strength of 3D-Printed and Conventional Resins Designated for Interim Fixed Dental Prostheses: An In Vitro Comparison. Materials 2022, 15, 3075. [Google Scholar] [CrossRef] [PubMed]
- Kadiyala, K.K.; Badisa, M.K.; Anne, G.; Anche, S.C.; Chiramana, S.; Muvva, S.B.; Zakkula, S.; Jyothula, R.R.D. Evaluation of Flexural Strength of Thermocycled Interim Resin Materials Used in Prosthetic Rehabilitation—An In-Vitro Study. J. Clin. Diagn. Res. JCDR 2016, 10, ZC91–ZC95. [Google Scholar] [CrossRef] [PubMed]
- Mârțu, I.; Murariu, A.; Baciu, E.R.; Savin, C.N.; Foia, I.; Tatarciuc, M.; Diaconu-Popa, D. An Interdisciplinary Study Regarding the Characteristics of Dental Resins Used for Temporary Bridges. Medicina 2022, 58, 811. [Google Scholar] [CrossRef] [PubMed]
- Tortopidis, D.; Lyons, M.F.; Baxendale, R.H.; Gilmour, W.H. The Variability of Bite Force Measurement between Sessions, in Different Positions within the Dental Arch. J. Oral Rehabil. 1998, 25, 681–686. [Google Scholar] [CrossRef]
- Peck, C.C. Biomechanics of Occlusion—Implications for Oral Rehabilitation. J. Oral Rehabil. 2016, 43, 205–214. [Google Scholar] [CrossRef]
- Ferro, K.J.; Morgano, S.M.; Driscoll, C.F.; Freilich, M.A.; Guckes, A.D.; Knoernschild, K.L.; McGarry, T.J. The Glossary of Prosthodontic Terms. J. Prosthet. Dent. 2017, 117, C1-e105. [Google Scholar] [CrossRef]
- ISO 10477:2020; Dentistry, Polymer Based Crown and Veneering Materials. International Organization for Standardization. ISO Central Secretariat: Geneva, Switzerland. Available online: https://www.iso.org/standard/80007.html (accessed on 3 April 2023).
- Akiba, S.; Takamizawa, T.; Tsujimoto, A.; Moritake, N.; Ishii, R.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Influence of Different Curing Modes on Flexural Properties, Fracture Toughness, and Wear Behavior of Dual-Cure Provisional Resin-Based Composites. Dent. Mater. J. 2019, 38, 728–737. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Sari, T.; Usumez, A.; Strasser, T.; Şahinbas, A.; Rosentritt, M. Temporary Materials: Comparison of In Vivo and In Vitro Performance. Clin. Oral Investig. 2020, 24, 4061–4068. [Google Scholar] [CrossRef]
- Kessler, A.; Hickel, R.; Reymus, M. 3D Printing in Dentistry-State of the Art. Oper. Dent. 2020, 45, 30–40. [Google Scholar] [CrossRef]
- Digital Restorative Dentistry: A Guide to Materials, Equipment, and Clinical Procedures; Tamimi, F.; Hirayama, H. (Eds.) Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Revilla-León, M.; Özcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.-E.; Kim, Y.-L.; Kong, H.-J.; Chang, H.-S.; Jung, J.-H. Marginal and Internal Fit of 3D Printed Provisional Crowns According to Build Directions. J. Adv. Prosthodont. 2020, 12, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-M.; Park, J.-M.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Materials 2020, 13, 3970. [Google Scholar] [CrossRef] [PubMed]
- Lim, N.-K.; Shin, S.-Y. Bonding of Conventional Provisional Resin to 3D Printed Resin: The Role of Surface Treatments and Type of Repair Resins. J. Adv. Prosthodont. 2020, 12, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Chugh, A.; Kumar, A.; Rathee, M.; Jain, P. Comparative Evaluation of Fracture Resistance of Anterior Provisional Restorations Fabricated Using Conventional and Digital Techniques—An in Vitro Study. J. Indian Prosthodont. Soc. 2022, 22, 361–367. [Google Scholar] [CrossRef]
- Abad Coronel, C.; Abad Coronel, C. Caracterización Microestructural y Propiedades Mecánicas de Materiales Dentales Utilizados Para Sistemas CAD/CAM. Available online: https://eprints.ucm.es/id/eprint/49664/ (accessed on 21 November 2022).
- Abduo, J.; Lyons, K.; Bennamoun, M. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams. Int. J. Dent. 2014, 2014, 783948. [Google Scholar] [CrossRef]
- Berman, B. 3-D Printing: The New Industrial Revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Mainjot, A.K.; Dupont, N.M.; Oudkerk, J.C.; Dewael, T.Y.; Sadoun, M.J. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar] [CrossRef]
- Torabi, K.; Farjood, E.; Hamedani, S. Rapid Prototyping Technologies and Their Applications in Prosthodontics, a Review of Literature. J. Dent. 2015, 16, 1–9. [Google Scholar]
- Goodacre, B.J.; Goodacre, C.J. Additive Manufacturing for Complete Denture Fabrication: A Narrative Review. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2022, 31, 47–51. [Google Scholar] [CrossRef]
- Al-Wahadni, A.; Abu Rashed, B.O.; Al-Fodeh, R.; Tabanjah, A.; Hatamleh, M. Marginal and Internal Gaps, Surface Roughness and Fracture Resistance of Provisional Crowns Fabricated With 3D Printing and Milling Systems. Oper. Dent. 2023, 48, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Taşın, S.; Ismatullaev, A. Comparative Evaluation of the Effect of Thermocycling on the Mechanical Properties of Conventionally Polymerized, CAD-CAM Milled, and 3D-Printed Interim Materials. J. Prosthet. Dent. 2022, 127, 173.e1–173.e8. [Google Scholar] [CrossRef] [PubMed]
- Download Center: Ivoclar. Available online: https://www.ivoclar.com/en_us/downloadcenter/#dc=us&lang=en&search-text=Telio (accessed on 10 April 2023).
- Lodding, D.W. Long-Term Esthetic Provisional Restorations in Dentistry. Curr. Opin. Cosmet. Dent. 1997, 4, 16–21. [Google Scholar] [PubMed]
- Proussaefs, P. Immediate Provisionalization with a CAD/CAM Interim Abutment and Crown: A Guided Soft Tissue Healing Technique. J. Prosthet. Dent. 2015, 113, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.; Bienz, S.; Mörmann, W.; Mehl, A.; Attin, T.; Stawarczyk, B. Marginal Adaptation, Fracture Load and Macroscopic Failure Mode of Adhesively Luted PMMA-Based CAD/CAM Inlays. Dent. Mater. 2016, 32, e22–e29. [Google Scholar] [CrossRef] [PubMed]
- Alt, V.; Hannig, M.; Wöstmann, B.; Balkenhol, M. Fracture Strength of Temporary Fixed Partial Dentures: CAD/CAM versus Directly Fabricated Restorations. Dent. Mater. 2011, 27, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Telio CAD: Ivoclar. Available online: https://www.ivoclar.com/es_latam/products/digital-processes/telio-cad (accessed on 1 August 2023).
- Tigmeanu, C.V.; Ardelean, L.C.; Rusu, L.-C.; Negrutiu, M.-L. Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives—A Review. Polymers 2022, 14, 3658. [Google Scholar] [CrossRef]
- de Castro, D.T.; da Valente, M.L.C.; Aires, C.P.; Alves, O.L.; Dos Reis, A.C. Elemental Ion Release and Cytotoxicity of Antimicrobial Acrylic Resins Incorporated with Nanomaterial. Gerodontology 2017, 34, 320–325. [Google Scholar] [CrossRef]
- Aati, S.; Akram, Z.; Ngo, H.; Fawzy, A.S. Development of 3D Printed Resin Reinforced with Modified ZrO2 Nanoparticles for Long-Term Provisional Dental Restorations. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2021, 37, e360–e374. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Fok, A.S.L.; Watts, D.C. Multiple Correlations of Material Parameters of Light-Cured Dental Composites. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2009, 25, 829–836. [Google Scholar] [CrossRef]
- Vitale, A.; Cabral, J.T. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation. Materials 2016, 9, 760. [Google Scholar] [CrossRef]
- SprintRay Inc. Dental 3D Printing Materials by SprintRay. Available online: https://sprintray.com/dental-3d-printing-materials/ (accessed on 21 November 2022).
- Digholkar, S.; Madhav, V.N.V.; Palaskar, J. Evaluation of the Flexural Strength and Microhardness of Provisional Crown and Bridge Materials Fabricated by Different Methods. J. Indian Prosthodont. Soc. 2016, 16, 328. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.J.; Ramakrishnan, H.; Mahadevan, V.; Ns, A. Evaluation of the Flexural Strength of Cad/Cam Milled Polymethylmethacryateand Rapid Prototype 3d Printed Resin for Long Term Provisional Restorations. Acta Sci. Dent. Sci. 2022, 6, 88–94. [Google Scholar] [CrossRef]
- Suralik, K.; Sun, J.; Chen, C.-Y.; Lee, S. Effect of Fabrication Method on Fracture Strength of Provisional Implant-Supported Fixed Dental Prostheses. Prosthesis 2020, 2, 325–332. [Google Scholar] [CrossRef]
- Reeponmaha, T.; Angwaravong, O.; Angwarawong, T. Comparison of Fracture Strength after Thermo-Mechanical Aging between Provisional Crowns Made with CAD/CAM and Conventional Method. J. Adv. Prosthodont. 2020, 12, 218. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.Y.; Korioth, T.V.P.; Tantbirojn, D.; Versluis, A. Failure Load of Milled, 3D-Printed, and Conventional Chairside-Dispensed Interim 3-Unit Fixed Dental Prostheses. J. Prosthet. Dent. 2022, 127, 275.e1–275.e7. [Google Scholar] [CrossRef]
- Abad-Coronel, C.; Carrera, E.; Mena Córdova, N.; Fajardo, J.I.; Aliaga, P. Comparative Analysis of Fracture Resistance between CAD/CAM Materials for Interim Fixed Prosthesis. Materials 2021, 14, 7791. [Google Scholar] [CrossRef]
- Rayyan, M.M.; Aboushelib, M.; Sayed, N.M.; Ibrahim, A.; Jimbo, R. Comparison of Interim Restorations Fabricated by CAD/CAM with Those Fabricated Manually. J. Prosthet. Dent. 2015, 114, 414–419. [Google Scholar] [CrossRef]
- Grzebieluch, W.; Kowalewski, P.; Grygier, D.; Rutkowska-Gorczyca, M.; Kozakiewicz, M.; Jurczyszyn, K. Printable and Machinable Dental Restorative Composites for CAD/CAM Application-Comparison of Mechanical Properties, Fractographic, Texture and Fractal Dimension Analysis. Materials 2021, 14, 4919. [Google Scholar] [CrossRef]
- Peñate, L.; Basilio, J.; Roig, M.; Mercadé, M. Comparative Study of Interim Materials for Direct Fixed Dental Prostheses and Their Fabrication with CAD/CAM Technique. J. Prosthet. Dent. 2015, 114, 248–253. [Google Scholar] [CrossRef]
- Cekic-Nagas, I.; Egilmez, F.; Ergun, G.; Vallittu, P.K.; Lassila, L.V.J. Load-Bearing Capacity of Novel Resin-Based Fixed Dental Prosthesis Materials. Dent. Mater. J. 2018, 37, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Alkhateeb, R.I.; Algaoud, H.S.; Aldamanhori, R.B.; Alshubaili, R.R.; Alalawi, H.; Gad, M.M. Fracture Load of 3D-Printed Interim Three-Unit Fixed Dental Prostheses: Impact of Printing Orientation and Post-Curing Time. Polymers 2023, 15, 1737. [Google Scholar] [CrossRef] [PubMed]
- Benli, M.; Eker-Gümüş, B.; Kahraman, Y.; Huck, O.; Özcan, M. Can Polylactic Acid Be a CAD/CAM Material for Provisional Crown Restorations in Terms of Fit and Fracture Strength? Dent. Mater. J. 2021, 40, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Pihut, M.; Wisniewska, G.; Majewski, P.; Gronkiewicz, K.; Majewski, S. Measurement of Occlusal Forces in the Therapy of Functional Disorders with the Use of Botulinum Toxin Type A. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2009, 60 (Suppl. 8), 113–116. [Google Scholar]
- A Legacy of Resilience: Introducing OnX Tough—SprintRay Inc. Available online: https://sprintray.com/onx-tough/ (accessed on 1 August 2023).
- Manapat, J.Z.; Mangadlao, J.D.; Tiu, B.D.B.; Tritchler, G.C.; Advincula, R.C. High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability. ACS Appl. Mater. Interfaces 2017, 9, 10085–10093. [Google Scholar] [CrossRef]
- Lu, Y.; Han, X.X.; Gleadall, A.; Zhao, L.-G. Fracture Toughness of Three-Dimensional Stereolithography Printed Polymer Reinforced with Continuous Carbon Fibers. 3D Print. Addit. Manuf. 2022, 9, 278–287. [Google Scholar] [CrossRef]
- Gerdroodbar, A.E.; Alihemmati, H.; Zeighami, M.; Bodaghi, M.; Kouzani, A.Z.; Pourabbas, B.; Zolfagharian, A. Vat Polymerization 3D Printing of Composite Acrylate Photopolymer-Based Coated Glass Beads. Mater. Res. Express 2023, 10, 085306. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zolfagharian, A.; Bodaghi, M.; Xiang, Y.; Kouzani, A.Z. 4D Printing of Soft Orthoses for Tremor Suppression. Bio-Des. Manuf. 2022, 5, 786–807. [Google Scholar] [CrossRef]
- Eisenburger, M.; Riechers, J.; Borchers, L.; Stiesch-Scholz, M. Load-Bearing Capacity of Direct Four Unit Provisional Composite Bridges with Fibre Reinforcement. J. Oral Rehabil. 2008, 35, 375–381. [Google Scholar] [CrossRef]
CAD/CAM Material | Material | Ref/Lote |
---|---|---|
ONX NanoCeramic Hybrid | Printed polymer 3D (3DPP) | S21K23XBL |
Telio CAD | Polymethyl methacrylate (PMMA) | T-A2-Y33123-005 |
Descriptive | PMMA | 3DPP |
---|---|---|
Mean | 2104.7 | 1000.8 |
SD | 178.97 | 196.4 |
CI 95% | (1882.5:2326.9) | (757.0:1244.8) |
CV | 8.50% | 19.60% |
Minimum value | 1829.5 | 842.8 |
Maximum value | 2253.6 | 1343.8 |
PMMA | 3DPP | Statistical | p-Value |
---|---|---|---|
2192.79 N | 940.56 N | 40 | 0.012 |
Author | Resistance to Fracture/Milled Restorations | Resistance to Fracture/Printed Restorations |
---|---|---|
Present study * | 2104.7 N | 1000.8 N |
Suralik, et al. (2020) ** [40] | 294.64 N | 408.49 N |
Reeponmaha et al. (2020) *** [41] | 953.60 N | 1004.19 N |
Henderson, et al. (2022) * [42] | 729 N | 520 N |
Abad, et al. (2021) * [43] | 1663.57 N | 1437.74 N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Coronel, C.; Córdova, J.; Merchán, A.; Larriva, J.; Bravo, A.; Bernal, B.; Paltán, C.A.; Fajardo, J.I. Comparative Analysis of the Fracture Resistance of a Polymeric Material for 3D Printing and a Milled Polymethylmethacrylate Material as Interim Material for Fixed Partial Dentures: New Material Updated. Designs 2023, 7, 118. https://doi.org/10.3390/designs7050118
Abad-Coronel C, Córdova J, Merchán A, Larriva J, Bravo A, Bernal B, Paltán CA, Fajardo JI. Comparative Analysis of the Fracture Resistance of a Polymeric Material for 3D Printing and a Milled Polymethylmethacrylate Material as Interim Material for Fixed Partial Dentures: New Material Updated. Designs. 2023; 7(5):118. https://doi.org/10.3390/designs7050118
Chicago/Turabian StyleAbad-Coronel, Cristian, Johanna Córdova, Andrea Merchán, Jaime Larriva, Ariana Bravo, Bryam Bernal, Cesar A. Paltán, and Jorge I. Fajardo. 2023. "Comparative Analysis of the Fracture Resistance of a Polymeric Material for 3D Printing and a Milled Polymethylmethacrylate Material as Interim Material for Fixed Partial Dentures: New Material Updated" Designs 7, no. 5: 118. https://doi.org/10.3390/designs7050118
APA StyleAbad-Coronel, C., Córdova, J., Merchán, A., Larriva, J., Bravo, A., Bernal, B., Paltán, C. A., & Fajardo, J. I. (2023). Comparative Analysis of the Fracture Resistance of a Polymeric Material for 3D Printing and a Milled Polymethylmethacrylate Material as Interim Material for Fixed Partial Dentures: New Material Updated. Designs, 7(5), 118. https://doi.org/10.3390/designs7050118