Influence of Topological Defects on the Mechanical Response of Unit Cells of the Tetrachiral Mechanical Metamaterial
Abstract
:1. Introduction
2. Metamaterial Structure and Numerical Model
2.1. Tetrachiral Structure and Unit Cell of the Metamaterial
2.2. Mathematical Model
2.3. Boundary Conditions
2.4. Computational Model
3. Results
3.1. Mechanism of Structure Rotation and Sample Torsion
3.2. Relative Effective Young’s Modulus of the Metamaterial, E/Ebm
3.3. Further Actions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, T.; Yan, Z.; Zou, H.; Ma, K.; Liu, F.; Zhao, L.; Peng, Z.; Zhang, W. Renewable Energy Harvesting and Absorbing via Multi-Scale Metamaterial Systems for Internet of Things. Appl. Energy 2019, 254, 113717. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling Sound with Acoustic Metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef]
- Sangsefidi, A.R.; Kadkhodapour, J.; Anaraki, A.P.; Dibajian, S.H.; Schmauder, S. Enhanced Energy Harvesting by Devices with the Metamaterial Substrate. Phys. Mesomech. 2022, 25, 568–582. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical Metamaterials Associated with Stiffness, Rigidity and Compressibility: A Brief Review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Akhmetshin, L.R.; Smolin, I.Y. Analysis of Some Methods of Integration of Cells in a Mechanical Metamaterial. Tomsk. State Univ. J. Math. Mech. 2022, 77, 27–37. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y. Effective Medium Theory for Anisotropic Metamaterials. Sci. Rep. 2015, 5, 7892. [Google Scholar] [CrossRef]
- Jenett, B.E. Discrete Mechanical Metamaterials. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, September 2020. Available online: https://hdl.handle.net/1721.1/130610 (accessed on 2 October 2023).
- Fu, M.-H.; Zheng, B.-B.; Li, W.-H. A Novel Chiral Three-Dimensional Material with Negative Poisson’s Ratio and the Equivalent Elastic Parameters. Compos. Struct. 2017, 176, 442–448. [Google Scholar] [CrossRef]
- Frenzel, T.; Kadic, M.; Wegener, M. Three-Dimensional Mechanical Metamaterials with a Twist. Science 2017, 358, 1072–1074. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Farrugia, P.-S. On the Properties of Auxetic Meta-Tetrachiral Structures. Phys. Stat. Sol. (B) 2008, 245, 511–520. [Google Scholar] [CrossRef]
- Prall, D.; Lakes, R.S. Properties of a Chiral Honeycomb with a Poisson’s Ratio of—1. Int. J. Mech. Sci. 1997, 39, 305–314. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, X.; Qian, H.; Wang, S.; Zhu, R.; Yan, Z.; Ma, H.; Chen, Y.; Huang, G. Active metamaterials for realizing odd mass density. Proc. Natl. Acad. Sci. USA 2023, 120, e2209829120. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Oterkus, E.; Oterkus, S. 3-Dimensional Bond-Based Peridynamic Representative Volume Element Homogenization. Phys. Mesomech. 2021, 24, 541–547. [Google Scholar] [CrossRef]
- Zuev, L.B.; Khon, Y.A. Plastic Flow as Spatiotemporal Structure Formation. Part I. Qualitative and Quantitative Patterns. Phys. Mesomech. 2022, 25, 103–110. [Google Scholar] [CrossRef]
- Meeussen, A.S.; Oğuz, E.C.; Shokef, Y.; Hecke, M.V. Topological Defects Produce Exotic Mechanics in Complex Metamaterials. Nat. Phys. 2020, 16, 307–311. [Google Scholar] [CrossRef]
- Meeussen, A.S.; Oğuz, E.C.; Hecke, M.V.; Shokef, Y. Response Evolution of Mechanical Metamaterials under Architectural Transformations. New J. Phys. 2020, 22, 023030. [Google Scholar] [CrossRef]
- Bonfanti, S.; Guerra, R.; Zaiser, M.; Zapperi, S. Digital Strategies for Structured and Architected Materials Design. APL Mater. 2021, 9, 020904. [Google Scholar] [CrossRef]
- Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 2019, 183, 108137. [Google Scholar] [CrossRef]
- Bhullar, S.K.; Lala, N.L.; Ramkrishna, S. Smart Biomaterials—A Review. Rev. Adv. Mater. Sci. 2015, 40, 303–314. [Google Scholar]
- Giannini, D.; Schevenels, M.; Reynders, E.P.B. Rotational and Multimodal Local Resonators for Broadband Sound Insulation of Orthotropic Metamaterial Plates. J. Sound Vib. 2023, 547, 117453. [Google Scholar] [CrossRef]
- Giorgio, I.; Hild, F.; Gerami, E.; dell’Isola, F.; Misra, A. Experimental Verification of 2D Cosserat Chirality with Stretch-Micro-Rotation Coupling in Orthotropic Metamaterials with Granular Motif. Mech. Res. Commun. 2022, 126, 104020. [Google Scholar] [CrossRef]
- Feng, N.; Tie, Y.; Wang, S.; Guo, J. A Novel 3D Bidirectional Auxetic Metamaterial with Lantern-Shape: Elasticity Aspects and Potential for Load-Bearing Structure. Compos. Struct. 2023, 321, 117221. [Google Scholar] [CrossRef]
- Pan, C.; Han, Y.; Lu, J. Design and Optimization of Lattice Structures: A Review. Appl. Sci. 2020, 10, 6374. [Google Scholar] [CrossRef]
- Akhmetshin, L.; Smolin, I. Characterization of a Chiral Metamaterial Depending on the Type of Connection between Unit Cells. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2022, 236, 10214–10220. [Google Scholar] [CrossRef]
- Akhmetshin, L.; Iokhim, K.; Kazantseva, E.; Smolin, I. Response Evolution of a Tetrachiral Metamaterial Unit Cell under Architectural Transformations. Symmetry 2022, 15, 14. [Google Scholar] [CrossRef]
- Sofroniou, M.; Spaletta, G. Extrapolation Methods in Mathematica. J. Numer. Anal. Ind. Appl. Math. 2008, 3, 105–121. [Google Scholar]
- Li, X.; Yang, Z.; Lu, Z. Design 3D Metamaterials with Compression-Induced-Twisting Characteristics Using Shear–Compression Coupling Effects. Extreme Mech. Lett. 2019, 29, 100471. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Z.; Wang, L.; Zhu, P. 3D Chiral Metamaterial Modular Design with Highly-Tunable Tension-Twisting Properties. Mater. Today Commun. 2022, 30, 103006. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Qin, Q.-H.; Bai, Y. Tunable Compression-Torsion Coupling Effect in Novel Cylindrical Tubular Metamaterial Architected with Boomerang-Shaped Tetrachiral Elements. Mater. Today Commun. 2022, 31, 103483. [Google Scholar] [CrossRef]
- Akhmetshin, L.R.; Smolin, I.Y. Effect of the Type of Unit Cell Connection in a Metamaterial on Its Programmable Behavior. Nanosci. Technol. Int. J. 2023, 14, 63–71. [Google Scholar] [CrossRef]
- Jin, L.; Khajehtourian, R.; Mueller, J.; Rafsanjani, A.; Tournat, V.; Bertoldi, K.; Kochmann, D.M. Guided Transition Waves in Multistable Mechanical Metamaterials. Proc. Natl. Acad. Sci. USA 2020, 117, 2319–2325. [Google Scholar] [CrossRef]
- Coulais, C.; Teomy, E.; De Reus, K.; Shokef, Y.; Van Hecke, M. Combinatorial Design of Textured Mechanical Metamaterials. Nature 2016, 535, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-P.; Wang, Y.; Poh, L.H.; Liu, Z. Integrated Shape and Size Optimization of Curved Tetra-Chiral and Anti-Tetra-Chiral Auxetics Using Isogeometric Analysis. Compos. Struct. 2022, 300, 116094. [Google Scholar] [CrossRef]
- Ji, S.; Gu, Q.; Xia, B. Porosity Dependence of Mechanical Properties of Solid Materials. J. Mater. Sci. 2006, 41, 1757–1768. [Google Scholar] [CrossRef]
- Pabst, W.; Gregorová, E. Critical Assessment 18: Elastic and Thermal Properties of Porous Materials—Rigorous Bounds and Cross-Property Relations. Mater. Sci. Technol. 2015, 31, 1801–1808. [Google Scholar] [CrossRef]
- Choren, J.A.; Heinrich, S.M.; Silver-Thorn, M.B. Young’s Modulus and Volume Porosity Relationships for Additive Manufacturing Applications. J. Mater. Sci. 2013, 48, 5103–5112. [Google Scholar] [CrossRef]
l | h | t | r2 | r1 |
---|---|---|---|---|
0 mm | 5 mm | 5 mm | 17.5 mm | 12.5 mm |
Topological Defect | ω0 | ω1 | ω2 | ω3 | ω4 | ω5 | ω6 |
---|---|---|---|---|---|---|---|
Deflection, mm | 1.51 | 1.71 | 2.05 | 1.62 | 1.39 | 0.16 | –1.51 |
Young’s modulus, MPa | 23 | 36 | 44 | 43 | 52 | 31 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetshin, L.; Iokhim, K.; Kazantseva, E.; Smolin, I. Influence of Topological Defects on the Mechanical Response of Unit Cells of the Tetrachiral Mechanical Metamaterial. Designs 2023, 7, 129. https://doi.org/10.3390/designs7060129
Akhmetshin L, Iokhim K, Kazantseva E, Smolin I. Influence of Topological Defects on the Mechanical Response of Unit Cells of the Tetrachiral Mechanical Metamaterial. Designs. 2023; 7(6):129. https://doi.org/10.3390/designs7060129
Chicago/Turabian StyleAkhmetshin, Linar, Kristina Iokhim, Ekaterina Kazantseva, and Igor Smolin. 2023. "Influence of Topological Defects on the Mechanical Response of Unit Cells of the Tetrachiral Mechanical Metamaterial" Designs 7, no. 6: 129. https://doi.org/10.3390/designs7060129
APA StyleAkhmetshin, L., Iokhim, K., Kazantseva, E., & Smolin, I. (2023). Influence of Topological Defects on the Mechanical Response of Unit Cells of the Tetrachiral Mechanical Metamaterial. Designs, 7(6), 129. https://doi.org/10.3390/designs7060129