Techno-Economic Feasibility Study of a 1.5 MW Grid-Connected Solar Power Plant in Bangladesh
Abstract
:1. Introduction
2. Location and Data
2.1. Project Site Selection
2.2. Meteorological Data
2.2.1. Solar Irradiance
- -
- Global horizontal irradiance (GHI): Total solar energy, including both direct and diffuse solar radiation, that is received on a horizontal portion of the Earth’s surface. GHI, which is measured in watts per square meter (W/m2), is an important aspect to consider when assessing the solar energy potential of a site [41,43].
- -
- Direct normal irradiance (DNI): Solar radiation that strikes a surface perpendicular to the sun’s rays. DNI is the amount of sunlight that enters the Earth straight from the sun, unaffected by air absorption or scattering. It is essential for applications and concentrated solar power (CSP) systems that need direct sunshine. Watts per square meter (W/m2) are commonly used to measure DNI [44,45,46].
- -
- Diffuse horizontal irradiance (DHI): Aside from direct sunlight, solar radiation is received from the sky. DHI is made up of solar energy that is reflected or dispersed and diffusely reaches the surface of the Earth. It is crucial for solar energy applications since it is measured on a horizontal surface, especially for PV systems that may take in both direct and diffuse sunlight. DHI can also be calculated in W/m2 [44,47].
2.2.2. Temperature
2.2.3. Wind Velocity
2.2.4. Linke Turbidity
2.2.5. Relative Humidity
2.3. Sun Paths Diagram
3. Methodology
3.1. Proposed System Architecture
3.2. System Configuration
3.2.1. PV Field Orientation
3.2.2. PV Array and Inverter Characteristics
3.3. PV Field and Array Detailed Losses Parameter
3.4. Simulation Modeling
4. Results and Discussion
4.1. Performance Analysis
4.2. Loss Diagram
4.3. P50–P90 Evaluation
4.4. Financial Analysis
4.5. Calculation of Payback Period
4.6. Carbon Balance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
° | Degrees |
°C | Degrees Celsius |
A | Ampere |
AC | Alternating current |
Ah | Ampere hour |
BDT | Bangladeshi Taka |
BPDB | Bangladesh Power Development Board |
CO2 | Carbon dioxide |
COE | Cost of energy |
CRF | Capital recovery factor |
DC | Direct current |
DHI | Diffuse horizontal irradiance |
DNI | Direct normal irradiance |
gCO2 | Gram carbon dioxide |
GHI | Global horizontal irradiance |
GIS | Geographical information system |
GW | Gigawatt |
GWh | Gigawatt hour |
IAM | Incidence angle modifier |
Impp | Current at maximum power point |
IRR | Internal rate of return |
kBDT | Kilo BDT |
kW | Kilowatt |
kWac | Kilowatt alternating current |
kWdc | Kilowatt direct current |
kWh | Kilowatt hour |
kWp | Kilowatt peak |
LCE | Life cycle emissions |
LCOE | Levelized cost of energy |
MWh | Megawatt hour |
mΩ | Milliohm |
NPC | Net present cost |
NPV | Net present value |
NWPGL | North-West Power Generation Company Ltd. |
O&M | Operation and maintenance |
OPEX | Operation expenditure |
PED | Positive energy district |
Pmpp | Power at maximum power point |
Pnom | Nominal power |
PR | Performance ratio |
PV | Photovoltaic |
RH | Relative humidity |
ROI | Return on investment |
SF | Solar fraction |
STC | Standard test condition |
tCO2 | Ton carbon dioxide |
V | Volt |
Vmpp | Voltage at maximum power point |
W | Watt |
Wh | Watt hour |
References
- Solar Energy in Bangladesh: Current Status and Future. Available online: https://energytracker.asia/solar-energy-in-bangladesh-current-status-and-future/?fbclid=IwAR2dpVoe0scUzqZ_VGKQm2M3jkzN0UawrjmlbM3h9i0F_wGdD874jBmZUzg (accessed on 4 September 2023).
- Hossain, M.A.; Pota, H.R.; Hossain, M.J.; Blaabjerg, F. Evolution of Microgrids with Converter-Interfaced Generations: Challenges and Opportunities. Int. J. Electr. Power Energy Syst. 2019, 109, 160–186. [Google Scholar] [CrossRef]
- Karmaker, A.K.; Islam, S.M.R.; Kamruzzaman, M.; Rashid, M.M.U.; Faruque, M.O.; Hossain, M.A. Smart City Transformation: An Analysis of Dhaka and Its Challenges and Opportunities. Smart Cities 2023, 6, 1087–1108. [Google Scholar] [CrossRef]
- Alam, M.S.; Chowdhury, T.A.; Dhar, A.; Al-Ismail, F.S.; Choudhury, M.S.H.; Shafiullah, M.; Hossain, M.I.; Hossain, M.A.; Ullah, A.; Rahman, S.M. Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments. Energies 2023, 16, 812. [Google Scholar] [CrossRef]
- Hasan, M.; Tanvir, A.A.; Siddiquee, S.M.S.; Zubair, A. Efficient Hybrid Renewable Energy System for Industrial Sector with On-Grid Time Management. In Proceedings of the 2015 3rd International Conference on Green Energy and Technology (ICGET), Dhaka, Bangladesh, 11 September 2015; pp. 4–9. [Google Scholar] [CrossRef]
- Duman, A.C.; Güler, Ö. Economic Analysis of Grid-Connected Residential Rooftop PV Systems in Turkey. Renew. Energy 2020, 148, 697–711. [Google Scholar] [CrossRef]
- Ihsan, M.A.; Eram, A.F.; Khadem, M.M. Viability Study of Net Metering Scheme in Residential Scale: A Bangladeshi Perspective. In Proceedings of the 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India, 20–21 May 2022; pp. 361–365. [Google Scholar] [CrossRef]
- JPI Urban Europe. Positive Energy Districts (PED). Available online: https://jpi-urbaneurope.eu/ped/ (accessed on 9 November 2023).
- Chen, Y.; Wang, J.; Lund, P.D. Sustainability Evaluation and Sensitivity Analysis of District Heating Systems Coupled to Geothermal and Solar Resources. Energy Convers. Manag. 2020, 220, 113084. [Google Scholar] [CrossRef]
- Bottecchia, L.; Gabaldón, A.; Castillo-Calzadilla, T.; Soutullo, S.; Ranjbar, S.; Eicker, U. Fundamentals of Energy Modelling for Positive Energy Districts. In Smart Innovation, Systems and Technologies; Springer: Singapore, 2022; Volume 263, pp. 435–445. [Google Scholar] [CrossRef]
- Lindholm, O.; Rehman, H.U.; Reda, F. Positioning Positive Energy Districts in European Cities. Buildings 2021, 11, 19. [Google Scholar] [CrossRef]
- Moreno, A.G.; Vélez, F.; Alpagut, B.; Hernández, P.; Montalvillo, C.S. How to Achieve Positive Energy Districts for Sustainable Cities: A Proposed Calculation Methodology. Sustainability 2021, 13, 710. [Google Scholar] [CrossRef]
- Alpagut, B.; Akyürek, Ö.; Mitre, E.M. Positive Energy Districts Methodology and Its Replication Potential. Multidiscip. Digit. Publ. Inst. Proc. 2019, 20, 8. [Google Scholar] [CrossRef]
- Bagheri, M.; Shirzadi, N.; Bazdar, E.; Kennedy, C.A. Optimal Planning of Hybrid Renewable Energy Infrastructure for Urban Sustainability: Green Vancouver. Renew. Sustain. Energy Rev. 2018, 95, 254–264. [Google Scholar] [CrossRef]
- Castillo-Calzadilla, T.; Garay-Martinez, R.; Andonegui, C.M. Holistic Fuzzy Logic Methodology to Assess Positive Energy District (PathPED). Sustain. Cities Soc. 2023, 89, 104375. [Google Scholar] [CrossRef]
- Zhang, X.; Penaka, S.R.; Giriraj, S.; Sánchez, M.N.; Civiero, P.; Vandevyvere, H. Characterizing Positive Energy District (PED) through a Preliminary Review of 60 Existing Projects in Europe. Buildings 2021, 11, 318. [Google Scholar] [CrossRef]
- Marotta, I.; Guarino, F.; Longo, S.; Cellura, M. Environmental Sustainability Approaches and Positive Energy Districts: A Literature Review. Sustainability 2021, 13, 13063. [Google Scholar] [CrossRef]
- Krangsås, S.G.; Steemers, K.; Konstantinou, T.; Soutullo, S.; Liu, M.; Giancola, E.; Prebreza, B.; Ashrafian, T.; Murauskaitė, L.; Maas, N. Positive Energy Districts: Identifying Challenges and Interdependencies. Sustainability 2021, 13, 10551. [Google Scholar] [CrossRef]
- Neumann, H.M.; Hainoun, A.; Stollnberger, R.; Etminan, G.; Schaffler, V. Analysis and Evaluation of the Feasibility of Positive Energy Districts in Selected Urban Typologies in Vienna Using a Bottom-Up District Energy Modelling Approach. Energies 2021, 14, 4449. [Google Scholar] [CrossRef]
- Poudyal, R.; Loskot, P.; Parajuli, R. Techno-Economic Feasibility Analysis of a 3-KW PV System Installation in Nepal. Renew. Wind. Water Sol. 2021, 8, 5. [Google Scholar] [CrossRef]
- Imam, A.A.; Al-Turki, Y.A.; Sreerama Kumar, R. Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study. Sustainability 2020, 12, 262. [Google Scholar] [CrossRef]
- Faiz, F.U.H.; Shakoor, R.; Raheem, A.; Umer, F.; Rasheed, N.; Farhan, M. Modeling and Analysis of 3 MW Solar Photovoltaic Plant Using PVSyst at Islamia University of Bahawalpur, Pakistan. Int. J. Photoenergy 2021, 2021, 6673448. [Google Scholar] [CrossRef]
- Baqir, M.; Channi, H.K. Analysis and Design of Solar PV System Using Pvsyst Software. Mater. Today Proc. 2022, 48, 1332–1338. [Google Scholar] [CrossRef]
- Kumar, R.; Rajoria, C.S.; Sharma, A.; Suhag, S. Design and Simulation of Standalone Solar PV System Using PVsyst Software: A Case Study. Mater. Today Proc. 2020, 46, 5322–5328. [Google Scholar] [CrossRef]
- Satish, M.; Santhosh, S.; Yadav, A. Simulation of a Dubai Based 200 KW Power Plant Using PVsyst Software. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020; pp. 824–827. [Google Scholar] [CrossRef]
- Jagadale, P.; Choudhari, A.; Jadhav, S. Design and Simulation of Grid Connected Solar Si-Poly Photovoltaic Plant Using PVsyst For Pune, India Location. Renew. Energy Res. Appl. 2022, 3, 41–49. [Google Scholar]
- Grover, A.; Khosla, A.; Joshi, D. Design and Simulation of 20MW Photovoltaic Power Plant Using PVSyst. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 58–65. [Google Scholar] [CrossRef]
- Chauhan, A.; Sharma, M.; Baghel, S. Designing and Performance Analysis of 15KWP Grid Connection Photovoltaic System Using Pvsyst Software. In Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; pp. 1003–1008. [Google Scholar] [CrossRef]
- Kapoor, S.; Sharma, A.K.; Porwal, D. Design and Simulation of 60kWp Solar On-Grid System for Rural Area in Uttar-Pradesh by “PVsyst”. J. Phys. Conf. Ser. 2021, 2070, 012147. [Google Scholar] [CrossRef]
- Belmahdi, B.; El Bouardi, A. Solar Potential Assessment Using PVsyst Software in the Northern Zone of Morocco. Procedia Manuf. 2020, 46, 738–745. [Google Scholar] [CrossRef]
- Tamoor, M.; Bhatti, A.R.; Farhan, M.; Miran, S.; Raza, F.; Zaka, M.A. Designing of a Hybrid Photovoltaic Structure for an Energy-Efficient Street Lightning System Using PVsyst Software. Eng. Proc. 2021, 12, 10–14. [Google Scholar] [CrossRef]
- Mohammadi, S.A.D.; Gezegin, C. Design and Simulation of Grid-Connected Solar PV System Using PVSYST, PVGIS and HOMER Software. Int. J. Pioneer. Technol. Eng. 2022, 1, 36–41. [Google Scholar] [CrossRef]
- PVsyst—Logiciel Photovoltaïque. Available online: https://www.pvsyst.com/ (accessed on 1 September 2023).
- Dalal, S.; Jadhav, V.; Raut, R.; Narkhede, S. Analysis of 1kw solar rooftop system by using pvsyst. In Proceedings of the 2nd International Conference on Communication & Information Processing (ICCIP), Tokyo, Japan, 27–29 November 2020; pp. 1–8. [Google Scholar]
- Solar Panel Orientation—Energy Education. Available online: https://energyeducation.ca/encyclopedia/Solar_panel_orientation (accessed on 1 September 2023).
- Tilt and Orientation and Solar Energy. Available online: https://www.viridiansolar.co.uk/resources-1-3-tilt-and-orientation.html (accessed on 1 September 2023).
- Bansal, N.; Pany, P.; Singh, G. Visual Degradation and Performance Evaluation of Utility Scale Solar Photovoltaic Power Plant in Hot and Dry Climate in Western India. Case Stud. Therm. Eng. 2021, 26, 101010. [Google Scholar] [CrossRef]
- Talavera, D.L.; Muñoz-Cerón, E.; de la Casa, J.; Lozano-Arjona, D.; Theristis, M.; Pérez-Higueras, P.J. Complete Procedure for the Economic, Financial and Cost-Competitiveness of Photovoltaic Systems with Self-Consumption. Energies 2019, 12, 345. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Meng, F.; Zoras, S.; McKechnie, J.; Chu, J. Energy Assessment and Economic Sensitivity Analysis of a Grid-Connected Photovoltaic System. Renew. Energy 2020, 150, 101–115. [Google Scholar] [CrossRef]
- Meteo Database > Import Meteo Data > Meteonorm Data and Program. Available online: https://www.pvsyst.com/help/meteo_source_meteonorm.htm (accessed on 1 September 2023).
- Intro—Meteonorm (En). Available online: https://meteonorm.meteotest.ch/en/ (accessed on 1 September 2023).
- NASA Technical Reports Server (NTRS). Surface Meteorology and Solar Energy (SSE) Data Release 5.1. Available online: https://ntrs.nasa.gov/citations/20080012141 (accessed on 1 September 2023).
- Solargis. Solar Resource Maps and GIS Data for 200+ Countries. Available online: https://solargis.com/maps-and-gis-data/download/bangladesh (accessed on 1 September 2023).
- Gostein, M.; Hoffmann, A.; Farina, F.; Stueve, B. Measuring Global, Direct, and Diffuse Irradiance Using a Reference Cell Array. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 923–927. [Google Scholar] [CrossRef]
- PV Performance Modeling Collaborative (PVPMC). Direct Normal Irradiance. Available online: https://pvpmc.sandia.gov/modeling-guide/1-weather-design-inputs/irradiance-insolation/direct-normal-irradiance/ (accessed on 9 November 2023).
- Zhang, C.; Yan, Z.; Ma, C.; Xu, X. Prediction of Direct Normal Irradiation Based on CNN-LSTM Model. In Proceedings of the Proceedings of the 2020 5th International Conference on Multimedia Systems and Signal Processing, Chengdu, China, 28–30 May 2020; pp. 74–80. [Google Scholar] [CrossRef]
- PV Performance Modeling Collaborative (PVPMC). Diffuse Horizontal Irradiance. Available online: https://pvpmc.sandia.gov/modeling-guide/1-weather-design-inputs/irradiance-insolation/diffuse-horizontal-irradiance/ (accessed on 9 November 2023).
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Boston Solar. How Temperature & Shade Affect Solar Panel Efficiency. Available online: https://www.bostonsolar.us/solar-blog-resource-center/blog/how-do-temperature-and-shade-affect-solar-panel-efficiency/ (accessed on 9 November 2023).
- Wind Effect on Solar Panels—AESOLAR. Available online: https://ae-solar.com/wind-effect-on-solar-panels/ (accessed on 9 November 2023).
- Bhattacharya, T.; Chakraborty, A.K.; Pal, K. Effects of Ambient Temperature and Wind Speed on Performance of Monocrystalline Solar Photovoltaic Module in Tripura, India. J. Sol. Energy 2014, 2014, 817078. [Google Scholar] [CrossRef]
- Eltbaakh, Y.A.; Ruslan, M.H.; Alghoul, M.A.; Othman, M.Y.; Sopian, K.; Razykov, T.M. Solar Attenuation by Aerosols: An Overview. Renew. Sustain. Energy Rev. 2012, 16, 4264–4276. [Google Scholar] [CrossRef]
- Page, J.K. Radiation Data. In Solar Energy Conversion II; Elsevier: Amsterdam, The Netherlands, 1981; pp. 23–35. [Google Scholar] [CrossRef]
- ScienceDirect Topics. Linke Turbidity Factor—An Overview. Available online: https://www.sciencedirect.com/topics/engineering/linke-turbidity-factor (accessed on 9 November 2023).
- Shrestha, A.K.; Thapa, A.; Gautam, H. Solar Radiation, Air Temperature, Relative Humidity, and Dew Point Study: Damak, Jhapa, Nepal. Int. J. Photoenergy 2019, 2019, 8369231. [Google Scholar] [CrossRef]
- Sohani, A.; Shahverdian, M.H.; Sayyaadi, H.; Garcia, D.A. Impact of Absolute and Relative Humidity on the Performance of Mono and Poly Crystalline Silicon Photovoltaics; Applying Artificial Neural Network. J. Clean. Prod. 2020, 276, 123016. [Google Scholar] [CrossRef]
- Bowen, A. Fundamentals of solar architecture. In Solar Energy Conversion; Elsevier: Amsterdam, The Netherlands, 1979; pp. 481–553. [Google Scholar] [CrossRef]
- Yousef, B.A.A.; Radwan, A.; Olabi, A.G.; Abdelkareem, M.A. Sun Composition, Solar Angles, and Estimation of Solar Radiation. In Renewable Energy—Volume 1: Solar, Wind, and Hydropower: Definitions, Developments, Applications, Case Studies, and Modelling and Simulation; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 3–22. [Google Scholar] [CrossRef]
- Mermoud, A. Modeling Systems Losses in PVsyst; Institute of the Environmental Sciences Group of energy–PVsyst, Universitè de Genève: Geneva, Switzerland, 2013; pp. 1–15. Available online: https://energy.sandia.gov/wp-content/gallery/uploads/Mermoud_PVSyst_Thu-840-am.pdf (accessed on 4 September 2023).
- Soualmia, A.; Chenni, R. Modeling and Simulation of 15MW Grid-Connected Photovoltaic System Using PVsyst Software. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; pp. 702–705. [Google Scholar] [CrossRef]
- Solar.Com. What Is the Carbon Footprint of Solar Panels? Available online: https://www.solar.com/learn/what-is-the-carbon-footprint-of-solar-panels/ (accessed on 2 September 2023).
- Project Design > Carbon Balance Tool. Available online: https://www.pvsyst.com/help/carbon_balance_tool.htm (accessed on 2 September 2023).
- National Database of Renewable Energy, SREDA. Solar Park. Available online: http://www.renewableenergy.gov.bd/index.php?id=1&i=1&pg=1 (accessed on 4 September 2023).
- Ministry of Power, Energy & Mineral Resources. Sustainable and Renewable Energy Development Authority (SREDA)-Power Division. Available online: http://www.sreda.gov.bd/ (accessed on 4 September 2023).
Month | Global Horizontal Irradiance (kWh/m2/mth) | Diffuse Horizontal Irradiance (kWh/m2/mth) | Temperature (Degree Celcius) | Wind Velocity (m/s) | Linke Turbidity | Relative Humidity (%) |
---|---|---|---|---|---|---|
January | 122.3 | 54.1 | 17.4 | 0.79 | 6.377 | 77.6 |
February | 132.6 | 60.3 | 21.5 | 0.91 | 5.946 | 70.6 |
March | 174.6 | 78.3 | 26.5 | 1.2 | 6.316 | 64.6 |
April | 182.5 | 88.7 | 29.1 | 1.4 | 7 | 71.3 |
May | 190 | 100.7 | 30.3 | 1.1 | 7 | 71.4 |
June | 155.3 | 99.9 | 29.5 | 0.98 | 7 | 79.9 |
July | 145.1 | 99.2 | 29.2 | 0.88 | 5.772 | 80.9 |
August | 145.8 | 90.6 | 29 | 1.3 | 5.18 | 83.1 |
September | 139.4 | 74.2 | 27.9 | 1.2 | 5.29 | 86.5 |
October | 136 | 72.5 | 27 | 0.8 | 5.7 | 81.7 |
November | 127.8 | 54 | 23.1 | 0.6 | 6.589 | 78.4 |
December | 122.7 | 50.2 | 18.7 | 0.6 | 6.948 | 79.1 |
Thermal Loss Factor | |
Module temperature according to irradiance | |
Uc (const) | 20.0 W/m2K |
Uv (wind) | 0.0 W/m2K/m/s |
Ohmic Losses Series Diode Loss | |
Voltage drop | 0.7 V |
Loss fraction | 0.1% at STC |
DC Wiring Losses | |
Global array resistance | 4.1 mΩ |
Loss fraction | 1.5% at STC |
Module Quality Loss Loss fraction | −0.8% |
LID—Light Induced Degradation Loss fraction | 2.0% |
Module Mismatch Losses Loss fraction | 2.0% at MPP |
Strings Mismatch loss Loss fraction | 0.1% |
Array Soiling Losses Loss fraction | 3.0% |
0° | 30° | 50° | 60° | 70° | 75° | 80° | 85° | 90° |
1.000 | 0.998 | 0.981 | 0.948 | 0.862 | 0.776 | 0.636 | 0.403 | 0.000 |
Month | GlobHor kWh/m2 | DiffHor kWh/m2 | T_Amb °C | GlobInc kWh/m2 | GlobEff kWh/m2 | EArray MWh | E_User MWh | E_Solar MWh | E_Grid MWh | EFrGrid MWh |
---|---|---|---|---|---|---|---|---|---|---|
January | 122.3 | 54.1 | 17.35 | 153.7 | 145.6 | 240.7 | 7.440 | 3.069 | 232.8 | 4.371 |
February | 132.6 | 60.3 | 21.49 | 155.8 | 147.7 | 237.9 | 6.720 | 3.025 | 230.2 | 3.695 |
March | 174.6 | 78.3 | 26.48 | 191.0 | 180.9 | 283.4 | 7.440 | 3.479 | 274.4 | 3.961 |
April | 182.5 | 88.7 | 29.10 | 185.4 | 175.2 | 271.9 | 7.200 | 3.547 | 263.1 | 3.653 |
May | 190.0 | 100.7 | 30.27 | 182.4 | 171.9 | 267.5 | 7.440 | 3.701 | 258.6 | 3.739 |
June | 155.3 | 99.9 | 29.46 | 146.0 | 137.0 | 217.5 | 7.200 | 3.706 | 209.3 | 3.494 |
July | 145.1 | 99.2 | 29.24 | 137.4 | 128.6 | 206.0 | 7.440 | 3.770 | 197.9 | 3.670 |
August | 145.8 | 90.6 | 28.99 | 143.0 | 134.2 | 213.7 | 7.440 | 3.692 | 205.5 | 3.748 |
September | 139.4 | 74.2 | 27.91 | 145.8 | 137.2 | 216.8 | 7.200 | 3.485 | 208.8 | 3.715 |
October | 136.0 | 72.5 | 26.95 | 152.6 | 144.5 | 229.4 | 7.440 | 3.382 | 221.3 | 4.058 |
November | 127.8 | 54.0 | 23.13 | 158.3 | 150.0 | 241.5 | 7.200 | 2.959 | 233.9 | 4.241 |
December | 122.7 | 50.2 | 18.73 | 158.7 | 150.3 | 246.6 | 7.440 | 3.035 | 238.7 | 4.405 |
Year | 1774.2 | 922.8 | 25.77 | 1910.0 | 1803.1 | 2872.9 | 87.600 | 40.850 | 2774.4 | 46.750 |
Meteo Data Meteo data source Kind Year-to-year variability (Variance) | Meteonorm 7.3, Sat = 100% Not Defined 0.5% |
Specified Deviation Global variability (meteo + system) Variability (Quadratic sum) | 1.9% |
Simulation and parameters uncertainties PV module modelling/parameters Inverter efficiency uncertainty Soiling and mismatch uncertainties Degradation uncertainty | 1.0% 0.5% 1.0% 1.0% |
Annual production probability Variability P50 P90 P95 | 0.05 GWh 2.77 GWh 2.71 GWh 2.69 GWh |
Item | Quantity Units | Cost BDT | Total BDT |
---|---|---|---|
PV modules ECO-300M-60 | 6248 | 12,003.84 | 75,000,000.00 |
Inverters 890GTS_1500 | 1 | 6,000,000.00 | 6,000,000.00 |
Installation settings | 1 | 10,000,000.00 | 10,000,000.00 |
Total Depreciable asset | 91,000,000.00 91,000,000.00 |
Item | Total BDT/Year |
---|---|
Maintenance Cleaning | 50,000.00 |
Total (OPEX) Including inflation (2.00%) | 50,000.00 64,060.60 |
Year | Gross Income | Running Costs | Depreciable Allowance | Taxable Income | Taxes | After-Tax Profit | Self- Consumption Saving | Cumulative Profit | % Amorti. |
---|---|---|---|---|---|---|---|---|---|
2024 | 27,744 | 50 | 0 | 27,694 | 0 | 27,694 | 408 | −62,898 | 30.9% |
2025 | 27,744 | 51 | 0 | 27,693 | 0 | 27,693 | 408 | −34,796 | 61.8% |
2026 | 27,744 | 52 | 0 | 27,692 | 0 | 27,692 | 408 | −6696 | 92.6% |
2027 | 27,744 | 53 | 0 | 27,691 | 0 | 27,691 | 408 | 21,403 | 123.5% |
2028 | 27,744 | 54 | 0 | 27,690 | 0 | 27,690 | 408 | 49,501 | 154.4% |
2029 | 27,744 | 55 | 0 | 27,689 | 0 | 27,689 | 408 | 77,598 | 185.3% |
2030 | 27,744 | 56 | 0 | 27,687 | 0 | 27,687 | 408 | 105,694 | 216.1% |
2031 | 27,744 | 57 | 0 | 27,686 | 0 | 27,686 | 408 | 133,789 | 247.0% |
2032 | 27,744 | 59 | 0 | 27,685 | 0 | 27,685 | 408 | 161,883 | 277.9% |
2033 | 27,744 | 60 | 0 | 27,684 | 0 | 27,684 | 408 | 189,975 | 308.8% |
2034 | 27,744 | 61 | 0 | 27,683 | 0 | 27,683 | 408 | 218,067 | 339.6% |
2035 | 27,744 | 62 | 0 | 27,682 | 0 | 27,682 | 408 | 246,157 | 370.5% |
2036 | 27,744 | 63 | 0 | 27,680 | 0 | 27,680 | 408 | 274,246 | 401.4% |
2037 | 27,744 | 65 | 0 | 27,679 | 0 | 27,679 | 408 | 302,333 | 432.2% |
2038 | 27,744 | 66 | 0 | 27,678 | 0 | 27,678 | 408 | 330,420 | 463.1% |
2039 | 27,744 | 67 | 0 | 27,677 | 0 | 27,677 | 408 | 358,505 | 494.0% |
2040 | 27,744 | 69 | 0 | 27,675 | 0 | 27,675 | 408 | 386,588 | 524.8% |
2041 | 27,744 | 70 | 0 | 27,674 | 0 | 27,674 | 408 | 414,671 | 555.7% |
2042 | 27,744 | 71 | 0 | 27,672 | 0 | 27,672 | 408 | 442,752 | 586.5% |
2043 | 27,744 | 73 | 0 | 27,671 | 0 | 27,671 | 408 | 470,831 | 617.4% |
2044 | 27,744 | 74 | 0 | 27,670 | 0 | 27,670 | 408 | 498,909 | 648.3% |
2045 | 27,744 | 76 | 0 | 27,668 | 0 | 27,668 | 408 | 526,986 | 679.1% |
2046 | 27,744 | 77 | 0 | 27,667 | 0 | 27,667 | 408 | 555,061 | 710.0% |
2047 | 27,744 | 79 | 0 | 27,665 | 0 | 27,665 | 408 | 583,134 | 740.8% |
2048 | 27,744 | 80 | 0 | 27,663 | 0 | 27,663 | 408 | 611,206 | 771.7% |
Total | 693,595 | 1602 | 0 | 691,994 | 0 | 691,994 | 10,212 | 611,206 | 771.7% |
Electricity Sale Fixed Feed-in Tariff (BDT/kWh) | Net Present Value (NPV) (BDT) | Payback Period (Years) | Return on Investment (ROI) (%) |
---|---|---|---|
5.00 | 72,950,859 | 6.4 | 290.6 |
10.00 | 232,876,645 | 3.2 | 671.7 |
15.00 | 392,802,431 | 2.2 | 1052.8 |
Item | LCE | Quantity | Subtotal (kgCO2) |
---|---|---|---|
Modules | 1713 kgCO2/kWp | 1874 kWp | 3,210,322 |
Supports | 3.90 kgCO2/kg | 62,480 kg | 243,377 |
Inverters | 3.90 kgCO2/units | 1.00 unit | 386 |
Total | 3454.085 |
SL. | Project Name | Capacity (MWp) | Location | Latitude, Longitude | Agency | Expected Energy Generation and CO2 Emission Reduction During System Life | Expected Energy Generation and CO2 Emission Reduction until the Data Collection Day |
---|---|---|---|---|---|---|---|
1 | 200 MW (AC) Solar Park by Beximco Power Co. Ltd. | 200 | Sundarganj, Gaibandha | 25.328795° N, 89.541671° E | BPDB | 4 TWh, 2 M tCO2 | 156 GWh, 74 k tCO2 |
2 | 30MW (AC) Solar Park by Intraco CNG Ltd. & Juli New Energy Co. Ltd. | 30 | Gangachara, Rangpur | 25.855312° N, 89.222482° E | BPDB | 654 GWh, 309 k tCO2 | 36 GWh, 17 k tCO2 |
3 | 100 MW (AC) Solar Park by Energon Technologies FZE & China Sunergy Co.Ltd (ESUN) | 100 | Mongla, Bagerhat | 22.650135° N, 89.761117° E | BPDB | 2 TWh, 1 M tCO2 | 199 GWh, 94 k tCO2 |
4 | Sirajganj 6.13 MW (AC) Grid-connected Solar Photovoltaic Power Plant | 7.6 | Sirajganj, Sirajgonj | 24.386177° N, 89.748409° E | NWPGCL | 166 GWh, 78 k tCO2 | 22 GWh, 10 k tCO2 |
5 | 35 MW AC Solar Park by Consortium of Spectra Engineers Limited & Shunfeng Investment Limited | 35 | Shibalaya, Manikganj | 23.848491° N, 89.913733° E | BPDB | 763 GWh, 361 k tCO2 | 102 GWh, 48 k tCO2 |
6 | 50 MW (AC) Solar Park by HETAT-DITROLIC-IFDC Solar Consortium | 50 | Gauripur, Mymensingh | 24.75894° N, 90.59746° E | BPDB | 1 TWh, 516 k tCO2 | 166 GWh, 79 k tCO2 |
7 | Kaptai 7.4 MWp (6.63 MW AC) Grid-connected Solar PV Power Plant | 7.4 | Kaptai, Rangamati | 22.493286° N, 92.218809° E | BPDB | 161 GWh, 76 k tCO2 | 37 GWh, 17 k tCO2 |
8 | 8 MW Solar Park by Parasol Energy Ltd. | 8 | Panchagarh, Panchagarh | 26.376098° N, 88.591665° E | BPDB | 174 GWh, 82 k tCO2 | 40 GWh, 19 k tCO2 |
9 | 20MW (AC) Solar Park by Joules Power Limited (JPL) | 20 | Teknaf, Cox’s Bazar | 20.980463° N, 92.252503° E | BPDB | 436 GWh, 206 k tCO2 | 116 GWh, 55 k tCO2 |
10 | 1.5 MW Grid-connected Solar Power Plant in Lalpur, Natore [Proposed] | 1.874 | Char Jazira, Lalpur, Natore | 24.0900° N, 88.5800° E | Proposed | 70.375 GWh, 33074.061 tCO2 | Proposed |
Location | Generation Capacity (MW) | Project Status |
---|---|---|
Gangachara, Rangpura | 30 | Ongoing |
Dharmapasha, Sunamganja | 32 | Ongoing |
Gauripur, Mymensingh | 50 | Ongoing |
Chuadangaa | 50 | Future |
Netrokonaa | 50 | Future |
Mongla, Bagerhata | 100 | Ongoing |
Fenia | 100 | Future |
Narsingdia | 120 | Future |
Sundarganj, Gaibandhaa | 200 | Ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.F.; Sarker, N.K.; Hossain, M.A.; Alam, M.S.; Sanvi, A.H.; Syam Sifat, S.I. Techno-Economic Feasibility Study of a 1.5 MW Grid-Connected Solar Power Plant in Bangladesh. Designs 2023, 7, 140. https://doi.org/10.3390/designs7060140
Ali MF, Sarker NK, Hossain MA, Alam MS, Sanvi AH, Syam Sifat SI. Techno-Economic Feasibility Study of a 1.5 MW Grid-Connected Solar Power Plant in Bangladesh. Designs. 2023; 7(6):140. https://doi.org/10.3390/designs7060140
Chicago/Turabian StyleAli, Md. Feroz, Nitai Kumar Sarker, Md. Alamgir Hossain, Md. Shafiul Alam, Ashraf Hossain Sanvi, and Syed Ibn Syam Sifat. 2023. "Techno-Economic Feasibility Study of a 1.5 MW Grid-Connected Solar Power Plant in Bangladesh" Designs 7, no. 6: 140. https://doi.org/10.3390/designs7060140
APA StyleAli, M. F., Sarker, N. K., Hossain, M. A., Alam, M. S., Sanvi, A. H., & Syam Sifat, S. I. (2023). Techno-Economic Feasibility Study of a 1.5 MW Grid-Connected Solar Power Plant in Bangladesh. Designs, 7(6), 140. https://doi.org/10.3390/designs7060140