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Abstract: In order to address the Multi-Objective Optimization Problem (MOOP) in building a two-
stage helical gearbox, this work presents a novel application of the Multi-Criterion Decision-Making
(MCDM) method. The aim of the study is to determine the optimal primary design factors that
will increase gearbox efficiency while decreasing gearbox volume. Three main design parameters
were chosen for assessment in this work: the first stage’s gear ratio, and the first and second stages’
Coefficients of Wheel Face Width (CWFW). In addition, the MOOP is divided into two phases: phase
1 solves the single-objective optimization problem to reduce the gap between variable levels, and
phase 2 solves the MOOP to determine the optimal primary design factors. Furthermore, the Entropy
approach was picked to compute the weight criteria, and the MARCOS method was chosen as
an MCDM method to handle the multi-objective optimization issue. The following are important
characteristics of the study: Firstly, the MCDM method (MARCOS technique) was successfully
applied to solve a MOOP for the first time. Secondly, this work has looked into power losses during
idle motion to calculate the efficiency of a two-stage helical gearbox. The results of the study were
used in the design of a two-stage helical gearbox in order to identify the optimal values for three
important design parameters.

Keywords: helical gearbox; multi-objective optimization; gear ratio; gearbox efficiency; gearbox
volume; MARCOS method

1. Introduction

Industrial applications frequently utilize helical gearboxes because of their low cost,
minimal complexity, and ease of design and manufacture. Therefore, many scientists have
been interested in finding the best design for helical gearboxes.

Numerous studies on single- and multi-objective optimization for helical gearboxes
have been conducted up to this point. The optimization problem for helical gearboxes has
been approached for several single-objective functions, including minimum gear mass [1,2],
minimum gear volume [2–4], minimum gearbox mass [1,5], minimum gearbox length [6,7],
minimum gearbox across section area [8,9], minimum gearbox cost [10–12], and so on. The
single-objective helical gearbox optimization problem has been solved by many different
methods such as particle swarm optimization [4], Matlab optimization tool box [2], the
direct search method [5,13,14] etc. Also, for helical gearboxes with several stages, such as
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one [4,14], two [6,9], three [12,15], and four stages [1,16], single-objective optimal design
has also been addressed.

With various single objectives, the MOOP has been resolved. The lowest gearbox
power loss overall and the lowest gearbox volume were examined in [17]. In order to lower
both the gearing mass and the flank adhesive wear speed, the authors in [18] conducted
optimization research. In [19], two single targets were selected: the maximum gear stress
and the minimum gear mass. The multi-objective optimization solutions in [20] have
enhanced the transmission error signal’s root mean square values as well as its maximal
contact pressures. Implemented in [21] is the multi-objective optimization issue of choosing
the best gear material for a helical gearbox to maximize surface fatigue and increase
wear resistance. The optimal major design factor for maximizing gearbox efficiency and
decreasing gearbox mass was identified in [13]. Besides this, MOOPs have also been
solved using a variety of techniques, including the response surface methods [22], the PSO
(particle swarm optimization) method [18], the NSGA-II method [17,18], the NSGA-II and
the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) methods [23],
Grey Relation Analysis (GRA) and the Taguchi technique [13], etc. Recently, a genetic
algorithm was used in [24] to solve a macro-geometry gear design optimization problem
with two objective functions—gear mesh stiffness and dynamic behavior—in order to
determine the optimal strategy for achieving a minimal amount of dynamic excitation. A
computationally efficient and effective gear design optimization approach is provided based
on the obtained results. A new framework for precise reliability analysis has been set out
in [25]; it is predicated on employing metaheuristic algorithms to enhance the directional
simulation. With the new improved version, the unit vector of direction is determined
through the use of metaheuristic methods and expressed as a constrained optimization
problem using the Harris Hawks Optimization technique. The suggested technique was
compared to the performance of the first-order reliability method and six simulation-based
reliability analysis methods. The outcomes demonstrate the enhanced directed simulation’s
high performance capabilities in resolving extremely nonlinear engineering issues.

While helical gearbox multi-objective optimization has been extensively studied, the
MCDM technique has not been used to find the optimal primary design parameters for
these gearboxes. Moreover, the research indicated above did not account for the power loss
that occurs when a gear is in an idle motion or when a gear is immersed in lubricant during
bath lubrication. This paper presents the findings of a multi-objective optimization study
conducted for a two-stage helical gearbox, with two specific objectives in mind: reducing
gearbox volume and maximizing gearbox efficiency. The study looked at the first stage’s
gear ratio and both stages’ CWFW as the three optimal primary design characteristics
for the two-stage helical gearbox. Furthermore, the Entropy approach was utilized to
determine the weights of the criteria, and the MARCOS method was chosen to handle the
MOOP. One of the main conclusions of the research is the suggestion to apply an MCDM
technique to tackle MOOPs in combination with two-step problem solving, tackling single-
and multi-objective problems. In addition, the problem’s solutions are more effective than
those of earlier studies. Moreover, the power losses incurred in idle motion have been
added when calculating the efficiency of a two-stage helical gearbox.

2. Optimization Problem

In this part, the gearbox volume and efficiency are first calculated in order to build the
optimization problem. Next, the specified objective functions and constraints are given. To
facilitate calculations, the nomenclatures used in the optimization problem are presented
in Table 1.
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Table 1. The nomenclatures for the optimization problem.

Parameters Nomenclature Units

Gearbox housing volume Vgh dm3

Gearbox width B1 dm

Gearbox height H dm

Pitch diameter of the pinion of stage 1 dw11 mm

Pitch diameter of the gear of stage 2 dw21 mm

Pitch diameter of the pinion of stage 2 dw12 mm

Pitch diameter of the gear of stage 2 dw22 mm

Center distance of stage 1 aw1 mm

Center distance of stage 2 aw2 mm

Gear ratio of stage 1 u1 -

Gear ratio of stage 2 u2 -

Gearbox ratio ugb -

Gear width of stage 1 bw1 mm

Gear width of stage 2 bw2 mm

Wheel face width coefficient of stage 1 Xba1 -

Wheel face width coefficient of stage 2 Xba2 -

Material coefficient ka Mpa1/3

Allowable contact stress of stages 1 AS1 Mpa

Allowable contact stress of stages 2 AS2 Mpa

Contacting load ratio for pitting resistance kHβ -

Torque on the pinion of stage i T1i Nmm

Output torque Tout Nmm

Efficiency of a helical gear unit ηhg -

Efficiency of a rolling bearing pair ηb -

Length of shaft i lsi mm

Diameter of shaft i dsi mm

Allowable shear stress of shaft material [τ] MPa

Total power loss in the gearbox Pl

Power loss in the gears Plg Kw

Power loss in the bearings Plb Kw

Power loss in the seals Pls Kw

Power loss in the idle motion Pzo Kw

Efficiency of a helical gearbox ηhb -

Efficiency of the i stage of the gearbox ηgi -

Friction coefficient f -

Friction coefficient of bearing fb -

Arc of approach on i stage βai

Arc of recess on i stage βri

Outside radius of the pinion Re1i mm

Outside radius of the gear Re2i mm
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Table 1. Cont.

Parameters Nomenclature Units

Base-circle radius of the pinion R01i mm

Base-circle radius of the gear R02i mm

Pressure angle α rad.

Sliding velocity of gear v m/s

Peripheral speed of bearing vb m/s

Load of bearing i Fi N

ISO Viscosity Grades number VG40

Hydraulic moment of power losses TH Nm

2.1. Calculation of Gearbox Volume

The volume of the gearbox Vgb can be calculated by (Figure 1):

Vgb = L·B1·H (1)

where L, B1, and H are determined by [26]:

L = (d w11 + dw21/2 + dw12/2 + dw22/2 + 22.5)/0.975 (2)

H = max(dw21; dw22) + 8.5·SG (3)

B1 = bw1 + bw2 + 6·SG (4)

SG = 0.005·L + 4.5 (5)
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In the above equations,
dw1i = 2·awi/(ui + 1) (6)

dw2i = 2·awi·ui·/(ui + 1) (7)
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bw1 = Xba1·aw1 (8)

bw2 = Xba2·aw2 (9)

In Equations (6) to (9), awi is determined by [27]

awi = ka·(ui + 1)· 3

√
T1i·kHβ/

(
[ASi]

2·ui·Xbai

)
(10)

In which
T1i =

Tr

∏3
j=i (u i·η

3−i
hg ·η4−i

be

) (11)

2.2. Calculation of Gearbox Efficiency

The efficiency of a two-stage helical gearbox (%) is determined by

ηgb = 100 − 100·Pl
Pin

(12)

In which Pl can be found by [28]

Pl = Plg + Plb + Pls + PZ0 (13)

where Plg, Plb, Pls, and Pzo are determined in the following way.
Determination of Plg:

Plg = ∑2
i=1 Plgi (14)

in which
Plgi = Pgi·

(
1 − ηgi

)
(15)

ηgi can be calculated by [29]

ηgi = 1 −
(

1 + 1/ui

βai + βri

)
· fi

2
·
(
β2

ai + β2
ri

)
(16)

while βai and βri can be found by [29]

βai =

(
R2

e2i − R2
02i

)1/2
− R2i·sinα

R01i
(17)

βri =

(
R2

e1i − R2
01i

)1/2
− R1i·sinα

R01i
(18)

In (16), f is calculated in the following way [13]:

- If v ≤ 0.424 (m/s),

f = −0.0877·v + 0.0525 (19)

- If v > 0.424 (m/s),

f = 0.0028·v + 0.0104 (20)

Determination of Plb [28]:
Plb = ∑6

i=1 fb·Fi·vi (21)

where i = 1 ÷ 6 and fb = 0.0011 as the radical ball bearings with angular contact were
used [28].
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Determination of Ps [28]:
Ps = ∑2

i=1 Psi (22)

In which i is the ordinal number of the seal (i = 1 ÷ 2) and Psi is calculated by

Psi = [145 − 1.6·toil + 350·loglog(VG40 + 0.8)]·d2
s ·n·10−7 (23)

Determination of Pzo [28]:

PZ0 = ∑k
i=1 THi·

π·ni
30

(24)

In which k is the total number of gear pairs in the gearbox (k = 2); n is the number of
revolutions of the driven gear; THi can be found by [28]

THi = CSpi·C1i·e
C2i ·v
vt0 (25)

In (25), CSpi = 1 for stage 1 under the circumstance wherein the involved oil must
pass the mesh, and for stage 2, CSpi is computed using the following equation (Figure 2):

CSpi =

(
4·emax

3·hC

)1.5
·2·hCi

lh
(26)

where lhi is determined by [28]

lhi = (1.2 ÷ 2.0)·da2i (27)

In (25), C1 and C2 are calculated by [28]

C1i = 0.063·
(

e1i + e2i

e0

)
+ 0.0128·

(
bi

b0

)
(28)

C2i =
e1i + e2i

80·e0
+ 0.2 (29)

In which e0 = b0 = 10 (mm).
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2.3. Multi-Objective Optimization Problem

In this work, the MOOP can be express as follows:

miny = F(X) = ( f1(X), f2(X))T (30)

Here, two single objectives compose the MOOP:

- Minimizing the gearbox volume—



Designs 2024, 8, 53 7 of 17

min f1(X) = Vgb (31)

- Maximizing the gearbox efficiency—

min f2(X) = ηgb (32)

where the vector representing the design variables is denoted by X. There are five primary
design parameters for a two-stage helical gearbox: u_1, Xba1, Xba2, AS1, and AS2 [13].
Furthermore, it was shown that AS1 and AS2’s maximum values correspond to their ideal
values [13]. Thus, three primary design factors, u1, Xba1 and Xba2, were chosen as variables
for the optimization problem in this work. As a result, we have:

X = {u1, Xba1, Xba2} (33)

The constraints that follow must be met by the multi-objective function

1 ≤ u1 ≤ 9 and 1 ≤ u2 ≤ 9 (34)

0.25 ≤ Xba1 ≤ 0.4 and 0.25 ≤ Xba2 ≤ 0.4 (35)

3. Methodology
3.1. Method to Solve the Multi-Objective Optimization

The multi-objective optimization issue with two objectives—minimum gearbox vol-
ume and highest gearbox efficiency—was described in Section 2. In addition, three pri-
mary design factors have been chosen to be variables in the optimization issue. Table 2
lists these variables along with their minimum and maximum values. In fact, apply-
ing an MCDM approach to the MOO (multi-objective optimization) problem is chal-
lenging. The reason for this is that there are numerous options or possible solutions
available for MOO problems. Each of the parameters in this study have limits, as indi-
cated in Table 2, and the step between variables is 0.02 to ensure parameter accuracy
and prevent missing the optimization problem’s solution. In this instance, there are
(9 − 1)/0.02·(0.4 − 0.25)/0.02·(0.4 − 0.25)/0.02 = 22.500 (runs) options (or experimen-
tal runs) that need to be identified and compared. Because of the wide range of options, it is
not feasible to directly handle the OMO problem using the MCDM approach. In this paper,
the MCDM problem was solved using the MARCOS method, and the criterion weights
were determined using the Entropy approach. A simulation experiment was constructed in
order to provide the input data for the MOOP for a two-stage helical gearbox in the MCDM
problem. Since this is a simulation experiment, there is no restriction on the number of
experiments that can be conducted by utilizing the full factorial design. Because there
are three experimental variables (as previously specified) and five levels for each variable,
the total number of experiments will be 53 = 125. However, u1, which runs from 1 to 9 in
Table 2, has the broadest distribution of the three variables mentioned. As a result, even
with five levels, there was still a significant disparity between the levels of this variable (in
this case, ((9−1)/4 = 2). To reduce this disparity, save time, and improve the accuracy of
the outcomes, a technique for solving multi-objective problems was proposed (Figure 3).
This procedure is broken down into two phases: phase 1 factors reduce the gap between
levels by solving the single-objective optimization problem, and phase 2 factors find the
optimal primary design by solving the MOOP. Additionally, in the process of addressing
the multi-objective problem, the MARCOS issue will be rerun using the smaller distance
between two levels of variables if the levels of a variable are not sufficiently close to one
another (≤0.02) (or the best answer is not appropriate for the requirement) (see Figure 3).
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Table 2. Input parameters.

Variables Symbol Lower Bound Upper Bound

Gearbox ratio of first stage u1 1 9
CWFW of stage 1 Xba1 0.25 0.4
CWFW of stage 2 Xba2 0.25 0.4
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3.2. Method to Solve MCDM Problem

In this work, the MARCOS method was selected for solving the MCDM problem. To
apply the MARCOS approach, the following steps must be taken [30]:

- Making initial decision-making matrix

X =


x11 · · · x1n
x21 · · · x2n

... · · ·
...

xmn · · · xmn

 (36)

where m and n are alternative and criterion numbers;

- An extended initial matrix is produced by appending an ideal (AI) and anti-ideal
solution (AAI) to the original decision-making matrix
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X =

AAI
A1
A2
...

Am
AI



xaa1 · · · xaan
x11 · · · x1n
x21 · · · x2n

...
...

...
xm1 · · · xmn
xai1 · · · xain


(37)

Here, AAI = min
(
xij

)
and AI = max

(
xij

)
if the requirement set with criterion j is

as large as possible; AAI = max
(
xij

)
and AI = min

(
xij

)
when criterion j is as small as

possible; i = 1, 2, . . ., m; j = 1, 2,. . ., n;

- One then normalizes the extended starting matrix (X). To calculate the normalized
matrix N =

[
nij

]
m×n, we use the following formula:

nij = xAI/xij (38)

nij = xij/xAI (39)

when the criterion j is as small as possible, use Equation (38), and when it is as large as
possible, use Equation (39).

- Determine the weighted normalized matrix by

C =
[
cij
]

m×n (40)

cij = nij · wj (41)

where wj is the weight coefficient of criterion j.

- Find the utility of alternatives Ki
− and Ki

+ by

K−
i = Si/SAAI (42)

K+
i = Si/SAI (43)

In (42) and (43), Si (i = 1, 2, . . ., m) is the sum of the elements of the weighted matrix C,
and Si is calculated by

Si = ∑m
i=1 cij (44)

- Find the utility function f (Ki) of alternatives by

f (Ki) =
K+

i + K−
i

1 +
1− f (K+

i )
f (K+

i )
+

1− f (K−
i )

f (K−
i )

(45)

where the utility function linked to the anti-ideal solution is denoted by f (Ki
−), while the

utility function linked to the ideal solution is represented by f (Ki
+). These functions can be

found by
f
(
K−

i
)
= K+

i /
(

K+
i + Ki

i

)
(46)

f
(
K+

i
)
= K−

i /
(

K+
i + Ki

i

)
(47)

- To determine which alternative has the highest utility function value, rank the options
according to the final utility function values.



Designs 2024, 8, 53 10 of 17

3.3. Method to Find the Weight of Criteria

In this paper, the entropy technique was used to establish the weights of the criteria.
The actions listed below can be used to put this strategy into practice [31].

- Finding indicator-normalized values,

pij =
xij

m + ∑m
i=1 x2

ij
(48)

- Calculating the Entropy for each indicator,

mej = −∑m
i=1

[
pij × ln

(
pij

)]
−

(
1 − ∑m

i=1 pij

)
× ln

(
1 − ∑m

i=1 pij

)
(49)

- Determining the weight of each indicator,

wj =
1 − mej

∑m
j=1

(
1 − mej

) (50)

4. Single-Objective Optimization

In this study, the direct search strategy is used to solve the single-objective optimization
problem. Moreover, a Matlab computer program has been created to address two single-
objective issues: maximizing gearbox efficiency and minimizing gearbox volume. The
following figures feature several of the program’s findings: In Figure 3, the connection
between u1 and Vgb is shown. When u1 is at its optimal value, Vgb reaches its lowest value
(Figure 4). Figure 5 shows the relationship between ηgb and u1. Furthermore, the optimal
value of u1 at which ηgb achieves its maximum is depicted in Figure 5. Figures 6 and 7
show the association of Xba1 and Xba2 with Vgb and ηgb, respectively. It can be seen that
with an increase in Xba1, Vgb will decrease (Figure 6a). In contrast, Vgb will fall as Xba2 rises
(Figure 7a). Additionally, as Xba1 and Xba2 rise, ηgb falls (Figures 6b and 7b).
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Figure 4. Gearbox volume versus first stage gear ratio.

The values of optimal major design factors of two single-objective functions, Vgb and
ηgb, are shown in Table 3. From the table, it is clear that for the minimum Vgb, the minimum
values of Xba1 and maximum values of Xba2 (Xba1 = 0.25 and Xba2 = 0.4) are the ideal values
for Xba1 and Xba2. The reason for this is that the cross-section dimension (determined by
H*L) must be small in order for Vgb to be tiny. Approximately equal values for dw21 and
dw22 are required for this [32]. Given that the second stage gets a significantly greater
torque than the first, aw2 will be significantly greater than aw1. Consequently, to make dw21
approximate, dw22 requires an increase in Xba2 to decrease aw2 and a decrease in Xba1 to
increase aw1 (Formula (9)).
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Figure 7. Relation between Xba2 and gearbox volume (a) and gearbox efficiency (b).

Table 3. Optimum main design factors for minimum Vgb and maximum ηgb.

Objective Factor
ut

10 15 20 25 30 35

u1 3.83 5.02 6.09 7.06 7.98 8.84
Vgb Xba1 0.25 0.25 0.25 0.25 0.25 0.25

Xba2 0.4 0.4 0.4 0.4 0.4 0.4

u1 2.49 2.98 3.49 3.98 4.42 4.79
ηgb Xba1 0.25 0.25 0.25 0.25 0.25 0.25

Xba2 0.25 0.25 0.25 0.25 0.25 0.25

Figure 8 illustrates the relationship between the optimum gear ratio for the first stage
(u1) and the overall gearbox ratio (ut). Additionally, Table 4 displays newly calculated
constraints for the variable u1.
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Table 4. New constraints of u1.

ut
u1

Lower Limit Upper Limit

10 2.39 2.93
15 3.08 5.12
20 3.59 6.19
25 4.08 7.16
30 4.52 8.08
35 4.89 8.94

5. Multi-Objective Optimization

A computer program has been created to perform simulations. The gearbox ratios
10, 15, 20, 25, 30, and 35 were all considered for the analysis. For this problem, with ut
= 15, the solutions is displayed below. This overall gearbox ratio was used for 125 initial
testing runs (as specified in Section 3). The experiment’s output values, the gearbox volume
and efficiency, will be sent into MARCOS as input parameters in order to solve the MOOP.
This procedure will be repeated until there is less than 0.02 separating two levels of u1.
The primary design parameters and output responses for ut = 15 in the fifth and final
run of the MARCOS experiment are shown in Table 5 The criteria’s weights have been
established using the Entropy technique (see Section 3.3), as follows: First, use Equation (48)
to derive the normalized values of pij. Equation (49) is used to determine each indicator
mej’s entropy value. Finally, use Equation (50) to find the weight of the criteria wj. The
weights of Vgb and ηgb for the most recent MARCOS work run were determined to be
0.5565 and 0.4435, respectively. The MARCOS method’s multi-objective decision-making
phases are outlined in Section 3.2. Specifically, they are as follows: Determine the ideal
solution (AI) and the anti-ideal solution (AAI) using formula (36). The results show that,
with AI, Vgb and ηgb were 17.21 (dm3) and 95.8 (%), and, with AAI, they were 20.1 (dm3)
and 93.34 (%). The next step is to use Formulae (37) for Vgb and (39) for ηgb to derive
the normalized values uij. The normalized values were then calculated using Formula
(40), taking the weight cij into consideration. Moreover, the coefficients Ki

- and Ki
+ were

obtained from Equations (42) and (43). The values of f(Ki−) and f(Ki+) were determined
using Equations (46) and (47). It was found that f(Ki−) = 0.501 and f(Ki+) = 0.499. Lastly, the
values of f(Ki) were computed using Formula (44). Table 6 displays the options’ ranking
and the results of several parameters (for the last run of MARCOS work). Out of all the
possibilities given, option 105 is the most ideal one, according to the table. Consequently,
Table 5 shows the optimal values for the primary design features: u1 = 3.69, Xba1 = 0.25,
and Xba2 = 0.4.
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Table 5. Main design parameters and output results for ut = 15 in the 5th run of MARCOS.

Trial u1 Xba1 Xba2 Vgb (dm3) egb (%)

1 3.61 0.25 0.25 21.05 95.906
2 3.61 0.25 0.2875 20.41 95.963
3 3.61 0.25 0.325 19.91 95.947
4 3.61 0.25 0.3625 19.52 95.931
5 3.61 0.25 0.4 19.19 95.902
6 3.61 0.2875 0.25 21.35 95.407

. . .
25 3.61 0.4 0.4 19.95 93.52
26 3.63 0.25 0.25 21.01 95.888
27 3.63 0.25 0.2875 20.38 95.946
. . .
51 3.65 0.25 0.25 20.98 95.852
52 3.65 0.25 0.2875 20.34 95.929
53 3.65 0.25 0.325 19.84 95.913
. . .
75 3.67 0.4 0.4 19.86 93.42
76 3.67 0.25 0.25 20.94 95.837
77 3.67 0.25 0.2875 20.31 95.911
. . .
104 3.69 0.25 0.3625 19.39 95.852
105 3.69 0.25 0.4 19.07 95.836
106 3.69 0.2875 0.25 21.21 95.306
. . .
123 3.69 0.4 0.325 20.74 93.434
124 3.69 0.4 0.3625 20.24 93.405
125 3.69 0.4 0.4 19.82 93.387

Table 6. Several calculated results and rankings of alternatives by MARCOS for ut = 1.5.

Trial K− K+ f(K−) f(K+) f(Ki) Rank

1 0.0084 0.0084 0.4990 0.5010 0.0056 87
2 0.0085 0.0085 0.4990 0.5010 0.0057 58
3 0.0087 0.0086 0.4990 0.5010 0.0058 30
4 0.0088 0.0087 0.4990 0.5010 0.0058 15
5 0.0088 0.0088 0.4990 0.5010 0.0059 5
6 0.0083 0.0083 0.4990 0.5010 0.0055 101

. . .
25 0.0085 0.0085 0.4990 0.5010 0.0057 56
26 0.0084 0.0084 0.4990 0.5010 0.0056 84
27 0.0085 0.0085 0.4990 0.5010 0.0057 55
. . .
51 0.0084 0.0084 0.4990 0.5010 0.0056 83
52 0.0085 0.0085 0.4990 0.5010 0.0057 52
53 0.0087 0.0086 0.4990 0.5010 0.0058 28
. . .
75 0.0085 0.0085 0.4990 0.5010 0.0057 49
76 0.0084 0.0084 0.4990 0.5010 0.0056 82
77 0.0086 0.0085 0.4990 0.5010 0.0057 50
. . .
104 0.0088 0.0087 0.4990 0.5010 0.0058 9
105 0.0088 0.0088 0.4990 0.5010 0.0059 1
106 0.0083 0.0083 0.4990 0.5010 0.0055 95
. . .
123 0.0083 0.0083 0.4990 0.5010 0.0055 91
124 0.0085 0.0084 0.4990 0.5010 0.0056 69
125 0.0085 0.0085 0.4990 0.5010 0.0057 46
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Table 7 shows the optimal values for the main design parameters that correspond to
the remaining ut values of 10, 20, 25, 30, and 35, building on the previous discussion. The
information in Table 6 permits the following deductions to be drawn.

Table 7. Optimum main design parameters.

No.
ut

10 15 20 25 30 35

u1 3.55 3.69 4.18 4.47 5.06 5.39
Xba1 0.25 0.25 0.25 0.25 0.25 0.25
Xba2 0.4 0.4 0.4 0.4 0.4 0.4

Table 7 reveals that Xba1 selects the lowest value (Xba1 = 0.25), while Xba2 selects the
highest value (Xba2 = 0.4). This is due to the fact that a small box’s cross-sectional area (LxH)
is required to produce the smallest gearbox volume. In order to accomplish that, dw21 and
dw22 must be about equal [32]. Additionally, because the second stage has a higher torque,
a larger Xba2 is required in order to decrease the diameter of dw22. Conversely, a smaller
Xba1 must be chosen in order to raise dw21 because the first stage has a lower torque.

The obtained values of the gearbox efficiency in this work were compared with
the findings in [23] in order to evaluate the effectiveness in employing the formula for
the power loss in the idle motion when calculating power loss in gears. Table 5 [23]
shows that the gearbox efficiency, based on an input power of 10 kW, a maximum output
power of 9.971 kW, and a minimum output power of 9.933 kW, will be between 99.33 and
99.71 percent when the overall gearbox ratio is 7.5. Furthermore, Table 4 indicates that the
gearbox efficiency in this work will range from 93.258% to 95.963% when ut is increased
from 10 to 35. Actually, a helical gear train’s efficiency is 0.93–0.98 (93–98%), whereas a pair
of bearings’ efficiency is 0.99–0.995 (99–99.5%) [27]. The following formula will be used to
calculate the efficiency of a two-stage helical gearbox based on these data:

ηgb = η2
g·η3

b = 0.932·0.993 ÷ 0.982·0.9953 = 0.83 ÷ 0.95 or ηgb = 83 ÷ 95 or (%) (51)

From the above analysis, it is clear that the gearbox efficiency of this work (93.258–
95.963%) is reasonably near to reality (83–95%), when comparing with that in [23]. Fur-
thermore, the gearbox efficiency shown in [23] (99.33–99.71%) is dramatically high and
incompatible with reality. This demonstrates that the power loss in idle motion formula
used in this work is a useful new tool that needs to be used.

Figure 9 shows that there is a definite first-order link between the ideal values of u1
and ut. Additionally, it was found that the following regression equation (with R2 = 0.9804)
may be used to calculate the optimal values of u1:

u1 = 0.0777·ut + 2.6414 (52)

Once u1 has been determined, the optimal value of u2 can be found using the following
formula:

u2 = ut/u1 (53)
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6. Conclusions

The MARCOS approach was utilized in this work to solve the MOOP related to the
design of a two-stage helical gearbox. The study’s goal is to identify the best critical design
factors that maximize gearbox efficiency while reducing gearbox volume. To do this, three
essential design components were chosen: the CWFW for the first and second stages, and
the first stage gear ratio. In addition, there are two steps in the MOOP solution process.
Phase 1 is dedicated to solving the single-objective optimization problem of reducing the
difference between variable values, whereas phase 2 is concerned with determining the
optimal primary design factors. The following findings were drawn from this work:

- The single-objective optimization problem speeds up and simplifies the resolution of
the MOOP by bridging the gap between variable levels;

- The three main design parameters for a two-stage helical gear gearbox, Equation (51)
and Table 6, were recommended to have optimal values based on the study’s findings;

- In regard to the important design characteristics, two single objectives—the minimal
gearbox volume and the greatest gear-box efficiency—were assessed;

- By using the MARCOS technique repeatedly until the desired results are reached, the
MOOP can be solved more precisely (u1 has an accuracy of less than 0.02);

- The experimental data’s extraordinary degree of concordance with the proposed
model of u1 verifies their reliability;

- Further research is required to determine how to apply the proposed approach for
solving the MOOP for various domains and MCDM methods.
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