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Abstract: The rapid advancement of 3D bioprinting has created a need for cost-effective and versatile
3D printers capable of handling bio-inks at various scales. This study introduces a novel framework
for a specialized nozzle-holding device designed for an extrusion-based 3D bioprinter, specifically
tailored to address the rigorous requirements of tissue engineering applications. The proposed system
combines a pneumatically actuated plunger mechanism with an adaptive nozzle system, ensuring
the safe inhibition and precise dispensing of bio-inks. Rigorous thermal management strategies are
employed to maintain consistently low temperatures, thereby preserving bio-ink integrity without
changing chemical stability. A key component of this design is a precision-milled aluminum block,
which optimizes thermal characteristics while providing a protective barrier. Additionally, a 3D-
printed extruder head bracket, fabricated using a high-precision resin printer, effectively mitigates
potential thermal inconsistencies. The integration of these meticulously engineered components
results in a modified extrusion-based 3D bioprinter with the potential to significantly advance tissue
engineering methodologies. This study not only contributes to the advancement of bioprinting
technology but also underscores the crucial role of innovative engineering in addressing tissue
engineering challenges. The proposed bioprinter design lays a solid foundation for future research,
aiming to develop more accurate, efficient, and reliable bioprinting solutions.

Keywords: 3D bioprinting; nozzle system; extruder; tissue engineering

1. Introduction

As of June 2024, the organ transplant waitlist in the United States includes over 103,223
(Kidney: 89,101; Liver: 9862; Heart: 3436) individuals, significantly outnumbering the ap-
proximately 46,000 (Kidney: 27,332; Liver: 10,660; Heart: 4545) transplants performed in
2023 [1]. This growing disparity results in an average of 17 daily fatalities due to organ
shortages, underscoring the urgent need for alternative solutions. Recent advancements
in tissue engineering, particularly in 3D bioprinting technology, offer promising alterna-
tives [2–4]. Some organs such as the Kidneys, Liver, and Heart need more exploration
to make them ready for transplantation, and a substantial amount of research [5–10] is
ongoing to make this happen in the long run. Extrusion-based 3D bioprinting, the most
prevalent technique, allows for the deposition of various materials containing multiple cell
types and concentrations [11–13]. This method is categorized into pneumatic-, piston-, and
screw-driven systems, with print quality determined by factors such as temperature, nozzle
diameter, pressure, and speed. The quality of printed scaffolds is controlled by a series of
process parameters such as temperature, nozzle diameter, extrusion pressure, movement
speed, extrusion speed, path interval, etc. [14]. The market offers a range of commercial
3D bioprinters, varying in price from USD 5000 to USD 250,000, with capabilities suited
for different applications [15]. Notable examples include the 3D Bioplotter [16,17], Novo-
Gen [18], and BioX [19], among others from various global manufacturers. While these
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printers provide advanced functionalities, they may limit researchers in pursuing specific
objectives due to their predetermined features.

While commercial 3D bioprinters offer sophisticated features, their closed-source na-
ture and limited customization options can constrain research potential. These proprietary
systems often confine users to materials designed and developed in-house, printing param-
eters, and hardware setups, impeding the investigation of innovative bio-inks, printing
methods, or the integration of specialized components. For example, current commercial
printers often lack in situ physical crosslinking capabilities, which can compromise shape
fidelity. Even though some printers feature UV in situ photo-crosslinking capacity, it is like
a “one-shoe-fits-all” approach where limited wavelengths are available to cure. In contrast,
custom-built 3D bioprinters provide researchers with the flexibility to adapt the system to
their specific requirements, enabling them to advance bioprinting technology.

Some efforts of designing and developing custom-made 3D printers have been re-
ported [20]. To address material exploration and development for 3D printers, the Additive
Manufacturing Autonomous Research System (AM ARES) was developed, which uses
automated image analysis and Bayesian optimization to autonomously modulate print
parameters [21]. However, this printer mostly focused on synthetic thermoplastic polymers,
not hydrogel materials. A standard 3D printer was converted into an open-source extrusion-
based 3D bioprinter, addressing the high costs associated with commercial bioprinting
systems [22]. A FlashForge Finder 3D printer was converted into a bioprinter using our
Replistruder 4 syringe pump and Duet3D Duet 2 WiFi, for less than USD 900. The modified
bioprinter demonstrated a travel accuracy better than 35 µm in all axes and printed collagen
scaffolds with less than 2% error. The UV-crosslinked system was not considered for both
systems. Moreover, a dual crosslinked system was also not considered in [22] which will be
one of the considerations of our proposition.

While there are some rules of thumb for bio-ink selection [23,24], many commercial
3D bioprinters face challenges in maintaining consistent bio-ink viscosity and printability
throughout the printing process. This can lead to clogging, uneven material deposition,
and reduced cell viability [25–27]. For example, Dubbin et al. demonstrated that certain
bio-inks like GelMA and PEGDA can damage up to 10% of cells during the printing pro-
cess, with even higher cell damage (>50%) occurring at the edges of bioprinted droplets
during crosslinking [28]. Temperature control is also a crucial factor for maintaining bio-ink
properties and cell viability [29]. Inconsistent temperature control can affect the rheological
properties of bio-inks, leading to inconsistent print quality. For instance, collagen-based
bio-inks are particularly sensitive to temperature changes, which can impact their gelation
kinetics and final mechanical properties [30]. On the other hand, an improved bio-ink
handling system can enable better precision over multi-material bioprinting, allowing for
the creation of complex tissue constructs with varying mechanical and biological proper-
ties [31,32]. For example, in cartilage tissue engineering, the importance of precise bio-ink
deposition for creating zonal organization similar to native cartilage was highlighted [33].
Additionally, enhanced bio-ink handling could improve the printing of vascularized tis-
sues [34].

Having full access to hardware and software components, researchers can modify
and optimize various aspects of the bioprinter, including extruder design, motion control
systems, and printing algorithms. This level of customization facilitates the development
and testing of novel bio-ink formulations, the incorporation of specialized sensors or imag-
ing systems, and the investigation of innovative printing strategies tailored to specific
applications [22,35,36]. Table 1 summarizes key findings from previous studies on bio-ink
handling and thermal control. Developing custom bioprinters fosters a deeper under-
standing of the fundamental principles and mechanics of bioprinting, enabling researchers
to more effectively identify and address limitations. This hands-on approach promotes
interdisciplinary collaboration, allowing experts from various fields to contribute their
knowledge and push the boundaries of bioprinting technology [15,20].
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To address these limitations, our long-term goal is to develop a custom 3D bioprinter
capable of depositing multiple materials with diverse crosslinking capabilities, including
both physical and UV-cured methods. The proposed printer will allow for accommodation
to various wavelengths based on printing requirements. Building on our previous research
demonstrating multi-hydrogel extrusion [37], this article presents a conceptual framework
for a specialized nozzle-holding device designed for extrusion-based 3D bioprinting in
tissue engineering applications. The proposed nozzle-holding device will focus on pneu-
matic extrusion methods, chosen for their high cell survivability rates and prevalence in
the market [38,39]. Moreover, being brand-independent, this customized nozzle-holding
device can attach to various existing bioprinters that can increase the effectiveness of han-
dling hydrogels having various viscosities. The engineering design, material selection, and
manufacturing process for the proposed nozzle-holding device were accomplished based
on diverse factors such as ease-of-manufacturability, better fitment, temperature control,
and ease-of-attachment. Furthermore, we propose to develop a range of attachments for
future consideration that are compatible with the nozzle-holding device presented in this
article. These attachments will facilitate various crosslinking methods, including chemical
crosslinking with extrusion flow, misting, and UV curing. The aim is to expand the applica-
bility of our system to a diverse array of hydrogel materials, enhancing both printability
and cellular functions such as viability, proliferation, and differentiation. This approach
aims to overcome the limitations of commercial printers, offering greater flexibility and
customization options for researchers in the field of tissue engineering.

Table 1. A summary of bio-ink challenges, thermal control, methodologies, and key findings.

Bio-Ink Handling
Challenges

Thermal Control
Issues Methodologies Key Findings

Inconsistent
bio-ink viscosity,

clogging
Not specified

Quantitative
criteria for bio-ink

benchmarking

Up to 10% cell damage during
printing, >50% cell damage at
edges during crosslinking [28]

Uneven material
deposition,

reduced cell
viability

Not specified
Overview of

bio-inks for 3D
bioprinting

Highlighted need for bio-inks
with consistent rheological

properties [26]

Impact of pH and
crosslinking on

printability

Sensitivity of
collagen-based

bio-inks to
temperature

changes

Rheological
analysis, photo-

crosslinking with
riboflavin

pH and riboflavin
photo-crosslinking affect gelation

kinetics and mechanical
properties [40]

Precise bio-ink
deposition for

tissue engineering
Not specified

Bioprinting of
cartilage tissue

with zonal
organization

Yield stress determines
bioprintability, crucial for

creating native-like cartilage [41]

Multi-material
bioprinting
challenges

Not specified
Creation of
perfusable

vascular networks

Precise control over bio-inks is
essential for vascularized tissue

engineering [42]

Cell compatibility
in bio-inks Not specified

Printing stem cells
for skeletal

regenerative
medicine

Emphasized importance of
bio-ink properties on cell

viability and differentiation [43]
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2. Development of Nozzle Holder
2.1. Conceptualization

This section highlights the conceptualization of the proposed nozzle holder that
will substitute the standard filament extruder of regular 3D printers with a specialized
extruder head developed in-house for bioprinters, as shown in Figure 1. The modified
extruder head consists of two main parts: a milled aluminum block and an extruder head
bracket. The aluminum block facilitates heat transfer and shields the heating element from
damage, while the 3D-printed resin bracket ensures precise alignment between the hydrogel
container (e.g., dispensing syringe) and the heated clamp of the extruder head. This
manufacturing approach guarantees precision and high heat resistance, minimizing errors.
A series of operations such as extruder holder design, cartridge holder redesign, extruder
bracket design, pneumatic design, and finally the circuitry design and development will
be discussed in the following sections. These improvements collectively contribute to the
optimization of the system’s performance and functionality.
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Figure 1. An overview of the nozzle holder design: (a) a schematic of the bioprinter with a processing
unit and process parameters, (b) a concept proposition, and (c) a flow chart of related experiments to
modify for the final design and development.

2.2. Replacement of Extruder

The development of the new extruder head involved multiple iterations, primarily
focusing on securely attaching it to the 3D printer’s extruder carriage while maintaining
proximity to the original filament extrusion point. The initial attempts to incorporate a
syringe hole between the carriage bolt points proved impractical due to spacing issues.
A two-part design concept was then explored, starting with a dovetail design proof of
concept, which provided valuable insights into necessary tolerances and design flaws, as
shown in Figure 2. It had inaccurate overall dimensions and lacked a means of attachment
to the 3D printer motion system. Further refinement followed, incorporating holes for
carriage bolts in the extruder bracket and improving the fit between the bio clamp and
the extruder bracket. The bio clamp itself underwent improvement to better secure the
bio-cartridge, introducing slots to facilitate easier bolt removal. Ultimately, efforts were
made to bring the extrusion point closer to the printer’s original position and to streamline
the manufacturing process, reducing the difficulty associated with the bio clamp. The initial
and improved designs were printed using MakerBot Replicator by Ultimaker (Manhattan,
NY, USA) with default settings to investigate the fitment with the printer and syringe, as
shown in Figure 2.
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2.3. The Design of the Extruder
2.3.1. Engineering Drawing of Extruder Bracket

Three-dimensional modeling and simulation software, Solid Works v 2023 (Dassault
Systèmes, Waltham, MA, USA), was used to develop engineering drawing. The final
engineering drawing of the extruder bracket is shown in Figure 3.
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2.3.2. Engineering Drawing of Syringe Holder and Assembly

Similar 3D modeling and simulation software as mentioned in Section 2.3.1 was used
to develop the engineering drawing. The final engineering drawings of the nozzle/syringe
holder and overall assembly are shown in Figures 4a and 4b, respectively.

Designs 2024, 8, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 4. Engineering drawings for (a) nozzle holder: (i) Top view, (ii) Front view, (iii) Isometric 

view, and (iv) Side view. and (b) nozzle syringe assembly: (i) Top view, (ii) Front view, (iii) Isomet-

ric view, and (iv) Side view. 

2.4. The Manufacturing of the Extruder 

2.4.1. Manufacturing of Syringe Holder 

At the core of this innovation lies a precisely engineered aluminum block, milled to 

accommodate the heating element, heat sensor, and syringe. General-purpose Aluminum 

6061 alloy was used for this fabrication. This design choice reflects a calculated approach 

to optimize thermal properties crucial for bio-ink preservation. The selection of milled 

aluminum for this component serves two key purposes: first, enhancing heat transfer ef-

ficiency and second, providing a protective shield against potential heating element dam-

age. A Bridgeport milling machine (Bridgeport, CT, USA) was utilized for the machining 

process to achieve the desired dimensions. Moreover, rigorous controls were imple-

mented to maintain a consistently low temperature within the bioprinting environment, 

safeguarding the bio-ink’s integrity. This integration of carefully engineered components 

resulted in an enhanced extrusion-based 3D bioprinter with the potential to transform 

tissue engineering practices. 

Figure 5a,b illustrate the planning and fabrication processes, respectively. The ex-

truder head bracket demonstrates remarkable precision in connecting the 3D printer’s 

trunnion to the extruder head’s heated clamp. The choice of this manufacturing method 

is based on its established accuracy and relatively high heat resistance, effectively mini-

mizing potential temperature-related inconsistencies. 

Figure 4. Engineering drawings for (a) nozzle holder: (i) Top view, (ii) Front view, (iii) Isometric
view, and (iv) Side view. and (b) nozzle syringe assembly: (i) Top view, (ii) Front view, (iii) Isometric
view, and (iv) Side view.

2.4. The Manufacturing of the Extruder
2.4.1. Manufacturing of Syringe Holder

At the core of this innovation lies a precisely engineered aluminum block, milled
to accommodate the heating element, heat sensor, and syringe. General-purpose Alu-
minum 6061 alloy was used for this fabrication. This design choice reflects a calculated
approach to optimize thermal properties crucial for bio-ink preservation. The selection
of milled aluminum for this component serves two key purposes: first, enhancing heat
transfer efficiency and second, providing a protective shield against potential heating
element damage. A Bridgeport milling machine (Bridgeport, CT, USA) was utilized for
the machining process to achieve the desired dimensions. Moreover, rigorous controls
were implemented to maintain a consistently low temperature within the bioprinting en-
vironment, safeguarding the bio-ink’s integrity. This integration of carefully engineered
components resulted in an enhanced extrusion-based 3D bioprinter with the potential to
transform tissue engineering practices.

Figure 5a,b illustrate the planning and fabrication processes, respectively. The extruder
head bracket demonstrates remarkable precision in connecting the 3D printer’s trunnion to
the extruder head’s heated clamp. The choice of this manufacturing method is based on its
established accuracy and relatively high heat resistance, effectively minimizing potential
temperature-related inconsistencies.



Designs 2024, 8, 83 7 of 15Designs 2024, 8, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. (a,b) Workflow to manufacture the nozzle holder from material selection to final prod-
uct. 

2.4.2. Manufacturing of Extruder Bracket and Assembly 
A crucial element in the improved extruder head assembly is the 3D-printed extruder 

head bracket, produced using a freeform resin printer (Form 3, Formlab, Somerville, MA, 
USA), as shown in Figure 6a. Once the bracket and nozzle holder were manufactured, they 
were assembled to demonstrate the fitment. Figure 6b,d show the pneumatic connector, 
heating element, and temperature sensor attachment to the assembled extruder. This 
showcases an exceptional accuracy in the interconnecting parts between the 3D printer�s 
trunnion and the heated clamp of the extruder head. The assembly�s components were 
fastened together using screws and washers. To maintain an appropriate temperature for 
the cells (around 37 °C), the printer�s original heating element and temperature sensor 
were reused. 

 
Figure 6. (a) Resin-printed extruder bracket; (b) assembly of aluminum syringe holder and resin 
bracket; (c,d) pneumatic connector, heating element, and temperature sensor. 

  

Figure 5. (a,b) Workflow to manufacture the nozzle holder from material selection to final product.

2.4.2. Manufacturing of Extruder Bracket and Assembly

A crucial element in the improved extruder head assembly is the 3D-printed extruder
head bracket, produced using a freeform resin printer (Form 3, Formlab, Somerville, MA,
USA), as shown in Figure 6a. Once the bracket and nozzle holder were manufactured, they
were assembled to demonstrate the fitment. Figure 6b,d show the pneumatic connector,
heating element, and temperature sensor attachment to the assembled extruder. This
showcases an exceptional accuracy in the interconnecting parts between the 3D printer’s
trunnion and the heated clamp of the extruder head. The assembly’s components were
fastened together using screws and washers. To maintain an appropriate temperature for
the cells (around 37 ◦C), the printer’s original heating element and temperature sensor
were reused.
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2.4.3. Syringe Air Control for In-House Bio-Ink Printing Confirming Shape Fidelity
and Viability

The decision to utilize pneumatic extrusion in this project underscores the importance
of a well-designed air compressor system. This system is crucial for supplying the 3D
bioprinter with the necessary compressed air at various pressure levels to extrude materials
designed and developed in-house. The compressor setup was designed with portability,
allowing for easy transportation alongside the 3D printer. Additionally, the required
amount of air supply was confirmed to maintain a consistent pressure throughout the
printing process. In our setup, the power source was passed through the pressure sensor
switch. This switch was designed to deactivate the compressor when the pressure reaches
100 psi and reactivate it when it drops to a minimum amount governed by the material
viscosity (e.g., pressure required for A4C4 [44] extrusion) to maintain a consistent flow. To
complete the system loop, we connected the ground directly to the compressor ground. If
the compressor does not turn on when plugged in, the user may need to switch the cables
leading to the pressure switch. The occasional cable swaps can cause malfunctions that
can be resolved by reconnecting them correctly. The specific connection method for the
pneumatic tubing is not critical if it passes through the compressor safety system before
reaching the pressure regulator. From the pressure regulator, the tubing extends to the 3D
printer through the solenoids. Apart from this, the system is relatively straightforward, and
if the current air tank is open, the setup should function smoothly. The entire connection
setup is illustrated in Figure 7.

Designs 2024, 8, x FOR PEER REVIEW 8 of 15 
 

 

2.4.3. Syringe Air Control for In-House Bio-Ink Printing Confirming Shape Fidelity and 
Viability 

The decision to utilize pneumatic extrusion in this project underscores the im-
portance of a well-designed air compressor system. This system is crucial for supplying 
the 3D bioprinter with the necessary compressed air at various pressure levels to extrude 
materials designed and developed in-house. The compressor setup was designed with 
portability, allowing for easy transportation alongside the 3D printer. Additionally, the 
required amount of air supply was confirmed to maintain a consistent pressure through-
out the printing process. In our setup, the power source was passed through the pressure 
sensor switch. This switch was designed to deactivate the compressor when the pressure 
reaches 100 psi and reactivate it when it drops to a minimum amount governed by the 
material viscosity (e.g., pressure required for A4C4 [44] extrusion) to maintain a consistent 
flow. To complete the system loop, we connected the ground directly to the compressor 
ground. If the compressor does not turn on when plugged in, the user may need to switch 
the cables leading to the pressure switch. The occasional cable swaps can cause malfunc-
tions that can be resolved by reconnecting them correctly. The specific connection method 
for the pneumatic tubing is not critical if it passes through the compressor safety system 
before reaching the pressure regulator. From the pressure regulator, the tubing extends to 
the 3D printer through the solenoids. Apart from this, the system is relatively straightfor-
ward, and if the current air tank is open, the setup should function smoothly. The entire 
connection setup is illustrated in Figure 7. 

 
Figure 7. (a) A schematic of all connections, (b) all components used to build air control systems and 
assembled air control systems, (c) assembled air control system connected to the customized nozzle 
holder, and (d) nozzle holder attached to the Ender 3 printer and working with our customized G-
code. 

2.4.4. Circuitry Design and Implementation 
This section provides a brief overview of the wiring required for signal interpretation 

in this article, focusing on the connection between the Arduino and the voltage divider. It 
explains the voltage divider�s purpose and includes mathematical insights to facilitate po-
tential adjustments or rewiring if necessary. The electrical path continues from the posi-
tive output to the terminal, entering the voltage divider�s resistor setup. Current flows 
through this setup, around to resistor setup B, and then returns to a ground cable via the 
other terminal for Signal A. The Arduino reads the voltage at the midpoint between resis-
tor setups A and B. This midpoint positioning is crucial because the Arduino�s analog 
inputs are limited to 5 volts AC, while the signal output exceeds the standard 12 volts. The 
voltage divider�s primary function is to reduce the incoming 12 volts AC to below 5 volts 
AC. In this case, a 150-Ohm resistor setup is used for resistor A and a 100-Ohm resistor 

Figure 7. (a) A schematic of all connections, (b) all components used to build air control systems and
assembled air control systems, (c) assembled air control system connected to the customized nozzle
holder, and (d) nozzle holder attached to the Ender 3 printer and working with our customized G-code.

2.4.4. Circuitry Design and Implementation

This section provides a brief overview of the wiring required for signal interpretation
in this article, focusing on the connection between the Arduino and the voltage divider.
It explains the voltage divider’s purpose and includes mathematical insights to facilitate
potential adjustments or rewiring if necessary. The electrical path continues from the
positive output to the terminal, entering the voltage divider’s resistor setup. Current flows
through this setup, around to resistor setup B, and then returns to a ground cable via the
other terminal for Signal A. The Arduino reads the voltage at the midpoint between resistor
setups A and B. This midpoint positioning is crucial because the Arduino’s analog inputs
are limited to 5 volts AC, while the signal output exceeds the standard 12 volts. The voltage
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divider’s primary function is to reduce the incoming 12 volts AC to below 5 volts AC. In
this case, a 150-Ohm resistor setup is used for resistor A and a 100-Ohm resistor setup
for resistor B. This configuration yields a 4.8-volt output, which is within the Arduino’s
operational range. Figure 8a illustrates the connection between the Arduino and the voltage
divider, including a detailed view of the voltage divider’s connection with the resistors.
Figure 8b presents a comprehensive circuit diagram of the setup.
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3. Implementation and Application
3.1. Three-Dimensional Printing of Filaments and Construct with Proposed System

To demonstrate the implementation of our custom-made 3D printing system including
a nozzle holder, circuitry design, air supply and control system, Arduino code, and G-
code, our previously developed hybrid hydrogel composed with 4% alginate and 4%
Carboxymethyl Cellulose [44] was used to extrude several filaments through a 410 µm
nozzle, as shown in Figure 9a,b. A range of applied pressure from 10 to 15 psi along
with 20–25 mm/s print speed was used. Toolpath was generated using in-house Arduino
code integrated with slicer software. For this experimental test, we printed filaments at
room temperature with the intention that the filament will maintain defined geometry
after solidification. This system was able to extrude consistent and constant filaments
successfully, as shown in Figure 9b. We did not observe significant difference in a set of
three filaments we printed; to produce continuous filaments and consequently defined
architectures of 3D-printed constructs, several process parameters need to be optimized
such as extrusion pressure, nozzle diameter, printing speed and distance, and material
composition and viscosities [45]. Extruded filaments showed ≤20% deviation compared
to the nozzle diameter used. Maintaining this consistency is crucial to achieve defined
porosities that affect cellular activities [46,47]. Having experience in solving a problem
related to filament width and process parameters in our recently published article [26], our
ongoing research will allow us to address these issues in the near future. Moreover, GelMA-
and PEG-based photosensitive hybrid hydrogels are undergoing experiments to validate
UV crosslinking. Related process parameters such as UV wavelengths (200–600 nm), the
exposure time and sequence of LED on/off, the distance from LEDs to print beds, the
choice of photosensitive polymers, and the type and amount of photo initiators will be
optimized for continuous filaments and defined 3D constructs.
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and 4% CMC were used to print the filament and scaffold.

3.2. Application for Various Bio-Inks

To further apply our developed nozzle system in future, we will utilize a series of novel
bio-inks such as alginate–Carboxymethyl Cellulose [44], alginate–Carboxymethyl Cellulose–
Montmorillonite nano-clay [45], alginate–Carboxymethyl Cellulose–Tempo-Mediated nano-
Fibrillated Cellulose (TONFC) [48], and pre-crosslinked alginate–Carboxymethyl Cellu-
lose [49], these were developed in-house to achieve shape fidelity for clinically relevant
scaffolds (up to 5 cm) and higher cell viability (≥80%). A range of applied pressure,
e.g., 8–20 psi, was utilized for extruding these bio-inks. The process parameters (nozzle
diameter, applied pressure, and print speed and distance) used for these bio-inks will be
mimicked in the proposed system, and performance will be evaluated compared to the
shape fidelity and cell viability of these bio-inks.

4. Attachment for Extrusion, Crosslinking, and UV Curing
4.1. Proposition of Attachments

To accommodate photo-crosslinking with ultraviolet (UV) light having user-defined
wavelengths (with a range of 200–500 nm) and physical crosslinking (with the application
of Ca2+) methods, three semi-modular attachments were designed to be compatible with
the proposed nozzle holder, as shown in Figure 10. While the range of 200–250 nm can be
harmful for cells [50], this range can be useful for acellular crosslinking. This module design
will allow the 3D bioprinter to be equipped with any combination of these attachments,
ranging from a simple attachment to a complex one. The choice of combination will depend
on the specific materials (photo-crosslinking or chemical crosslinking), scale of scaffolds,
and cell viability requirements.
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The first attachment, shown in Figure 10a, is an extrusion-based crosslinking attach-
ment. This attachment allows for the use of a pneumatic system and solenoid, similar
to that powering the syringe, to extrude the crosslinker out of a vessel surrounding the
syringe, such that it combines with the hydrogel as it exits the orifice of the syringe. This
allows for direct control over the amount of crosslinker that the hydrogel is receiving.
However, this attachment requires a modification of the nozzle holder to account for the
larger diameter of the syringe-surrounding assembly, with the size of both the aluminum
cartridge holder and the resin block needing to be moderately increased. Figure 10b depicts
a spray-based crosslinking nozzle attachment. Its design and functionality are similar to
the first attachment, providing an alternative option for crosslinker application during the
printing process. While the design proposed in Figure 10b can offer a higher crosslinking
rate and quicker solidification after releasing from the nozzle, this can a create a nozzle clog
if the wait time is not controlled properly for printing subsequent layers [51,52]. This chal-
lenge can be resolved by spraying, where the released hydrogel will be partially crosslinked
and leave more time to complete subsequent printing without nozzle clogs [53]. This
attachment is intended to be affixed to the side of the nozzle holder and contain a small
tube and misting nozzle, such that the crosslinker can be sprayed onto the printed hydrogel
either while it is extruding or during additional curing passes. This misting nozzle is held
close to the end of the cartridge so that the crosslinker is misted onto the extruded hydrogel
in a predictable manner. This misting attachment will use the same pneumatic system
as the primary nozzle system, with a separate control method based on instructions sent
to the same microcontroller. Finally, Figure 10c showcases a UV curing attachment. This
device is designed to accommodate a UV LED light strip around its ring, which can be
connected to a microcontroller for power regulation. The attachment secures to the existing
nozzle holder block by snapping onto its upper four corners. This component is specifically
intended for photo-active hydrogels, and alternative attachments would be necessary for
curing other hydrogel types.
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4.2. The 3D Printing of Attachments and Future Recommendations

To expand the practical implications in various biomedical applications, such as
tissue engineering, regenerative medicine, and drug delivery systems, we can update the
scalability of our bioprinter. One such addition is a dual crosslinking feature including
physical (with CaCl2) and photo-crosslinking (with UV) [54]. While UV crosslinking can
assist in holding the shape during printing, physical crosslinking will increase the overall
shape fidelity after printing. Moreover, we will explore the pre-crosslinking technique
to enhance scalability that we reported in our earlier research [49]. Controlling material
preparation to be capable of dual or pre-crosslinking along with appropriate process
parameter selection can allow users to create patient-specific implants or scaffolds for
wound healing, which could significantly improve patient outcomes. Furthermore, based
on the dimensions of the printer used to attach to our system, the scale can vary. Finally,
we will consider the implications for commercial viability, including partnerships with
healthcare providers and the integration of this technology into existing manufacturing
processes, thereby showcasing its transformative potential in the field of biomanufacturing.

As proof of concept, we successfully 3D printed models of a syringe mount, hose
mount, and UV light mount, as illustrated in Figure 11a, Figure 11b, and Figure 11c, respec-
tively. Our future work will focus on several key areas of improvement and expansion:

• Enhancing attachment design for better stability and user-friendliness.
• Investigating alternative materials to improve durability and compatibility with vari-

ous 3D printers.
• Developing a modular Multi-Attachment System for easy switching between cur-

ing methods.
• Creating plugins for popular 3D printing software to streamline printing and cur-

ing processes.
• Expanding microcontroller functionality to include real-time monitoring, feedback

mechanisms, and smart device connectivity.
• Researching alternative UV light sources to optimize curing for specific hydrogel

formulations.
• Collecting and incorporating user feedback from diverse fields to iteratively improve

the UV curing attachment’s design and functionality.
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These future developments aim to enhance the versatility, efficiency, and user experi-
ence of our 3D printing system for hydrogel-based applications.
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5. Conclusions

In conclusion, this study not only signifies a significant advancement in bioprinting
technology but also underscores the critical role of innovative engineering in overcoming
the unique challenges inherent in tissue engineering. The adaptive nozzle system ensures
the secure containment of the bio-ink, while the pneumatically driven plunger mecha-
nism facilitates precise dispensing. The careful selection of materials and manufacturing
techniques in the extruder head components highlights a commitment to safeguarding
the bio-ink’s integrity and optimizing the system’s thermal performance. This research
lays a solid foundation in the advancement of tissue engineering methodologies through
cutting-edge bioprinting technology. The success of this project will help (i) explore novel
bio-ink formulations with improved thermal stability and printability, (ii) develop multi-
material printing strategies for complex tissue constructs, (iii) overcome compatibility issues
with existing hardware and software, and (iv) resolve scalability concerns for large-scale
production.
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