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Abstract: Energy management strategies typically employ reinforcement learning algorithms in
a static state. However, during vehicle operation, the environment is dynamic and laden with
uncertainties and unforeseen disruptions. This study proposes an adaptive learning strategy in
dynamic environments that adapts actions to changing circumstances, drawing on past experience
to enhance future real-world learning. We developed a memory library for dynamic environments,
employed Dirichlet clustering for driving conditions, and incorporated the expectation maximization
algorithm for timely model updating to fully absorb prior knowledge. The agent swiftly adapts to
the dynamic environment and converges quickly, improving hybrid electric vehicle fuel economy
by 5–10% while maintaining the final state of charge (SOC). Our algorithm’s engine operating point
fluctuates less, and the working state is compact compared with Deep Q-Network (DQN) and
Deterministic Policy Gradient (DDPG) algorithms. This study provides a solution for vehicle agents
in dynamic environmental conditions, enabling them to logically evaluate past experiences and carry
out situationally appropriate actions.

Keywords: dynamic environment; energy management strategy; reinforcement learning; hybrid
electric vehicle

1. Introduction

The rapid increase in automobiles, paralleling economic and industrial growth, has
heightened environmental pollution concerns [1–3]. The hybrid electric vehicle (HEV) is a
vital step toward transportation electrification, triggering a shift in the automotive industry
from oil dependence to new energy reliance. HEVs primarily aim to enhance power
system efficiency and reduce fuel consumption. The energy management strategy (EMS)
is one of the pivotal technologies used in HEVs, which can influence fuel consumption
significantly, given a specific power system configuration. EMS is classified into rule-based,
optimization-based, and learning-based strategies [4–7].

Rule-based EMS requires formulating control rules for energy distribution under vary-
ing driving modes [8–12]. The rule system, although simple to develop, can construct the
control system. To address battery limitations, Ding et al. [13] suggested a hybrid strategy
for series-parallel plug-in hybrid electric vehicles using rule-based control and genetic
algorithm-optimized tactics. Guercioni et al. [14] introduced a distinctive real-time energy
management method inspired by optimal solutions for the energy management issue of
plug-in hybrid electric vehicles. Mansour et al. [15] created a rule-based energy manage-
ment strategy, emphasizing real-time calculation for a Prius HEV, and a comprehensive
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optimization program underpinned by dynamic programming. This optimization process,
interconnected with the traffic management system, takes into account the driver’s pre-
ferred route via the vehicle’s global positioning system. Notably, the parameters modified
by the global optimization algorithm surpass the deterministic rules, proving superior to
the rule-based energy management approach. This strategy, however, necessitates substan-
tial processing resources and is typically suited to vehicles on predefined routes, becoming
irrelevant when the routes or driving cycles are not pre-known. To remedy these issues,
Chen et al. [16] recently introduced a driving pattern recognition method for scrutinizing
the vehicle energy management strategy. Lian et al. [17] proposed an enhanced energy
management framework by integrating expert knowledge into DDPG. On this premise,
Zhou et al. [18] extensively explored and evaluated current driving pattern recognition
methods, spotlighting appropriate application scenarios for each predictive algorithm and
prospective strategies to handle prediction errors.

Learning-based strategies have gained considerable scholarly attention in recent years.
Xu et al. [19] parameterized the key factors in the EMS development process based on
reinforcement learning and applied it to the HEV power allocation problem to reduce
vehicle fuel consumption. To balance the charge state of multiple-cell batteries in electric
vehicles, Chaoui et al. [20] suggested a reinforcement learning-based solution. This extends
battery life and reduces the frequency of battery maintenance. Aljohani et al. [21] developed
a real-time data-driven routing optimization method for electric vehicles to minimize
energy consumption. Zhou et al. [22] utilized reinforcement learning to optimize a hybrid
tracked vehicle’s control strategy, with simulation results indicating that the suggested EMS
substantially improved fuel efficiency. Xiong et al. [23] benchmarked reinforcement learning
against rule-based algorithms. Simulations revealed that the reinforcement learning-based
strategy effectively minimized energy loss. Optimizing energy management systems with
reinforcement learning faces the challenge of slow convergence due to sparse rewards.
To accelerate learning and enhance adaptability, Zhu et al. [24] suggested a hierarchical
reinforcement learning approach tailored for energy management strategies. This novel
reinforcement learning approach addresses the sparse rewards issue during training and
ensures optimal weight distribution.

Moreover, various academics have demonstrated the superior performance of re-
inforcement learning-based energy management strategies in static environments. Lee
et al. [25] employed dynamic programming control methods to compare reinforcement
learning strategies. His findings suggest a reinforcement learning policy can attain global
optimality in an infinite-horizon optimal control problem—a feat also achievable by stochas-
tic dynamic programming. Aljohani et al. [26] proposed a metadata-driven approach for
real-time EV route optimization to reduce road energy demand. Sun et al. [27] proposed
the comprehensive energy management method founded on the conventional soft actor
critic (SAC) algorithm and prioritized experience to boost training efficiency. Aiming at the
problem of computational efficiency and dynamic coordination of energy conversion, Guo
et al. [28] proposed a predictive energy management strategy for dual-mode HEV relying
on model predictive control (MPC), which exhibits benefit performance and robustness.
In complex, static contexts, these notable reinforcement learning approaches have proven
their value in energy preservation.

Driving environments are fraught with instability sources, including behavioral biases
from wind direction, motion condition changes due to weather, and vehicle part aging,
causing shifts in certain physical characteristics [29–32]. The reinforcement learning agent’s
strategy must adapt to environmental dynamics, swiftly adjusting to events diverging from
training or changing conditions. Incremental reinforcement learning has recently become
the preferred approach to rapid adaptation to dynamic scenarios. As per this concept, the
dynamic environment is considered to be a sequence of stationary tasks within a specific
timeframe, with each one corresponding to an environmental aspect during the relevant
stage. This perspective offers insights for EMS in dynamic settings.
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This study proposes an adaptive learning strategy in dynamic environments, allowing
the vehicle’s reinforcement learning agent to more logically recall all events and cope with
the dynamic environment.

The primary contributions can be outlined as follows:

1. The memory library (ML) comprising specific actions for different driving condition
scenarios has been developed for the reinforcement learning agent to leverage.

2. The identification parameters for driving condition blocks and the control parameters
in memory library are derived through Dirichlet clustering. During the online process,
the control parameters are adjusted by the expectation maximization (EM) algorithm,
enabling the agent to continuously build and refine the memory library while retaining
previously acquired knowledge.

3. The proposed adaptive learning strategy in dynamic environment (ALDE) algorithm
equips the agent with the ability to adapt to changing environments. As the algorithm
operates, the agent learns and enhances its capacity for managing a range of normal
and extreme driving conditions, constantly.

The remainder of this paper is organized as follows: Section 2 presents the HEV model.
Section 3 elaborates on the structure and updates of the ALDE algorithm. Section 4 outlines
the verification methodology and results. Section 5 concludes this study.

2. Construction of Vehicle Model

The research focuses on a parallel HEV with a P2 configuration. The P2 HEV model
offered by the Matlab/Simulink 2020b community is utilized and modified in the control
component to enhance simulation precision and repeatability. Table 1 contains detailed
information about the model parameters.

Table 1. Other parameters of the vehicle.

Symbol Parameter Values

Engine Maximum power 92 kW
Maximum torque 175 Nm
Maximum speed 6500 rpm

Traction motor Maximum power 30 kW
Maximum torque 200 Nm
Maximum speed 6000 rpm

Battery Capacity 5.3 Ah
Voltage 266.5 V

2.1. Vehicle Dynamic Modeling

The power requirement of the vehicle is calculated through the longitudinal force
balance equation in Equation (1). The equation is divided into four parts: rolling resistance
Ff, air resistance Fw, ramp resistance Fi, and inertial force Fa.

F = Ff + Fw + Fi + Fa
Ff = G · f
Fw = 1

2 ρ · A f · CD · v2

Fi = G · i
Fa = δ · m · a

, (1)

where G represents vehicle gravity, f denotes the rolling resistance coefficient, ρ depicts
air density, A f is the front projection area of the vehicle, CD represents the air resistance
coefficient, v represents the longitudinal vehicle speed, i represents the road slope (which is
0 in this case, so the term Fi can be ignored), δ is the rotational mass conversion coefficient,
m represents vehicle mass, and a represents acceleration.
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The engine and motor provide the vehicle’s required power, and their relationship is
commonly expressed as follows:

Pdem = (Pen + Pbat · ηm)ηT , (2)

where Pen represents the output power of the engine, Pbat represents the power of the battery,
ηm represents the efficiency of the motor, and ηT represents the transmission efficiency.

2.2. Engine Modeling

The quasi-static model of the engine postulates that parameters such as speed, load,
and fuel consumption change gradually over short time intervals, indicating that the engine
remains in a state of equilibrium at each time point. This assumption facilitates the use of
a simplified equation to characterize the engine’s fuel efficiency and other performance
metrics, while excluding the effects of dynamic responses and complex nonlinear behaviors.
The fuel consumption rate is expressed as follows:

.
m f = f (Ten, nen), (3)

where Ten is the engine output torque and nen is the engine speed. The total fuel consump-
tion under one operating cycle can be obtained by the following integrals:

Fuel =
∫ t

t0

.
m f dt, (4)

where t ∈ [t0, t] is the time span of the calculation cycle.

2.3. Motor Modeling

The performance of the motor can be characterized using a power diagram, where
motor torque and speed serve as the axes. Rooted in the operating mode of the motor, the
following formula is defined:

Pelec =

{
1

ηm(ωem ,Tem)
Pmech = 1

ηm(ωem ,Tem)
ωemTem ifPelec ≥ 0 (motoring mode)

ηm(ωem, Tem)Pmech = ηm(ωem, Tem)ωemTem ifPelec < 0 (generating mode),
(5)

where Pelec represents the power of the motor, ωem represents the speed of the motor, Tem
represents the rotation of the motor, ηm represents the efficiency of the motor, and Pmech
represents the mechanical work of the motor.

2.4. Battery Modeling

Power batteries can supply energy to the electric motor as well as store energy gener-
ated by the motor. The battery’s SOC is defined by Equation (6):

SOC(t) = SOC(t0)−
1

Qbat

∫ t

t0

Ibat(t)dt, (6)

where Ibat(t) represents the battery current and Qbat represents battery’s rated capacity. If
voltage dynamics are ignored and the battery circuit is represented as a RC-free branch, the
above formula can be re-expressed as follows:

.
SOC = −Voc −

√
V2

oc − 4RintPbat
2RintQbat

, (7)

where Pbat represents the battery’s output power, Voc represents the open circuit voltage of
the battery, and Rint represents the internal resistance of the battery.
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3. Adaptive Learning Strategy in Dynamic Environment
3.1. Reinforcement Learning Modeling and Problem Description

Reinforcement learning is mathematically represented as a Markov decision process
consisting of five fundamental elements: environment, agent, state, behavior, and re-
ward [33–36]. It enables an agent to amass the maximum reward value through a reward
and punishment mechanism, facilitating autonomous learning in different environments.
In this paper, a vehicle’s driving cycle is utilized as the environment that reinforcement
learning must navigate. The vehicle controller is an agent of reinforcement learning. The
required engine power represents the agent’s action value. The change in engine speed,
torque, and battery SOC value is used as the state vector. To address the subjectivity and
empirical challenges in traditional reward function design, we propose a strategy grounded
in inverse reinforcement learning. The approach derives weights of reward function from
expert trajectories, ensuring that the reward function more objectively reflects the balance
between fuel efficiency and battery lifespan [37], as follows:

action = Pen, (8)

state = [nt, Tt, SOC], (9)

r =
∫ t

t0

α · .
m f (t)dt + β · [SOC(t)− SOC(t0)]

2, (10)

where Pen, nt, Tt, and SOC represent engine power output, engine speed, engine torque,
and battery SOC, respectively. The reward function consists of two parts. The first term
represents fuel consumption;

.
m f (t) is the instantaneous fuel consumption rate. The second

term represents the difference between initial and current SOC. In Equation (10), α and β
are two constant factors.

The dynamic environment of the driving cycle during vehicle operation can be seen
as a series of fixed tasks over time. Each task corresponds to specific environmental
characteristics relevant to that period. The objective of optimal power allocation is achieved
under these environmental conditions, where machine learning (ML) enables the transition
from a local optimum to a global optimal fuel consumption. When the vehicle’s driving
environment changes, the ALDE algorithm’s agent can initiate a new learning process based
on previously acquired knowledge, incrementally adapting it to suit the new conditions.
Reinforcement learning agents are akin to the human brain, where changing elements
and unexpected disturbances are the norm in real driving scenarios. In contrast, humans
possess the necessary driving experience to navigate unforeseen environmental changes.
Therefore, enhancing the agent’s adaptability becomes crucial. The key is enabling the
agent to compare its own memories and respond promptly. Inspired by human capabilities,
we develop ML from which hybrid vehicle agents can draw analogies to effectively handle
dynamic environments. This ML must retain historical information to the greatest extent.
In this article, an agent’s behavior strategy and the parameters of the dynamic environment
are identified as the fundamental elements to be stored in the ML. The ML can be expressed
as follows:

ML =


X1 : X11 · · · X1e
X2 : X21 · · · X2 f

...
...

...
Xi : Xi1 · · · Xij

, Xij ∈ [ω, p]ij, (11)

where X depicts the driving condition block, i demonstrates the number of driving condi-
tion clusters, j represents the total number of driving condition blocks in a driving condition
cluster, p denotes the dynamic environment, and ω depicts the primary eigenvalue. In this
experiment, the number of blocks in the clusters varies depending on the specific cluster.

The dynamic environment parameters can be quantified by the reward function and
state vector as follows:

p ∈ [r, state], (12)
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Figure 1 illustrates the proposed algorithmic framework of this paper, which is thought-
fully designed into two main parts: the left side represents the algorithm kernel, while the
right side details the vehicle structure. The primary inputs in the present driving condition
include the primary eigenvalue ω and the state S, which are fundamental to the ALDE
method. The algorithm kernel is divided into two parallel sections. The left side focuses
on probability calculations and network training, whose goal is to enhance the respon-
siveness to environmental changes and intelligence of its decisions. In contrast, the right
side emphasizes parameter optimization and iterative updates, ensuring that the vehicle
can adapt to changing external conditions while maintaining optimal performance across
various operating environments. The parallel processing of these updates significantly
enhances the precision and performance of the algorithm. The next Action computed by
the algorithm kernel is then sent to the vehicle structure module for immediate adjustments
to the vehicle’s operational behavior, ensuring smooth and safe driving. In summary,
the thoughtfully designed structure improves the quality of decisions of the model and
adaptability and generalization capabilities in dynamic environments.
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Step 1: The first part is to calculate the current aggregation probability so as to
determine the driving condition category that the driving condition block belongs to.
Meanwhile, the second part performs the DQN algorithm to acquire the optimal action
corresponding to this driving cycle block.

Step 2: In the first part, the optimal Action calculated before is recorded in the cor-
responding ML. It may be used to create a new record, add a working block information
record in the existing driving condition, or directly use the control strategy of a working
block and use the EM algorithm to update it. The second part also updates the DQN weight
through experience playback and turntable transfer.

Step 3: The control closed loop is completed by outputting the Action determined by
the present ALDE algorithm.

3.2. Cluster Aggregation in the Adaptive Algorithm
3.2.1. Definition and Characteristics of Driving Condition Block in Cluster Aggregation

To replicate the frequent start-stop, acceleration, and deceleration of real driving
scenarios, we define a driving condition block as the transition between successive idle
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states. The block generally includes idle segments and dynamic segments. The moving
segments typically encompass acceleration, constant speed, and deceleration conditions.
Figure 2 depicts the definition of a driving condition block.
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Each driving cycle can extract multiple feature parameters. Some characteristics
are interconnected and dependent on one another, resulting in repetitive information.
Given that feature parameter matrices would be overly complex. Using just one or two
arbitrary characteristic parameters may not accurately represent present driving conditions.
Therefore, it is crucial to use only the key components to describe the driving conditions
and to appropriately limit the dimensions of the matrix.

In this article, 126 blocks are chosen from various standard driving cycles (WLTC,
RTS95. . .) as a training set. The cumulative contribution rate of the first T primary compo-
nents is

ψ =
∑T

i=1 λi

∑15
i=1 λi

, (13)

where λi is the characteristic parameter, ψ represents the cumulative contribution rate
of the first T primary components, ∑T

i=1 λi denotes the sum of eigenvalues of the first
T principal components, and ∑15

i=1 λi represents the sum of eigenvalues of the first 15
principal components.

Table 2 shows the specific contribution rate and cumulative contribution rate. Ulti-
mately, three characteristic parameters with the highest contribution rates, average speed,
idle time ratio, and working block distance are selected to represent the driving condition
block characteristics.

Table 2. Specific contribution rate and cumulative contribution rate.

Ingredient Contribution Rate/% Cumulative Contribution Rate/%

Average Speed 45.13 45.13
Idle Time 23.28 68.41
Distance 10.47 78.88

...
...

...

3.2.2. Cluster Aggregation Based on Dirichlet Method

The Dirichlet Process (DP) is a stochastic process characterized by a probability dis-
tribution [38,39]. For instance, with a base measure H, the random distribution of DP G
can be expressed as G ∼ DP(α0, H), where α0 is the concentration parameter of DP, which
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indicates the level of uncertainty in clustering. A lower α0 value raises the number of
clusters, while a higher α0 value has the opposite effect. H is the basis measure, which is a
basic distribution used to represent the cluster center distribution.

The features of every driving cycle type can be represented as a vector Xi =
(
X1i, · · · , Xij

)
,

where Xij is the j driving cycle block feature of the i driving condition type, and the vector
is generated by polynomial distribution with parameters

{
θ1i, · · · , θij

}
. The activity charac-

teristics of the n driving condition blocks to be clustered form the vector X = (X1, · · · , Xi).
Assume that they are independent of each other and come from a mixed distribution

F(Θ), which is composed of multiple polynomial distributions; the parameter Θ that
constitutes the probability of variable polynomial distributions can be drawn from DP
G ∼ DP(α0, H). If some samples are generated by a mixed distribution under the same
parameter Θ, then these data samples can be classified into the same class. The DPMM
(Dirichlet Process Mixture Model) that achieves cluster aggregation can be expressed
as follows:

xi =
(
X1i, · · · , Xij

)
∼ Mult(Θzi ), i = 1, · · · , n, (14)

Θ =
(

θzi1
, · · · , θz

ij

)
∼ Dir

(
β1, · · · , β j

)
, 1 ⩽ zi ⩽ K, (15)

zi ∼ Mult(Π), i = 1, · · · , n, (16)

Π = (µ1, · · · , µk, · · · , µK+1) ∼ DP(α0, H), (17)

where Equation (14) expresses the block of condition i generated by the polynomial dis-
tribution of class zi with parameter θzi , zi is the class number, and K is the total of classes.
Equation (15) indicates the prior distribution of parameter Θzi , and its parameters are(

β1, · · · , β j
)
. Equation (16) indicates that the zi class is drawn from the polynomial distri-

bution with parameter Π. Equation (17) expresses parameter Π = (µ1, · · · , µk, · · · , µK+1),
which is extracted from the process G ∼ DP(α0, H).

3.3. Chinese Restaurant Process in ALDE

We propose using the infinite DP mixture model in stochastic dynamic conditions to
construct a prior distribution of rising condition clusters, providing a flexible structure
for the observed dynamic environment. The Chinese Restaurant Process (CRP) explains
this by comparing a sequence of customers sitting at tables in a restaurant, where each
table represents a cluster. The likelihood that each customer sits alone at a new table is
proportional to the lumped parameter, and the probability that each customer sits at an
existing table is related to the number of customers seated here.

The likelihood that characteristics of each working block correspond to an existing
class and the probability of belonging to a new class in the Chinese restaurant model are
as follows:

µk = Pr(zi = k | Z−i, X) =
1
B

nk
α0 + n − 1

Pr(xi | zi = k), 1 ⩽ k ⩽ K, (18)

µK+1 = Pr(zi = K + 1 | Z−i, X) =
1
B

α0

α0 + n − 1
Pr(xi | zi = K + 1), (19)

where k is sample category number Xi, B is a normalization factor, which enables the total
of probabilities to be 1, nk is the sum of all dimension counts of all samples belonging to
class k, and Z−i is the set of all classes but zi.

3.4. Adaptive Algorithm Update

To update the adaptive algorithm in a dynamic environment, we propose using the
EM algorithm and online Bayesian inference to update the mixed environment model
incrementally. The EM algorithm is an iterative optimization algorithm that updates model
parameters through the E-step and M-step, aiming to maximize the likelihood function
of the model. It is commonly used for parameter estimation in probabilistic models with
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latent variables. In the E-step, it calculates posterior probabilities of latent variables based
on present parameter estimates, typically involving computing expectations. In the M-
step, it updates model parameters by maximizing the logarithm of the likelihood function
shaped by complete data. This step often involves solving maximization problems. Online
Bayesian inference is an inference method used for parameter estimation and prediction
in dynamic environments. It involves continuously updating the prior distribution to
incorporate new observed data and obtain an approximation of the posterior distribution.
In online Bayesian inference, the parameters and states of the model are updated over time.
With this approach, the dataset is repetitive as the environment cluster grows larger without
sacrificing prior knowledge. When the environment engages with the controller agent,
we use (m, n) to represent the input and output of the vehicle dynamic environment and(

Mi
t, Ni

t
)

to represent the input and output at time t. Xit is the present driving condition
block, and ωi

t is the eigenvalue of the current driving condition block. During each iteration,
model parameters are adjusted, leading to an increase in the likelihood function of the
probabilistic model with hidden variables. The iteration ends when it no longer rises, or
the value of the increase is less than the set threshold. In this section, the EM algorithm is
combined with the algorithm to measure the similarity of the vehicle dynamic environment,
as follows:

E-Step: The posterior expectation of the present block-to-cluster assignment is

P
(

ωi
t | Mi

t, Ni
t

)
=

{
µk , 1 ⩽ k ⩽ K

µK+1, k = K + 1
, (20)

Combined with CRP, it can be written as follows:

P
(

ωi
t | Mi

t, Ni
t

)
∝

{
1
B

nk
α0+n−1 Pr(xi | zi = k), 1 ⩽ k ⩽ K

1
B

α0
α0+n−1 Pr(xi | zi = k), k = K + 1

, (21)

M-step: According to the estimated posterior expectation P
(
ωi

t | Mi
t, Ni

t
)
, we execute

the M-step to optimize the anticipated log-likelihood arising from the inference environ-
ment probability. Assuming that each driving condition begins at the first driving condition
block Xi1, the value of ωi

t can be obtained after a gradient update at every stage. The update
formula is as follows:

ωi
t = ωi

t−1 − δ∑ t−1
t=1 P

(
ωi

t−1 | Mi
t−1, Ni

t−1

)
∇ωi

t−1
logpωi

t−1

(
Ni

t−1 | Mi
t−1

)
, (22)

where δ is the learning rate of the EM algorithm. We can approximate the formula by
incrementally updating the previous parameters in the current environment sample:

ωi
t = ωi

t−1 − δP
(

ωi
t−1 | Mi

t−1, Ni
t−1

)
∇ωi

t−1
logpωi

t−1

(
Ni

t−1 | Mi
t−1

)
, ∀i, (23)

This process avoids the need to store previously observed samples and implements
a fully streaming, incremental learning algorithm along with online Bayesian inference.
To completely execute the EM algorithm, ALDE needs to switch between the E-step and
the M-step repeatedly to achieve convergence. The pseudo-code of ALDE is depicted in
Algorithm 1.
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Algorithm 1. Pseudo-code of ALDE.

Input: Characteristic parameters of dynamic driving condition blocks
Output: Optimal action (engine power)
1. Initialize i= 1, t = 1
2. Calculate the characteristic parameters of current driving condition block ω1

1 and restore
them in the first container of X11

3. Memorize current policy chosen by deep reinforcement learning in the second container
of X11

4. for following each driving condition block during one episode do

5. Calculate P
(
ωi

t | Mi
t, Ni

t

)
of current driving condition block and conduct Dirichlet

driving condition cluster polymerization

6. if P
(
ωi

t | Mi
t, Ni

t

)
∝ 1

B
nk

α0+n−1 Pr(xi | zi = k), 1 ⩽ k ⩽ K
Conduct current driving condition block with most resembles action in corresponding
existing driving condition polymerization i and restore them in the first container of Xij,
the current policy in the sec ond container of Xij

7. else
Build a brand new driving condition polymerization i, add current driving
condition block to this driving condition polymerization i, and restore them in
the first container of Xij, the current policy in the sec ond container of Xij

8. while ωi
1∼t not converging do

To update for all previous time periods 1, 2, . . . , t − 1 with:

ωi
t = ωi

t−1 − δP
(

ωi
t−1 | Mi

t−1, Ni
t−1

)
∇ωi

t−1
log pωi

t−1

(
Ni

t−1 | Mi
t−1

)
, ∀i

9. end

4. Simulation and Hardware-in-the-Loop Experiment
4.1. Simulation Experiment

To evaluate the effectiveness of the proposed strategy, we assess engine operating
points, fuel consumption, and SOC interpolation. We configure the initial state of the
vehicle to full gasoline. All algorithms are executed using Python 3.5, running on Ubuntu
16 with 48 Intel(R) Xeon(R) E5-2650 2.20GHz CPU processors, 193GB RAM, and NVIDIA
Tesla 32GB GPU.

To validate the capability of the ALDE algorithm, we have created a new driving cycle,
as shown in Figure 3a. The results of the ML constructed are presented in Figure 3b. The spe-
cific types are as follows: (3.505 m/s, 36.27% idle percentage, 198.9 m), (6.781 m/s, 17.82%
idle percentage, 687.4 m), (10.02 m/s, 15.85% idle percentage, 1704 m), and (13.51 m/s,
12.80% idle percentage, 3418 m), which are obtained through the Dirichlet clustering
method. The scatter points are represented in four colors—orange, blue, red, and green—
corresponding to four typical operating conditions. There are four driving conditions
within the clustering scenarios: city traffic jam, smooth city traffic flow, suburban area, and
highway. City traffic jam refers to a situation where the traffic volume on urban roads is
excessively high, resulting in slow and congested vehicle movement. In city traffic jams,
vehicles frequently stop, start, and move at low speeds. City smooth traffic flow refers to a
situation where the traffic volume on urban roads is relatively stable, allowing vehicles to
travel at a moderately steady speed without frequent stops or congestion. Suburban areas
typically refer to the outskirts of cities, where traffic volume is relatively low, and roads
are wider. In suburban areas, vehicles can usually travel at higher speeds without being
affected by city traffic congestion. Highways are road networks designed for high-speed
driving. On highways, vehicles can cruise at higher speeds for extended periods, and
although traffic volume is relatively high, it is usually smoother. We sequentially train
the DQN and DDPG agents on the comprehensive training dataset, which encompasses
a variety of driving scenarios, such as LA92, WLTP, RTS95, US06, and more, covering
all 126 distinct driving condition clusters as previously mentioned. However, it does not
include the new driving cycle. After training the proposed and compared algorithms,
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their reward curves in new driving condition cycle (test set) are shown in Figure 3c, which
demonstrates the convergence speed of three reinforcement learning algorithms under
entirely new and unknown driving conditions.
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Figure 3c illustrates the reward curve for each iteration of policy iteration in the
new driving condition cycle. Compared to DQN and DDPG, our approach demonstrates
the quickest adaptation for learning in a dynamic environment and achieves the fastest
convergence. This is attributed to its straightforward adaptation mechanism, which ef-
fectively leverages learned knowledge from the memory library (ML). Furthermore, the
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graph indicates that the ALDE algorithm is constantly superior to all baseline methods in
terms of return during training, with a relatively stable curve following convergence. This
suggests that ALDE provides a more reliable form of adaptation for learning in a dynamic
environment. Therefore, the reward function curve illustrates that ALDE is well equipped
to handle a dynamic environment where reward or state transition functions may update
with each iteration, offering improved adaptation for learning.

DQN and DDPG fail to achieve the ideal standard encountering complete driving
conditions that are absent from the training set, which is characteristic of the catastrophic
forgetting issue commonly seen in traditional reinforcement learning algorithms. The
analysis of the issue is outlined below: After completing comprehensive training on specific
driving condition A, the agent experiences a decline in its ability to handle driving condition
A when it continues training on a different set of driving condition B. When we extract
complete driving conditions from the training set and select specific condition blocks to
create a new driving condition for the test set, the DQN and DDPG algorithms encounter the
inherent issue of catastrophic forgetting. Additionally, they treat the new complete driving
condition as entirely unknown, which needs to be equipped with comprehensive learning.

The ALDE algorithm achieves better performance because of the ability to manage
variable driving condition blocks resulting from Dirichlet clustering. It deconstructs the
problem into single modules and utilizes the combination of Dirichlet distribution and
EM updates. Encountering new driving conditions, the agent attempts to locate the
corresponding driving condition sort Xi from ML. It then adopts a control strategy of the
condition block Xij that is most similar. After achieving the present task, it updates the
control strategy of Xij in reverse. To avoid the agent failing to identify the similar driving
condition Xi, it generates a new condition Xi+1, updating itself as the Xi+11. It executes the
control strategy from the most similar driving condition block in current ML and updates
the strategy for Xi+11 as the process continues. The factors prevent ALDE from forgetting,
enabling it to adapt and evolve in entirely new and unknown complete driving conditions.
Faced with a new driving condition cycle, ALDE begins with a high initial reward value,
which steadily increases as training progresses. After convergence, ALDE has the highest
reward value and the smallest fluctuation.

Figures 4 and 5 at the vehicle level compare the battery SOC value curve and the engine
operating point for the three algorithms—DQN, DDPG, and ALDE—under the new driving
cycle. In Figure 4, the SOC curve of the DQN algorithm and DDPG method fluctuates
substantially as the SOC value changes, with the highest fluctuation range reaching roughly
0.4. Due to the presence of the driving condition block memory library, under the control
of the ALDE algorithm, the SOC curve exhibits reduced overall fluctuations in the new
driving cycle. This indicates that the ALDE agent is capable of promptly responding to
completely new dynamic environments and possesses stronger adaptability. In addition,
due to the reduced fluctuations in SOC, the lifespan of the battery has also been improved.

Figure 5 presents the universal characteristic map of the engine, where the color bar
provides a third dimension of information—fuel consumption rate, measured in grams
per kilowatt-hour (g/kWh). The varying shades of color visually represent different levels
of fuel consumption. The solid red line represents the empirically derived optimal fuel
consumption curve. Its purpose is to reduce time and computational resources wasted by
the agent in exploring optimal fuel consumption curve.

In Figure 5, the engine operating points for three algorithms—DQN, DDPG, and
ALDE—are illustrated, with the red line representing optimal fuel consumption. The
DQN algorithm shows a scattered distribution of points, many of which are above the red
line, indicating higher fuel consumption compared to optimal performance, though some
points approach the red line. The DDPG algorithm demonstrates a more concentrated
distribution, with several points closely aligning with the red line, suggesting better fuel
efficiency overall, although some points still exceed optimal consumption. In contrast, the
ALDE algorithm exhibits a varied distribution, with several points significantly below the
red line, indicating instances of optimal fuel consumption, but it also contains points above
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the red line. Overall, DDPG appears to perform better in terms of fuel efficiency, while all
three algorithms show varying degrees of performance relative to the optimal behavior.
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In order to demonstrate the robustness of the ALDE algorithm, we have created two
additional completely new driving conditions. These driving conditions are derived from
combinations of condition blocks extracted from the DQN and DDPG training sets. The
driving conditions are shown in Figure 6a,b, and the corresponding SOC curves are shown
in Figure 6c,d. The conclusion remains the same.

The comparison of fuel consumption values under three general driving cycles and
one new driving cycle is shown in Table 3. Fuel usage is reduced by roughly 5% compared
with the traditional DDPG algorithm, and fuel consumption is decreased by roughly 8%
compared with DQN. Therefore, the ALDE algorithm performs well in terms of energy
savings and battery SOC value.
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Table 3. Fuel consumption.

Driving Cycles

Algorithm
DDPG DQN ALDE

Fuel Consumption
Reduction Rate

Compared with DDPG

Fuel Consumption
Reduction Rate

Compared with DQN

WLTP 6.74 L/100 km 7.05 L/100 km 6.32 L/100 km 6.23% 10.35%
US06 6.16 L/100 km 6.47 L/100 km 5.85 L/100 km 5.03% 9.58%
LA92 6.44 L/100 km 6.68 L/100 km 6.08 L/100 km 5.60% 8.98%
New

driving cycle 7.38 L/100 km 7.87 L/100 km 7.13 L/100 km 3.39% 9.04%

4.2. Hardware-in-Loop Experiment
4.2.1. Hardware-in-the-Loop Experimental Platform

The paper integrates actual vehicle controller hardware and employs dSPACE real-time
control simulation equipment to establish an HIL testing platform for experimental research.
The HIL testing platform for the vehicle control strategy comprises a host computer, Control
Desk control platform, RapidECU_U2 rapid prototype controller, and dSPACE/Simulator
real-time simulation system.

In this setup, the dSPACE/Simulator is employed to create a real-time testing en-
vironment. The host computer, rapid prototype controller, and simulation system are
interconnected via a CAN bus. The host computer manages the downloading of simulation
models and driver board interfaces to both the simulator and the rapid prototype controller.
The Control Desk platform serves to develop a real-time monitoring interface, facilitating
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the observation of the simulation process and recording of relevant data. A low-voltage
DC power supply and power distribution box provides 24 V DC power to the vehicle
controller, while the host computer communicates with the lower computer through a CAN
bus module.

The specific implementation process for the hardware-in-the-loop system is as follows:
First, resulting from the vehicle simulation structure, the RTI module of the host computer
creates a longitudinal simulation model for HIL testing, which is then compiled into a dl1
file and downloaded to the dSPACE/Simulator. Next, using the Codewarrior embedded
development environment, we develop embedded control software for the adaptive control
strategy. This strategy is compiled into C code using the RTW tool in Matlab/Simulink and
programmed into the RapidECU using MeCa V1.5 software via a USBcan downloader.

Finally, the host computer, controller, and simulator are connected through a CAN
network to form a local area network, enabling seamless communication among the compo-
nents. After configuring the simulation monitoring interface on the host computer, we can
effectively monitor the vehicle’s operational status and facilitate data reading and storage.

4.2.2. Simulation of Hardware-in-the-Loop Experiment

To assess the potential practical applications of the proposed EMS, HIL experiments
were conducted. The integrated systems are depicted in Figure 7a,b [40].
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Figure 7. Integrated system and driver operating system: (a) integrated system; (b) integrated system.

The data detection system, situated below the driver system, is integrated with it. Data
interaction is achieved through CAN communication technology allowing for the real-time
acquisition of steering wheel angle, acceleration, and brake pedal data. These data are then
fed into the vehicle control unit (VCU).

HIL experiments adhere to driving cycles presented in Table 3. Focusing on the new
driving cycle, Figure 8a illustrates the HIL results for SOC trajectory (the data sampling fre-
quency is 1000 Hz, and the data undergo filtering processing), and Figure 8b demonstrates
the engine operating points. The HIL experiment results in Figure 8a,b are essentially con-
sistent with the simulation tests. Additionally, equivalent fuel consumption for simulated
and HIL tests is presented in Table 4. The HIL results demonstrate a high level of agreement
with the simulation results, clarifying the fuel-saving performance of the ALDE algorithm.
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Table 4. Fuel consumption (HIL).

Driving Cycles
Algorithm

ALDE/SIM ALDE/HIL

WLTP 6.32 L/100 km 6.29 L/100 km
US06 5.85 L/100 km 5.91 L/100 km
LA92 6.08 L/100 km 6.11 L/100 km
New

driving cycle 7.13 L/100 km 7.07 L/100 km

5. Conclusions and Future Work

We propose a strategy for the vehicle agent that enables it to adaptively handle
dynamic environments by modifying its behavior accordingly. We provide a memory
library to help the agent make timely adaptive responses to the environment. The learning
agent can search the stored repository, find the most similar experience, or extend new
experiences to the repository during different periods of time. We combine the Dirichlet
and EM algorithms to continuously aggregate and update driving condition clusters. The
results indicate that the ALDE strategy efficiently clusters the environment in the potential
space, enables memory library utilization, retrieves previously seen environments, and
adaptively guides the agent’s actions. The reward curve during training indicates that
the ALDE strategy successfully learns from past knowledge, quickly adjusts to changing
environments, and converges rapidly. From the perspective of vehicle operation, the
engine’s operating point remains near the optimal working curve, resulting in minimal
SOC fluctuation.

In our future work, we aim to further explore how to integrate additional relevant
factors into the state representation, such as road gradient, traffic conditions, and driver be-
havior. By including these elements, we hope to gain a more comprehensive understanding
of the interactions among state variables, which will enhance the model’s decision-making
capabilities and generalization. In addition, we also recognize that computational burden
is a crucial consideration in assessing the feasibility of algorithms, and we will continue to
prioritize this aspect in our future research.
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