Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia
Abstract
:1. Introduction
2. Materials and Methods
3. Results of the Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belakehal, A.; Tabet, K.; Bennadji, A. Sunlighting and daylighting strategies in the traditional urban spaces and buildings of the hot arid regions. Renew. Energy 2004, 29, 687–702. [Google Scholar] [CrossRef]
- Lara, F.; Kim, Y. Built global, lived local: A study of how two diametrically opposed cultures reacted to similar modern housing solutions. J. Archit. Plan. Res. 2010, 27, 91–106. Available online: https://www.jstor.org/stable/43030898 (accessed on 29 July 2023).
- Ghisi, E.; Tinker, J.A. An ideal window area concept for energy efficient integration of daylight and artificial light in buildings. Build. Environ. 2005, 40, 51–61. [Google Scholar] [CrossRef]
- Cabeza-Lainez, J. Architectural Characteristics of Different Configurations Based on New Geometric Determinations for the Conoid. Buildings 2022, 12, 10. [Google Scholar] [CrossRef]
- Heschong, L. Thermal Delight in Architecture; MIT Press: Cambridge, MA, USA, 1979; ISBN 026258039X. [Google Scholar]
- Nocera, F.; Lo Faro, A.; Costanzo, V.; Raciti, C. Daylight Performance of Classrooms in a Mediterranean School Heritage Building. Sustainability 2018, 10, 3705. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 7th ed.; Mac Graw Hill: New York, NY, USA, 1995. [Google Scholar]
- Moon, P.H.; Spencer, D.E. The Photic Field; The MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Siret, D. L’illusion du brise-soleil par Le Corbusier. In Colloque Langages Scientifiques et Pensée Critique: Modélisation, Environnement, Décision Publique; ffhalshs-00580040f; Belin Editions: Cerisy, France, 2002. [Google Scholar]
- Subramaniam, S.; Hoffmann, S.; Thyageswaran, S.; Ward, G. Calculation of View Factors for Building Simulations with an Open-Source Raytracing Tool. Appl. Sci. 2022, 12, 2768. [Google Scholar] [CrossRef]
- Modest, M.F. View Factors. In Radiative Heat Transfer, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Hensen, J.L.M.; Lamberts, R. Building Performance Simulation for Design and Operation, 2nd ed.; Routledge: London, UK, 2019; ISBN 9781138392199. [Google Scholar]
- Howell, J.R.; Siegel, R.; Mengüç, M.P. Thermal Radiation Heat Transfer, 5th ed.; Taylor and Francis/CRC: New York, NY, USA, 2010. [Google Scholar]
- Moon, P.H. The Scientific Basis of Illuminating Engineering; McGraw-Hill Book Co. Dover Publications: New York, NY, USA, 1963. [Google Scholar]
- Feingold, A. Radiant-Interchange configuration factors between various selected plane surface. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1966, 292, 51–60. Available online: https://www.jstor.org/stable/2415616 (accessed on 2 July 2022).
- Lambert, J.H. Photometria. sive de Mensura et Gradibus Luminis, Colorum et Umbrae; DiLaura, D., Ed.; IESNA: New York, NY, USA, 2001; p. 1764. [Google Scholar]
- Hilbert, D.; Cohn-Vossen, S. Geometry and the Imagination; AMS (American Mathematical Society) Chelsea Publishing: Providence, RI, USA, 1990. [Google Scholar]
- Camaraza-Medina, Y.; Hernandez-Guerrero, A.; Luviano-Ortiz, J.L. View factor for radiative heat transfer calculations between triangular geometries with common edge. J. Therm. Anal. Calorim. 2023, 148, 4523–4539. [Google Scholar] [CrossRef]
- Fock, V. Zur Berechnung der Beleuchtungsstärke; Optisches Institut: St. Petersburg, Russia, 1924. [Google Scholar]
- Cabeza-Lainez, J. Innovative Tool to Determine Radiative Heat Transfer Inside Spherical Segments. Appl. Sci. 2023, 13, 8251. [Google Scholar] [CrossRef]
- Sasaki, K. View factor of a spheroid and an ellipse from a plate element. J. Quant. Spectrosc. Radiat. Transf. 2024, 326, 109102, ISSN 0022-4073. [Google Scholar] [CrossRef]
- Cabeza-Lainez, J. Finding the Exact Radiative Field of Triangular Sources: Application for More Effective Shading Devices and Windows. Appl. Sci. 2023, 13, 11318. [Google Scholar] [CrossRef]
- Schröder, P.; Hanrahan, P. On the Form Factor between Two Polygons. In Proceedings of the SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 2–6 August 1993; pp. 163–164. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, T.; Qi, F. A correction method for calculating sky view factor in urban canyons using fisheye images. Build. Environ. 2024, 262, 111834, ISSN 0360-1323. [Google Scholar] [CrossRef]
- Howell, J.R. A Catalogue of Radiation Heat Transfer Configuration Factors. University of Texas at Austin. Available online: http://www.thermalradiation.net/indexCat.html (accessed on 3 February 2021).
- Howell, J.R. A Catalogue of Radiation Heat Transfer Configuration Factors. Factor C-43b. Available online: http://www.thermalradiation.net/sectionc/C-43b.html (accessed on 22 March 2023).
- Howell, J.R. A Catalogue, Factor C-140b. Available online: http://www.thermalradiation.net/sectionc/C-140b.html (accessed on 23 February 2023).
- Howell, J.R.; Siegel, R.; Pinar, M.M. Radiative transfer configuration factor catalogue: A listing of relations for common geometries. J. Quanti. Spectrosc. Radiat. Transf. 2011, 112, 910–912. [Google Scholar] [CrossRef]
- Cabeza-Lainez, J.; Almodóvar-Melendo, J.-M.; Revenga-Dominguez, P.; Rodríguez-Cunill, I.; Xu, Y. New Simulation Tool for Architectural Design in the Realm of Solar Radiative Transfer. Designs 2022, 6, 72. [Google Scholar] [CrossRef]
- Milton, R. The Ungreen Brise-soleil. Hidden Archit. J. 1936, 1, 17. Available online: https://hiddenarchitecture.net/ungreen-brise-soleil/ (accessed on 7 September 2020).
- Camaraza-Medina, Y. Polynomial cross-roots application for the exchange of radiant energy between two triangular geometries. Ingenius Rev. Cienc. Y Tecnol. 2023, 30, 29–41. [Google Scholar] [CrossRef]
- Feingold, A. A new look at radiation configuration factors between disks. J. Heat Transf. 1978, 100, 742–744. [Google Scholar] [CrossRef]
- Acosta, W. Vivienda y Clima; Ediciones Nueva Visión: Buenos Aires, Argentina, 1976. [Google Scholar]
- Gershun. The Light Field (translated from Russian by P. Moon and G. Timoshenko). J. Math. Phys. 1939, 18, 17. [Google Scholar]
- Cabeza-Lainez, J. A New Principle for Building Simulation of Radiative Heat Transfer in the Presence of Spherical Surfaces. Buildings 2023, 13, 1447. [Google Scholar] [CrossRef]
- Naraghi, M.H.N. Radiative View Factors from Spherical Segments to Planar Surfaces. J. Thermophys. Heat Transf. 1988, 2, 373–375. [Google Scholar] [CrossRef]
- Chung, B.T.F.; Naraghi, M.H.N. Some Exact Solutions for Radiation View Factors from Spheres. AIAA J. 1981, 19, 1077–1108. [Google Scholar] [CrossRef]
- Sasaki, K.; Sznajder, M. Analytical view factor solutions of a spherical cap from an infinitesimal surface. Int. J. Heat Mass Transf. 2020, 163, 120477. [Google Scholar] [CrossRef]
- McAdam, D.W.; Khatry, A.K.; Iqbal, M. Configuration Factors for Greenhouses. Am. Soc. Ag. Eng. 1971, 14, 1068–1092. [Google Scholar]
- Mathiak, F.U. Berechnung von konfigurationsfactoren polygonal berandeter ebener gebiete (Calculation of form-factors for plane areas with polygonal boundaries). Warme-Und Stoff Bertragung 1985, 19, 273–278. [Google Scholar] [CrossRef]
- Minning, C.P. Calculation of shape factors between parallel ring sectors sharing a common centerline. AIAA J. 1976, 14, 813–815. [Google Scholar] [CrossRef]
- Dunkle, R.V. Configuration factors for radiant heat-transfer calculations involving people. J. Heat Transf. 1963, 85, 71–76. [Google Scholar] [CrossRef]
- Nußelt, W. Graphische Bestimmung des Winkelverhältnisses bei der Wärmestrahlung. Z. Ver. Dtsch. Ing. 1928, 72, 673. [Google Scholar]
- Naraghi, M.H.N. Radiation View Factors from Differential plane sources to disks- A general formulation. Tech. Notes Am. Inst. Aeronaut. Astronaut. J. 1988, 2, 3. [Google Scholar] [CrossRef]
- MacAllister, A.S. Graphical solutions of problems involving plane surface lighting sources. Light. World 1911, 56, 135. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Gil, A.; Cabeza-Lainez, J. Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia. Designs 2024, 8, 96. https://doi.org/10.3390/designs8050096
Gomez-Gil A, Cabeza-Lainez J. Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia. Designs. 2024; 8(5):96. https://doi.org/10.3390/designs8050096
Chicago/Turabian StyleGomez-Gil, Antonio, and Joseph Cabeza-Lainez. 2024. "Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia" Designs 8, no. 5: 96. https://doi.org/10.3390/designs8050096
APA StyleGomez-Gil, A., & Cabeza-Lainez, J. (2024). Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia. Designs, 8(5), 96. https://doi.org/10.3390/designs8050096