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Abstract: Existing models for predicting the international roughness index (IRI) of a road
surface often lack adaptability, struggling to accurately reflect variations in climate, traffic,
and pavement distresses—factors critical for effective and sustainable maintenance. This
study presents a novel dual-model approach that integrates pavement condition index
(PCI), pavement distress types, climatic, and traffic data to improve IRI prediction. Using
data from the Long-Term Pavement Performance database, a dual-model approach was
developed: pavements were classified into groups based on key factors, and tailored
regression models were subsequently applied within each group. The model exhibits
good predictive accuracy, with R2 values of 0.62, 0.72, and 0.82 for the individual groups.
Furthermore, the validation results (R2 = 0.89) confirm that the combination of logistic
regression and linear regression enhances the precision of IRI value predictions. This
approach enhances adaptability and practicality, offering a versatile tool for estimating
IRI under diverse conditions. The proposed methodology has the potential to support
more effective, data-driven decisions in pavement maintenance, fostering sustainability
and cost efficiency.

Keywords: international roughness index; pavement condition index; pavement distress;
classification model; prediction model

1. Introduction and Literature Review
Road infrastructures are vital to socioeconomic growth, enabling efficient transportation,

stimulating trade, creating jobs, improving accessibility, and attracting investment [1–5]. Fur-
thermore, well-maintained roads are crucial to ensuring the safety, efficiency, and longevity
of transport infrastructure [5,6]. Some studies have shown that the inadequate mainte-
nance of pavements results in higher vehicle operating costs, more frequent accidents,
substantially increased air pollution, and the reduced reliability of the overall transporta-
tion network [3,7,8]. To determine the maintenance required, it is necessary to know the
type, severity, and extent of distress in the pavement surface, as well as its structural and
roughness condition [9]. Two of the most commonly used indicators to assess the condition
of pavements are the international roughness index (IRI) and the pavement condition index
(PCI) [10,11].

The IRI is a standardized measurement used to quantify the roughness of a road
surface, typically expressed in units of inches per mile or meters per kilometer. Its value is
determined by measuring the vertical deviations of the road surface from a straight line
over a specific distance [12]. These measurements are taken using specialized equipment,
such as a profilometer, which records variations in elevation as it travels along the road. The

Infrastructures 2025, 10, 23 https://doi.org/10.3390/infrastructures10010023

https://doi.org/10.3390/infrastructures10010023
https://doi.org/10.3390/infrastructures10010023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/infrastructures
https://www.mdpi.com
https://orcid.org/0000-0001-8279-4585
https://orcid.org/0000-0002-9506-0350
https://orcid.org/0000-0001-8051-0649
https://orcid.org/0000-0002-7059-0566
https://doi.org/10.3390/infrastructures10010023
https://www.mdpi.com/article/10.3390/infrastructures10010023?type=check_update&version=1


Infrastructures 2025, 10, 23 2 of 19

IRI reflects the overall quality of a road; a lower IRI indicates a smoother road surface [13].
This information is valuable for assessing the condition of road infrastructure, prioritizing
maintenance activities, and planning road improvement projects to enhance the comfort
and safety of road users [14]. However, the IRI has several drawbacks. Its measurement
requires specialized equipment with a high cost of acquisition and use [15], restricting the
frequency at which measurements can feasibly be performed. Additionally, the IRI does
not enable the identification of the type of pavement deterioration, which is essential to
determine appropriate maintenance treatments [9].

To overcome the limitations of the IRI, additional visual inspections are required,
which form the basis of the PCI, a numerical classification system used to evaluate and
quantify the pavement condition based on existing pavement distresses. It provides a
standardized and objective measure of the quality and levels of deterioration observed in
the pavement, allowing its condition to be assessed at both the structural and operational
levels [16]. This index is calculated via the identification and quantification (of both the
severity and extent) of 19 types of pavement deterioration, resulting in a numerical value
on a scale from 0 to 100, with a higher value indicating a better pavement condition. ASTM
International [17] establishes levels of pavement condition according to ranges of PCI
values. The PCI is a valuable tool for making informed decisions about maintenance,
rehabilitation, and resource prioritization in pavement management systems [18]. It is
widely used by transportation agencies, municipalities, and engineering firms to evaluate
and manage pavement assets systematically [19].

In addition, the PCI methodology is simple to implement as it does not require spe-
cialized tools. Moreover, in the last decade, researchers have adopted artificial intelligence
image processing techniques to evaluate pavement distress and assess PCI, avoiding the
disadvantages of visual inspection, such as traffic disruptions and loss of time [20]. The
most advanced techniques are based on deep learning [5], such as convolutional neural
networks (CNNs) [21–24], among others. These methodologies allow for the efficient
identification, classification, and quantification of pavement distress [21,25–27]. Therefore,
the application of artificial intelligence techniques to measure the PCI can offer cheaper
and more frequent data than is possible with the IRI.

Although the IRI and PCI measure different aspects of pavement conditions, both
indices provide valuable information on the quality and performance of road surfaces. The
PCI quantifies the deterioration observed in pavements due to distress, whereas the IRI is
crucial for managing maintenance operations as it is closely related to key prioritization
criteria, such as user comfort, costs, and road safety [3,28–30]. Understanding the relation-
ship between the IRI and PCI would allow for a more complete and holistic assessment
of pavement conditions and enable the identification of patterns and trends in their dete-
rioration. This would facilitate informed decision-making, the optimization of resources,
and the implementation of effective strategies for road infrastructure maintenance and
management [31]. Thus, it would be useful to develop a method for estimating the IRI from
the PCI or observed pavement distresses. This would allow IRI data to be obtained more
frequently without incurring the significant costs associated with direct measurements.

The relationship between the IRI and PCI has been studied extensively, yet significant
challenges remain. Many prior studies have focused on predicting PCI values from IRI
data [9,14,32], some using large datasets such as the Long-Term Pavement Performance
(LTPP) database. However, these models frequently exhibit poor predictive accuracy due to
high variability in deterioration conditions. For instance, as highlighted by Piryonesi and
El-Diraby [10], roads with a perfect PCI score (PCI = 100) can display markedly different
IRI values, influenced by factors such as slope, pavement type, and construction quality. To
overcome this limitation, other studies have presented models for specific geographical
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and climatic contexts [6,10]. These studies have achieved high predictive accuracy within
specific contexts but lack generalizability across diverse regions. Hence, a review of the
literature suggests that, although there is a relationship between the IRI and PCI, it remains
challenging to establish an accurate and universal model that works adequately across
different climatic and geographical contexts.

Additionally, several studies have explored the influence of pavement distresses on
roughness. For instance, Aultman-Hall et al. [33] used neural networks to examine the
correlation between the IRI and two types of pavement distresses, specifically rutting
and cracking, using data from the Connecticut Department of Transportation. Kirbaş [34]
performed a regression analysis to study the effect of typical pavement distresses found
in Turkish highways, finding that increases in the IRI are most often caused by alligator
cracking, depressions, and patch-type deterioration. Amarendra and Ashoke [35] used
multiple linear regression analysis to study the relationship between the IRI and various
pavement distresses in an Indian dataset, observing that different types of distresses have
distinct effects on roughness. In Indian roads, potholes and raveling were found to be
predominant. Although it is well-established in the literature that the type of distress affects
pavement roughness, there is no consensus on how pavement distress impacts the IRI
across all contexts.

Despite these contributions, existing studies highlight the complexity of accurately
modeling the IRI–PCI relationship across varying distress types and external conditions.
As pavement distress intensifies, the relationship between the IRI and PCI becomes less pre-
dictable, with some forms of distress exerting minimal impact on roughness [6]. Moreover,
while climate and traffic are known to significantly influence pavement deterioration, few
studies have comprehensively integrated these factors, and no accurate, universal model
has yet been developed to perform consistently across diverse climatic and geographical
contexts. This gap underscores the need for comprehensive models that consider multiple
distress types, climatic regions, and traffic levels, in order to make more robust and gener-
alizable predictions. This study aims to address the aforementioned gap by developing a
dual-model approach that integrates multiple distress types, climatic regions, and traffic
levels, enabling more accurate and generalizable predictions of pavement performance
across diverse environmental and operational conditions.

This study aims to address the aforementioned gap by developing a dual-model
approach involving three integrated phases: (1) Applying an initial linear regression model
to predict the IRI from the PCI, which serves as a baseline for an iterative process that
divides the data into groups according to the percentage difference between the predicted
and observed values of the initial model; (2) Developing a classification model using
multinomial logistic regression to accurately assign each road section to its respective
group, considering road conditions such as pavement distress, climate, and traffic; and
(3) Predicting the IRI from the PCI using tailored regression models for each classification
group. The proposed dual model for predicting the IRI is composed of the logistic regression
model (result of step 2) for classification and the linear regression model (result of step 3) for
prediction. This comprehensive approach should facilitate more efficient and sustainable
pavement maintenance management by providing accessible and affordable data for a
wide geographical area covering different traffic and climatic conditions.

2. Research Method
This study’s research methodology is outlined in Figure 1. First, the data were collected

from the LTPP database, which was selected because it includes information for different
climatic and traffic contexts [10,36]. Then, the data were prepared by analyzing and
removing anomalous cases. The dataset was then divided into a 70–30 split for training
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and validation. Next, the dual model was constructed through an iterative process. First,
an initial IRI–PCI model was identified for all data. Second, the difference between the
predicted and observed values was used to obtain a classification model to split the data
into meaningful groups. Third, a predictive model was generated for each group to enable
accurate IRI prediction based on the PCI. This iterative procedure continued until the
predictive models achieved the best R2 value. Finally, a comprehensive validation of both
the classification and predictive models was conducted.
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Figure 1. Flowchart of the research process.

2.1. Data Collection and Preparation

The data collection process focused on gathering information about the IRI, pavement
distresses, traffic, and climatic conditions from the LTPP database. Several studies have
shown that there is a significant relationship between the IRI and PCI [6,9,10,14,32]. Thus,
the mean IRI value evaluated along the trajectories of both wheels was directly downloaded.
Additionally, pavement distresses have been highlighted as a key element in predicting the
IRI, as not all types of pavement distress affect the IRI in the same way [33–35]. For this
reason, pavement distress data were also downloaded from the database. Some of these
types of pavement distresses can be differentiated into three severity levels: low, medium,
and high. These variables (pavement distresses by severity) were used to calculate the PCI
according to the method recommended by ASTM International [17]. In addition, climate
and traffic were considered as they have proven to be of significant importance in IRI pre-
diction [37]. Hence, variables such as the accumulated number of vehicles (AADT_CUM),
the accumulated number of heavy vehicles (AADTT_CUM), and the accumulated equiva-
lent single-axle load (ESAL) in thousands (KESAL_CUM) were calculated using the daily
traffic information from the opening date or from the last maintenance treatment and
data collection [37–39]. Finally, temperature (ANN_TEMP), accumulated precipitation
(PRECIP_CUM), and snowfall (SNOWFALL_CUM) have been used in previous studies
to predict the IRI [40,41]. These were obtained in the same way as for traffic but using
precipitation data. Table 1 lists all variables used.

After data collection, the PCI records were correlated with the acquired IRI data to
determine their relationship. The following criteria were applied when merging the IRI
and PCI data: the difference in time between the collection of the IRI and PCI data must
not be greater than one year, and no maintenance work must have taken place during that
period. Then, outliers were deleted from the database, such as road sections for which the
PCI increased over time. After this process, the data were segmented into two sets: 70%
of the data was randomly selected to develop the model, while the remaining 30% was
reserved for model validation.
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Table 1. Variables.

Data. Code Description Unit

International
roughness index IRI IRI mean value evaluated over the trajectories

of both wheels. m/km

Pavement condition
index PCI - -

Pavement distress

GATOR_CRACK Alligator crack area. Three severities can be
distinguished. sq ft

BLK_CRACK Block crack area. Three severities can be
distinguished. sq ft

EDGE_CRACK Edge crack length. Three severities can be
distinguished. sq ft

LONG_CRACK_WP Longitudinal crack length of the wheel path.
Three severities can be distinguished. ft

LONG_CRACK_WP_SEAL Sealed longitudinal crack length of the wheel
path. Three severities can be distinguished. ft

LONG_CRACK_NWP Longitudinal crack outside the wheel path
length. Three severities can be distinguished. ft

LONG_CRACK_NWP_SEAL
Sealed longitudinal crack outside the wheel
path length. Three severities can be
distinguished.

ft

TRANS_CRACK Low severity transverse crack length. Three
severities can be distinguished. ft

TRANS_CRACK_SEAL Sealed transverse crack length. Three severities
can be distinguished. ft

PATCH Area of patches. Three severities can be
distinguished. sq ft

POTHOLES Number of potholes. Three severities can be
distinguished. -

SHOVING Shoving area. sq ft

BLEEDING Bleeding area. sq ft

POLISHGG Area of polished aggregates. sq ft

RAVELING Weathering or raveling area. sq ft

Traffic

AADT_CUM Annual average daily traffic accumulated. -

AADTT_CUM Annual average daily truck traffic
accumulated. -

KESAL_CUM Accumulated equivalent single-axle load
(ESAL) in thousands. KESAL

Climate

PRECIP_CUM Accumulated precipitation. mm

SNOWFALL_CUM Accumulated snowfall. mm

ANN_TEMP Annual temperature. deg C
Note: For pavement distresses with three severities (low, medium, high), _L, _M, and _H are added to the code,
respectively.

2.2. Dual Model Development

Once the sample was segmented, the training data were used to develop the dual
model (Figure 2, where the arrows correspond to the steps followed in the dual model
development process). First, a linear regression was applied to predict the IRI from the
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PCI, as the only independent variable. Linear regression is a statistical method employed
to model the relationship between a dependent variable and one or more independent
variables. Essentially, it aims to establish the best-fitting linear relationship to the observed
data, aiding in the comprehension of the trend and magnitude of the association between
variables [42]. Then, the data were classified into groups to characterize the phenomenon
in a more complete and accurate way. An iterative process was defined to establish the
optimal data classification, enabling the development of predictive models with the best
possible fit. This process is detailed below:

1. The data were divided into three groups to characterize the wide variability of the IRI
according to the percentage difference between the predicted and observed values of
the predictive model. This allowed for distinguishing data that were fitted poorly by
the model. This process led to three groups: (1) the Middle group, formed by data
whose prediction error was less than a threshold p, (2) the Upper group, consisting of
values that were underpredicted by at least p, and (3) the Lower group, whose values
were overpredicted by at least p. The parameter p was changed in each iteration,
taking values from 1 to 30, increasing by one each time.

2. Once the groups were defined, the classification model was developed using multi-
nomial logistic regression to accurately assign each road section under study to its
respective group.

3. After defining the groups and the classification model, a prediction model was devel-
oped using linear regression to predict the IRI from the PCI of each group.

The dual model obtained through this iterative process will be the one that achieves
the best R2 values in the predictive models for each group-specific linear regression, while
also minimizing the classification errors in the multinomial logistic regression. Conse-
quently, this model will be distinguished by its ability to optimize both the accuracy of the
predictions and correctly classify data into their respective groups.

Statistical analyses were performed using IBM SPSS Statistics 26.0. The analysis of the
linear regression results was based on the coefficient of determination (R2), the adjusted
coefficient of determination (adjusted R2), and the significance level. The R2 coefficient
measures the proportion of the variation in the dependent variable about its mean and is
explained by the independent variables. The R2 coefficient can vary between 0 and 1. If
the regression model is estimated and applied appropriately, researchers can assume that a
higher R2 value indicates the greater explanatory power of the regression equation and,
consequently, the better prediction of the dependent variable. Values of 0.6 or higher are
considered acceptable [42]. In addition, the mean absolute error (MAE) and root-mean-
square error (RMSE) were calculated for each group. The MAE measures the average of
the absolute errors, providing a measure of how much the predictions deviate, on average,
from the observed values. A lower MAE indicates that the predictions are, on average,
closer to the true values. The RMSE measures the square root of the mean squared errors,
penalizing larger errors, as these have a greater impact when squared. A lower RMSE
indicates better model accuracy, and its value is more sensitive to large errors compared to
the MAE.

Multinomial logistic regression was used to determine the membership of each obser-
vation in the established groups. Multinomial logistic regression is a statistical method used
for modeling the relationship between multiple independent variables and a categorical de-
pendent variable with more than two distinct categories [42]. The outcome of a multinomial
logistic regression is a set of equations representing the likelihood of an observation falling
into each category. It is commonly used to identify independent variables that exhibit a
robust association with the studied dependent variable [43]. In this study, the categorical
variable was the group: Upper, Middle, or Lower. For the independent variables, the anal-
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ysis incorporated the variables influencing pavement deterioration, including pavement
distresses, traffic characteristics, and climatic conditions.
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The analysis of the multinomial logistic regression results used p-values to identify
variables that significantly influence the dependent variable. Also employed were the
Cox–Snell and Nagelkerke coefficients [42]. Three key metrics were used to evaluate the
model’s performance in extracting information: precision, recall, and F1 score [44,45]. In
addition, to evaluate the accuracy of the model, the errors of the multinomial logistic
regression were analyzed by comparing the predicted values with the observed values
for membership in each group. The Cox–Snell and Nagelkerke coefficients differ in their
calculation methods but are conceptually analogous. They can be likened to the R2 value in
a linear regression as they serve as an indicator of the model’s substantive significance [42].

To calculate the key metrics of precision, recall, and F1 score, it is necessary to understand
three terms: true positives, false positives, and false negatives. True positives refer to the
instances in which the model correctly predicts a positive outcome. False positives occur
when the model incorrectly classifies a negative instance as positive. Lastly, false negatives
happen when the model wrongly classifies a positive instance as negative.

Precision measures the proportion of correct predictions of a specific class among
all instances classified as belonging to that class. In the context of multinomial logistic
regression, high precision indicates that the model has a low false-positive rate. It is useful
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when the objective is to minimize classification errors in a particular category. However,
precision should be interpreted in conjunction with recall to provide a comprehensive
understanding of classification efficiency. Precision is calculated as follows:

Precision =
True Positives

True Positives + False Positives
(1)

Recall assesses the proportion of true positives correctly identified of the total instances
that belong to the class in question. A high recall value signifies that the model captures
most of the true cases within a class, though it may compromise precision if it includes false
positives. Recall is calculated as follows:

Recall =
True Positives

True Positives + False Negatives
(2)

The F1 score is the harmonic mean of precision and recall. This metric is particularly
useful when it is desirable to balance precision and recall, as it provides a single value
representing the overall model performance, especially in cases with class imbalance (i.e.,
some classes have significantly more instances than others). The multiplication by two in
the F1 score formula ensures that precision and recall contribute equally to the metric, as it
is based on the harmonic mean, which emphasizes lower values and prevents one metric
from disproportionately influencing the result. A high F1 score indicates that the model
achieves both strong precision and recall, making it a robust measure of performance in
multinomial classification tasks. The F1 score is calculated as follows:

F1 score = 2· Precision·Recall
Precision + Recall

(3)

2.3. Validation

Validation of the developed model is essential to ensure its robustness. As indicated
above, 30% of the randomly selected data points were reserved for validation. Both the
classification and prediction models were validated. For the classification model, three
key metrics were analyzed to assess its performance: precision, recall, and F1 score [44].
Moreover, the number of hits was analyzed with respect to the number of misses for each
group. For the prediction model, the PCI values predicted by the model were statistically
compared with the observed values, and the R2 was calculated to assess the robustness of
the model [42]. Additionally, the errors of the linear regressions were analyzed using the
MAE and RMSE.

3. Results
3.1. Data Collection and Preparation

After data collection and preparation, the total sample had 2044 data points, which
were collected from 407 different road sections spread over 30 different US states. This
varied geographic distribution ensures that the trained model takes into account a wide
range of climatic, traffic, and pavement characteristics. The relationships between the vari-
ables were examined, revealing the presence of multicollinearity among the traffic-related
variables (KESAL_CUM, AADT_CUM, ADDTT_CUM). To address this multicollinearity
in the variables, given the specificity of the data analyzed, the variable KESAL_CUM was
chosen. This decision was based on the fact that the KESAL_CUM variable provides a
comprehensive representation of traffic conditions, integrating light (AADT_CUM) and
heavy (AADTT_CUM) vehicle data, and simplifies the model without compromising the
integrity of the essential information.



Infrastructures 2025, 10, 23 9 of 19

The characteristics of the 2044 individual data points were analyzed in greater detail,
taking into account the ranges of the IRI, PCI, and the various types of pavement distresses.
Figure 3 shows the distribution of the data according to the PCI ranges defined by ASTM
International [17], indicating that the data cover all pavement conditions, from PCI 0 to PCI
100. However, it should be noted that no PCI classification is applied in this study; instead,
the PCI values are directly employed as a continuous variable for the analyses performed.
Similarly, Figure 4 presents the distribution of IRI values, offering insight into the variability
of pavement roughness. Table 2 shows basic descriptive statistics for each type of pavement
distress. For all pavement distresses, the minimum value and the lower quartile are zero. It
can be seen that the most common pavement distresses are non-wheel-path longitudinal
cracks and transverse cracks.

Table 2. Descriptive statistics of pavement distresses.

Pavement Distress Mean SD 50% 75% Max.

GATOR_CRACK_M 133.26 471.31 0.00 0.00 5743.70
GATOR_CRACK_H 100.93 545.50 0.00 0.00 6071.90

BLK_CRACK_L 10.48 179.39 0.00 0.00 4754.80
BLK_CRACK_M 30.92 321.25 0.00 0.00 4759.10
BLK_CRACK_H 69.34 520.14 0.00 0.00 6067.60

EDGE_CRACK_L 0.87 13.55 0.00 0.00 337.20
EDGE_CRACK_M 1.67 25.47 0.00 0.00 500.20
EDGE_CRACK_H 1.11 21.10 0.00 0.00 457.20

LONG_CRACK_WP_L 9.90 51.05 0.00 0.00 889.90
LONG_CRACK_WP_M 4.60 29.15 0.00 0.00 617.30
LONG_CRACK_WP_H 1.39 27.74 0.00 0.00 1000.40

LONG_CRACK_WP_SEAL_L 2.20 21.98 0.00 0.00 492.00
LONG_CRACK_WP_SEAL_M 1.26 9.46 0.00 0.00 211.90
LONG_CRACK_WP_SEAL_H 0.07 1.20 0.00 0.00 30.80

LONG_CRACK_NWP_L 170.30 264.46 30.80 261.25 2038.80
LONG_CRACK_NWP_M 161.06 266.10 6.20 239.18 1550.80
LONG_CRACK_NWP_H 120.01 281.31 0.00 12.50 2018.20

LONG_CRACK_NWP_SEAL_L 38.00 162.96 0.00 0.00 2038.80
LONG_CRACK_NWP_SEAL_M 23.92 119.61 0.00 0.00 1069.00
LONG_CRACK_NWP_SEAL_H 11.65 86.25 0.00 0.00 1216.90

TRANS_CRACK_L 36.10 67.08 5.60 42.08 643.90
TRANS_CRACK_M 35.74 68.42 0.00 40.30 607.50
TRANS_CRACK_H 23.48 66.98 0.00 0.00 591.10

TRANS_CRACK_SEAL_L 6.26 32.39 0.00 0.00 432.00
TRANS_CRACK_SEAL_M 5.16 27.43 0.00 0.00 534.00
TRANS_CRACK_SEAL_H 2.15 18.85 0.00 0.00 332.60

PATCH_L 39.76 305.97 0.00 0.00 4427.70
PATCH_M 15.11 146.10 0.00 0.00 3279.60
PATCH_H 26.97 245.43 0.00 0.00 4462.20

POTHOLES_L 0.01 0.11 0.00 0.00 3.00
POTHOLES_M 0.01 0.10 0.00 0.00 2.00
POTHOLES_H 0.01 0.15 0.00 0.00 4.00

SHOVING 0.01 0.46 0.00 0.00 16.10
BLEEDING 86.32 479.74 0.00 0.00 3607.80
POLISHGG 37.06 338.23 0.00 0.00 4261.00
RAVELING 522.06 1576.74 0.00 0.00 11,814.50

Note: SD = Standard Deviation.



Infrastructures 2025, 10, 23 10 of 19

Infrastructures 2025, 10, x FOR PEER REVIEW 9 of 20 
 

key metrics were analyzed to assess its performance: precision, recall, and F1 score [44]. 
Moreover, the number of hits was analyzed with respect to the number of misses for each 
group. For the prediction model, the PCI values predicted by the model were statistically 
compared with the observed values, and the R2 was calculated to assess the robustness of 
the model [42]. Additionally, the errors of the linear regressions were analyzed using the 
MAE and RMSE. 

3. Results 
3.1. Data Collection and Preparation 

After data collection and preparation, the total sample had 2044 data points, which 
were collected from 407 different road sections spread over 30 different US states. This 
varied geographic distribution ensures that the trained model takes into account a wide 
range of climatic, traffic, and pavement characteristics. The relationships between the var-
iables were examined, revealing the presence of multicollinearity among the traffic-re-
lated variables (KESAL_CUM, AADT_CUM, ADDTT_CUM). To address this multicollin-
earity in the variables, given the specificity of the data analyzed, the variable 
KESAL_CUM was chosen. This decision was based on the fact that the KESAL_CUM var-
iable provides a comprehensive representation of traffic conditions, integrating light 
(AADT_CUM) and heavy (AADTT_CUM) vehicle data, and simplifies the model without 
compromising the integrity of the essential information. 

The characteristics of the 2044 individual data points were analyzed in greater detail, 
taking into account the ranges of the IRI, PCI, and the various types of pavement dis-
tresses. Figure 3 shows the distribution of the data according to the PCI ranges defined by 
ASTM International [17], indicating that the data cover all pavement conditions, from PCI 
0 to PCI 100. However, it should be noted that no PCI classification is applied in this study; 
instead, the PCI values are directly employed as a continuous variable for the analyses 
performed. Similarly, Figure 4 presents the distribution of IRI values, offering insight into 
the variability of pavement roughness. Table 2 shows basic descriptive statistics for each 
type of pavement distress. For all pavement distresses, the minimum value and the lower 
quartile are zero. It can be seen that the most common pavement distresses are non-wheel-
path longitudinal cracks and transverse cracks. 

 

Figure 3. Histogram of PCI values. 

5.43%

12.57%
9.39%

12.18%

17.95% 17.17%

25.20%

0%

5%

10%

15%

20%

25%

30%

0–10 10–25 25–40 40–55 55–70 70–85 85–100

Fr
eq

ue
nc

y

PCI range

Figure 3. Histogram of PCI values.

Infrastructures 2025, 10, x FOR PEER REVIEW 10 of 20 
 

 

Figure 4. Histogram of IRI values. 

Table 2. Descriptive statistics of pavement distresses. 

Pavement Distress Mean SD 50% 75% Max. 
GATOR_CRACK_M 133.26 471.31 0.00 0.00 5743.70 
GATOR_CRACK_H 100.93 545.50 0.00 0.00 6071.90 

BLK_CRACK_L 10.48 179.39 0.00 0.00 4754.80 
BLK_CRACK_M 30.92 321.25 0.00 0.00 4759.10 
BLK_CRACK_H 69.34 520.14 0.00 0.00 6067.60 

EDGE_CRACK_L 0.87 13.55 0.00 0.00 337.20 
EDGE_CRACK_M 1.67 25.47 0.00 0.00 500.20 
EDGE_CRACK_H 1.11 21.10 0.00 0.00 457.20 

LONG_CRACK_WP_L 9.90 51.05 0.00 0.00 889.90 
LONG_CRACK_WP_M 4.60 29.15 0.00 0.00 617.30 
LONG_CRACK_WP_H 1.39 27.74 0.00 0.00 1000.40 

LONG_CRACK_WP_SEAL_L 2.20 21.98 0.00 0.00 492.00 
LONG_CRACK_WP_SEAL_M 1.26 9.46 0.00 0.00 211.90 
LONG_CRACK_WP_SEAL_H 0.07 1.20 0.00 0.00 30.80 

LONG_CRACK_NWP_L 170.30 264.46 30.80 261.25 2038.80 
LONG_CRACK_NWP_M 161.06 266.10 6.20 239.18 1550.80 
LONG_CRACK_NWP_H 120.01 281.31 0.00 12.50 2018.20 

LONG_CRACK_NWP_SEAL_L 38.00 162.96 0.00 0.00 2038.80 
LONG_CRACK_NWP_SEAL_M 23.92 119.61 0.00 0.00 1069.00 
LONG_CRACK_NWP_SEAL_H 11.65 86.25 0.00 0.00 1216.90 

TRANS_CRACK_L 36.10 67.08 5.60 42.08 643.90 
TRANS_CRACK_M 35.74 68.42 0.00 40.30 607.50 
TRANS_CRACK_H 23.48 66.98 0.00 0.00 591.10 

TRANS_CRACK_SEAL_L 6.26 32.39 0.00 0.00 432.00 
TRANS_CRACK_SEAL_M 5.16 27.43 0.00 0.00 534.00 
TRANS_CRACK_SEAL_H 2.15 18.85 0.00 0.00 332.60 

PATCH_L 39.76 305.97 0.00 0.00 4427.70 
PATCH_M 15.11 146.10 0.00 0.00 3279.60 
PATCH_H 26.97 245.43 0.00 0.00 4462.20 

POTHOLES_L 0.01 0.11 0.00 0.00 3.00 
POTHOLES_M 0.01 0.10 0.00 0.00 2.00 
POTHOLES_H 0.01 0.15 0.00 0.00 4.00 

SHOVING 0.01 0.46 0.00 0.00 16.10 

3.18%

46.77%

30.43%

13.45%

5.58%
0.49% 0.00%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

0–0.5 0.5–1 1–1.5 1.5–2 2–3 3–4 4–5

Fr
eq

ue
nc

y

IRI range

Figure 4. Histogram of IRI values.

3.2. Dual Model Development

A random subset of 70% of the sample was selected to train the predictive model.
To establish the initial model, the IRI data points were plotted against the PCI values, as
shown in Figure 5 along with the equation for the fitted regression line and the coefficient of
determination. The R2 value is low (R2 = 0.31) for this initial regression, which is expected
as the full dataset corresponds to a wide geographical area over a long period of time.
This value is similar to that obtained by Piryonesi and El-Diraby [10] in their study (0.3)
when comparing the IRI and PCI using the LTPP database. As noted by these authors,
the data were collected by different agencies using different types of technologies and
under different environmental conditions, so the variance of the data may greatly affect the
correlation between the IRI and PCI.

Since the R2 value obtained is small, an iterative process was performed to maximize
the value. As explained in Section 2, this iterative process consists of three stages: (1) split-
ting the data into three groups (Upper, Middle, and Lower) according to the percentage
difference between the predicted and observed values p, (2) obtaining the classification
model through multinomial logistic regression, and (3) determining the prediction model
for each group. The iterative process concluded that p must be 20%. Therefore, the Upper
and Lower groups must be composed of those data that differ by more than 20% from the
predicted value obtained through the initial model. The results suggest that the PCI and
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IRI have a better fit when the data are divided into three groups, leaving out of the central
group those data in which the IRI differs more than 20% from the predicted value. In this
way, the top and bottom groups can be identified by logistic regression, allowing a more
accurate linear regression to be determined for them.
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In the second stage, the classification model was established using multinomial logis-
tic regression to determine the membership of each observation in one of the established
groups. This model took into account variables such as pavement distresses, traffic charac-
teristics, and climatic conditions. The results in Table 3 show the statistically significant
independent variables in each data group at a level of significance of p < 0.05. This threshold
indicates that the probability of observing the results due to random chance is less than 5%,
ensuring a robust identification of significant predictors. The training dataset comprises a
total of 1431 data points, distributed as follows: 473 data points belong to the Lower group,
631 belong to the Middle group, and 327 belong to the Upper group.

The likelihood of a road belonging to the Upper group increases with the presence of
medium- and high-severity transverse cracks, particularly those of high severity, as well as
low-severity sealed transverse cracks and low-severity patches. Conversely, high-severity
longitudinal non-wheel-path cracks, low-severity sealed longitudinal non-wheel-path
cracks, and higher traffic volumes (KESAL) decrease this probability. These findings align
with the idea that a higher number of cracks is associated with an increased IRI [46].
Similarly, a greater number of patches raises the likelihood of recording a higher IRI [34]. In
addition, longitudinal non-wheel-path cracks do not affect the IRI, as it is measured within
the wheel path. Regarding traffic (KESAL), these results are consistent with the sample
data, which show less traffic in the Upper group and more in the Lower group. It could
be inferred that roads designed to handle dense traffic are constructed with better quality,
whereas those with less traffic may have poorer pavement that deteriorates more quickly.
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Table 3. Classification model.

B SE Wald p Exp(B)

Upper Intersection −0.665 0.470 2.004 0.157
LONG_CRACK_NWP_H −0.002 0.001 10.660 0.001 0.998

LONG_CRACK_NWP_SEAL_L −0.002 0.001 4.212 0.040 0.998
TRANS_CRACK_M 0.005 0.001 11.567 0.001 1.005
TRANS_CRACK_H 0.009 0.002 33.966 0.000 1.009

TRANS_CRACK_SEAL_L 0.013 0.004 12.345 0.000 1.013
PATCH_L 0.001 0.000 9.298 0.002 1.001

KESAL_CUM −1.21 × 10−4 0.000 4.586 0.032 1.000

Lower Intersection 0.189 0.492 0.147 0.701
LONG_CRACK_WP_L −0.010 0.005 4.864 0.027 0.990

LONG_CRACK_NWP_L 0.002 0.000 25.833 0.000 1.002
LONG_CRACK_NWP_M 0.001 0.000 9.460 0.002 1.001
LONG_CRACK_NWP_H 0.002 0.000 12.235 0.000 1.002

TRANS_CRACK_M −0.004 0.001 6.902 0.009 0.996
TRANS_CRACK_H −0.020 0.004 31.174 0.000 0.980

BLEEDING 4.38 × 10−4 0.000 8.804 0.003 1.000
POLISHGG 3.87 × 10−4 0.000 4.789 0.029 1.000

PRECIP_CUM −1.42 × 10−4 0.000 39.090 0.000 1.000
Note: B = regression coefficients (in log-odds units); exp(B) = log odds of success; SE = square error; p = two-tailed
p-value (significant if p < 0.05); Wald = Wald statistic. The reference category is the Middle group. Degrees of
freedom: 1. Cox–Snell: 0.31. Nagelkerke: 0.35.

The presence of longitudinal non-wheel-path cracks, regardless of their severity, in-
creases the probability of being categorized in the Lower group. As previously mentioned,
these cracks do not influence the IRI since it is measured in the wheel path. Bleeding and
aggregate polishing also increase the likelihood of belonging to this group, albeit to a lesser
degree. These distresses are likely to generate a smoother pavement and, therefore, are not
expected to be closely related to the IRI. In contrast, medium- and high-severity transverse
cracks and accumulated precipitation decrease this probability.

This multinomial logistic regression yielded a Cox–Snell coefficient of 0.31 and a
Nagelkerke coefficient of 0.35. Although these values are not high, three key metrics were
used to evaluate the model performance: precision, recall, and F1 score (Table 4). In the
Lower group, the precision indicates that 62% of the instances that were classified as positive
in this group were true positives. The recall shows that the model correctly identified 59%
of the positive cases, and the F1 score of 0.61 suggests a moderate balance between precision
and recall. In the Middle group, the precision is slightly lower. However, the recall is high
(0.74), implying that the model correctly identified most of the positive cases. The F1 score
(0.63) is similar to that of the Lower group, suggesting that although the precision is low,
the high recall helps to maintain a reasonable balance. In the Upper group, although the
precision is high (0.68), the recall and F1 score are lower than in the other groups, suggesting
that the model achieved a weaker performance in this group. Given these results, the errors
of the multinomial logistic regression were also analyzed by comparing the predicted and
observed values for membership in each group (Table 5). Although certain discrepancies
were identified between the model predictions and the observed values, the proposed
model provides a satisfactory prediction, as these discrepancies do not significantly affect
the R2 value of the linear regressions, as discussed in Section 3.3. These discrepancies are
mainly between the Middle and Lower groups or the Middle and Upper groups. That is,
the model rarely predicts that data from the Upper group are in the Lower group or vice
versa; such discrepancies would substantially affect the R2 value. Given the characteristics
and distribution of the data, as well as the regression equations obtained, the discrepancies
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that are observed do not significantly affect the fit of the model, which presents a high R2

value in each of the groups.
Once the groups were defined and the classification model established, a predictive

model based on linear regression was developed for each group. These models present
R2 values of 0.62, 0.82, and 0.72, respectively, for the Upper, Middle, and Lower groups
(Figure 6), indicating varying degrees of explanatory power between the groups. The R2

value of 0.82 for the Middle group suggests a high predictive ability within this range,
implying that the model captures the variance of the data effectively for this subset. For the
Upper and Lower groups, the R2 values of 0.62 and 0.72, while acceptable, are lower than
in the Middle group. This lower predictive accuracy, especially in the Upper group, could
be attributed to the smaller sample (22.85% of the training dataset) size and the higher
dispersion of the data within this group. The same is reflected in the MAE and RMSE
results. of each group. The Lower group has an MAE of 0.24 and an RMSE of 0.08, showing
reasonable performance in this group with moderate errors. Similarly, the Middle group
has an MAE of 0.27 and an RMSE of 0.07. However, the Upper group has an MAE of 0.45
and an RMSE of 0.1, highlighting that the model reduces the predictive capacity for this
category. These disparities across the groups highlight the importance of segmenting the
data to improve predictive accuracy.
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Table 4. Multinomial logistic regression metrics of precision, recall, and F1 score.

Group

Lower Middle Upper

True Positives 279 465 96
False Negatives 194 166 231
False Positives 169 376 46

Precision 0.62 0.55 0.68
Recall 0.59 0.74 0.29

F1 score 0.61 0.63 0.41

Table 5. Multinomial logistic regression error analysis.

Observed
Predicted

Lower Middle Upper Correct Percentage

Lower 279 185 9 59.0%
Middle 129 465 37 73.7%
Upper 40 191 96 29.4%

Total Percentage 31.3% 58.8% 9.9% 58.7%

3.3. Validation

For validation, the remaining random subset of 30% of the data was used. The
validation process began by applying the classification model to determine the group
to which each data point belongs. Following this, the appropriate prediction model was
applied according to the assigned group. The validation dataset comprises a total of 613 data
points, distributed as follows: 181 data points belong to the Lower group, 363 belong to the
Middle group, and 69 belong to the Upper group.

The model validation yielded a coefficient of determination (R2) of 0.89, confirming
the robustness of the proposed model. Additionally, during the validation process, the
IRI values predicted by the model were statistically compared with the observed values,
and the MAE and RMSE of each group were analyzed. The Lower group has an MAE of
0.24 and an RMSE of 0.34, showing reasonable performance in this group with moderate
errors. Similarly, the Middle group has an MAE of 0.25 and an RMSE of 0.34. However,
the Upper group has an MAE of 0.50 and an RMSE of 0.59, highlighting that the model
reduces the predictive capacity for this category. This discrepancy can be attributed to
several factors. First, the smaller amount of training data available for the Upper group
limits the model’s ability to learn patterns within this category. Additionally, pavement
deterioration in higher IRI ranges (Upper group) tends to become less linear, which makes
it more challenging for the model to accurately represent these variations. The greater
variability within this data further amplifies these challenges, contributing to the observed
lower performance for this group.

Table 6 presents the results obtained for precision, recall, and F1 score. The Middle group
presents better results than the others, reaching an precision of 0.80 and a recall of 0.61. This
means that 80% of the predictions made for this class were correct, and the model identified
61% of the real cases in this category. The F1 score of 0.69 indicates an acceptable balance
between precision and recall, suggesting that the model performs reasonably reliably for this
class. For the Lower and Upper groups, the model performance metrics are much lower.
In addition, the low F1 score evidence difficulties in classifying these categories effectively,
possibly due to a lack of distinctive features in the data or an imbalance in the numbers of
representative observations.
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Table 6. Validation results: multinomial logistic regression metrics of precision, recall, and F1 score.

Group

Lower Middle Upper

True Positives 0.24 0.80 0.20
False Negatives 0.47 0.61 0.34
False Positives 0.32 0.69 0.25

Precision 0.24 0.80 0.20
Recall 0.47 0.61 0.34

F1 score 0.32 0.69 0.25

To further analyze the model’s predictive performance, the prediction errors were also
analyzed (Table 7). It is observed that, as in the training phase, the discrepancies between
the predictions and the observed values are between the Middle and Lower or Middle and
Upper groups, so it is considered, given the characteristics and distribution of the data and
the regression equations obtained, that these discrepancies do not significantly affect the fit
of the model, which presents a high R2 value. This is because errors occur in data points
that are close to the boundary between groups, and even if some classifications are incorrect,
the predictive model’s error remains small and does not significantly affect the model’s fit.
Therefore, after the analysis of the results of the multinomial logistic regression and given a
coefficient of determination R2 of 0.89 in the validation of the model, the prediction model
is considered to be robust.

Table 7. Validation results: multinomial logistic regression error analysis.

Observed
Predicted

Lower Middle Upper Correct Percentage

Lower 44 46 3 47.3%
Middle 137 290 52 60.5%
Upper 0 27 14 34.1%

Total Percentage 29.5% 59.2% 11.3% 56.8%

4. Discussion
The model developed in this study uses a novel methodology to predict the IRI–PCI

relationship across diverse climatic and traffic conditions considering pavement distress,
climatic and traffic information. It employs multinomial logistic regression to classify the
IRI–PCI relationship according to pavement distress, climate, and traffic conditions, subse-
quently applying the most appropriate prediction model for each group. Some pavement
distresses do not influence the IRI but do influence the PCI, so with this methodology, it is
possible to obtain satisfactory IRI predictions directly from the PCI.

Evaluation of validation metrics, including precision, recall, and F1 score, demonstrates
that the model performs well overall. However, the Upper group exhibits lower precision
and recall due to limited training data and greater variability within this subset, suggesting
an opportunity for further refinement in this area. Future efforts should address data limita-
tions for smaller and more variable subsets like the Upper group. Enhancing differentiation
between groups and incorporating additional variables could further improve predictive
accuracy and extend the methodology’s applicability.

A comparison with prior studies underscores the strengths of the proposed model.
For instance, Piryonesi and El-Diraby [10], using the LTPP database, achieved R2 values
exceeding 0.7 in some cases after grouping data by location and functional class, but their
context was highly specialized and limited in scale. Similarly, Park et al. [14] obtained
an R2 of 0.59 with a small dataset comprising 63 data points from 20 road sections across
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11 states. In contrast, this study’s dual-model approach achieves R2 values of 0.62, 0.72
and 0.82 using a large, geographically diverse sample of 2044 data points from 407 road
sections across 30 US states, demonstrating superior robustness and applicability.

Other studies, such as those by Mactutis et al. [47], Chandrakasu and Rajiah [46],
and Kirbaş [34], have explored the relationship between the IRI and specific pavement
distresses, including cracks, rutting, and patches. While these studies provide valuable
insights into the impact of individual distresses on the IRI, their predictive models often
focus on localized contexts or specific distresses. For instance, Mactutis et al. [47], and
Chandrakasu and Rajiah [46] emphasized the role of cracks and rutting, while Kirbaş [34]
identified patches, alligator cracks, and depression as significant contributors to increased
IRI, with bleeding having minimal impact. In alignment with these findings, the current
study confirms the critical role of cracks in group classification and reveals that patches
increase the likelihood of belonging to the Upper group, whereas bleeding is associated
with the Lower group.

By enabling IRI estimation from pavement distress and climatic and traffic conditions,
this approach could potentially be applied in management systems that use artificial intelli-
gence image processing techniques to determine pavement distress. Applying this dual
model, the IRI can be estimated more economically, which will be beneficial for estimating
criteria such as user costs in optimal maintenance planning. This could significantly reduce
the costs associated with road condition evaluation and maintenance management while
promoting scientifically informed decisions and extending road service life.

5. Conclusions
This study addresses the lack of comprehensive IRI prediction models suitable for

varied climatic regions and traffic levels and multiple distress types, which represents a
major barrier to the efficient and sustainable management of pavement maintenance. To
fill this gap, data from the LTPP database were used to develop a dual-model approach.
First, a multinomial logistic regression was implemented to classify pavement sections
based on pavement distress, climatic, and traffic conditions. Subsequently, according to
this classification, a specific linear regression between the IRI and PCI was applied. The
results demonstrated satisfactory predictive accuracy, with R2 values of 0.62, 0.72, and 0.82
for the linear regressions and an overall R2 of 0.89 for the validation model, making this
methodology applicable to roads with a wide variety of climatic and traffic conditions.
Furthermore, it was observed that deteriorations, together with the PCI, have a significant
influence on the prediction of the IRI.

The proposed methodology in this study offers tangible benefits for pavement man-
agement systems. By reducing inspection costs and improving the reliability of pavement
condition assessments, it provides infrastructure managers with a clearer understanding of
pavement performance. The model’s integration with artificial intelligence technologies,
such as automated image processing, allows for the extraction of pavement distress data
and the calculation of the PCI. With this data, along with readily available climate and
traffic information, all the necessary variables are obtained to calculate the IRI. This enables
efficient, cost-effective, and accurate IRI estimation, allowing agencies to make informed,
data-driven decisions for optimal maintenance planning, promoting extended road service
life, and reducing lifecycle costs.

However, it is essential to acknowledge that the accuracy of IRI prediction based on
the PCI decreases for higher IRI values. This reduction in predictive performance can be
attributed to an imbalance in the dataset, with fewer observations at higher IRI levels, as
well as the greater variability typically associated with these values. Future research should
focus on strategies to address this challenge, such as collecting additional data points for
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higher IRI ranges and further investigating the relationship between the IRI and PCI under
these conditions. This limitation emphasizes the necessity for the careful monitoring of
pavement deterioration trends to ensure optimal use of the model. Maintenance agencies
must remain vigilant in observing pavement distress and exercise prudent application of
the predictive model. Furthermore, certain limitations, such as the restricted IRI range of
0–4 and the limited consideration of international context, should be addressed to enhance
its applicability. Expanding the database to include global datasets with diverse climatic
and road conditions would improve the model’s generalizability. Additionally, the potential
impact of data quality on prediction accuracy underscores the need for standardized data
collection practices across regions.

While this approach offers a practical and accessible solution for road infrastructure
managers, its reliance on linear regression may oversimplify the non-linear relationships in-
herent in pavement performance. To address this, future research could explore alternative
modeling approaches, such as non-linear regression or machine learning techniques.

Beyond expanding the database, future studies should investigate additional variables
that influence the IRI–PCI relationship, including subgrade material properties, pavement
age, friction levels, macrotexture, and mechanical properties derived from Falling Weight
Deflectometer or Lightweight Deflectometer tests. Incorporating these factors into the
model could provide a more nuanced understanding of pavement performance and support
the development of advanced predictive frameworks. Additionally, leveraging automated
data collection technologies, such as AI-based image processing, would further improve
data acquisition efficiency and accuracy, facilitating proactive monitoring and enabling
maintenance agencies to address issues before they become critical.

For maintenance agencies, the model offers a practical framework to proactively
monitor pavement conditions. Agencies are encouraged to incorporate this methodology
into their asset management systems, along with the use of advanced image processing
technologies, which could further streamline the application of this model, reducing in-
spection times and operational costs, while ensuring timely interventions to avoid critical
road failures.

Addressing these challenges and opportunities in future research has the potential
to significantly enrich our understanding of the IRI–PCI relationship and drive improve-
ments in road maintenance and management practices, ensuring their long-term safety
and durability.
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