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Abstract: The increasing global emphasis on sustainable construction practices has spurred
significant international research into developing durable and eco-friendly concrete materi-
als. This study investigates the potential of metakaolin and glass powder as supplementary
aluminosilicate materials in slag- based geopolymer mortars, aiming to enhance their
mechanical properties and durability. To further improve the performance, polypropylene
fibers were incorporated at various dosages. Therefore, 13 mixtures of geopolymer mor-
tar based on blast furnace slag have been developed. The control mix does not contain
fibers or slag replacement materials, whereas in the other formulations, glass powder and
metakaolin have been employed as substitutes for slag at weight percentages (relative
to the weight of slag) of 5% and 10%, separately and in combination. Additionally, the
fiber-containing samples are divided into two groups based on the volume percentage of
polypropylene fibers, comprising 0.2% and 0.4%. The results of the investigation show
that the use of glass powder, particularly at a replacement percentage of 10%, leads to an
improvement in the 28-day compressive strength. Furthermore, the mixes containing glass
powder demonstrated higher flexural strength compared to those containing metakaolin,
irrespective of the volume percentage of fibers. The best performance in the rapid chloride
permeability test is associated with the mix containing a combination of glass powder and
metakaolin at a replacement percentage of 10%. Satisfactory results have been obtained
when using fibers at volume percentages of 0.2% and 0.4%. Additionally, this study utilized
a fuzzy inference system to predict compressive strength. The results indicate that, by
considering uncertainties, the compressive strength of the mortar can be predicted with an
error of less than 1% without the need for complex mathematical calculations.

Keywords: geopolymer mortar; metakaolin; glass powder; polypropylene fibers; fuzzy logic

1. Introduction
The process of producing Portland cement has significant drawbacks [1–5]. Its produc-

tion leads to the release of large amounts of carbon dioxide (CO2) into the environment,
with the production of one ton of Portland cement resulting in the emission of nearly one
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ton of CO2 [6–9]. Furthermore, climate change stemming from global warming has become
one of the most serious environmental concerns worldwide [10–12]. The primary cause of
global warming is the emission of greenhouse gases, and among these gases, CO2 plays the
most significant role, accounting for 65% of emissions [13–15]. Consequently, the Portland
cement production process is recognized as one of the major sources of CO2 emissions
and global warming [16–18]. Experts estimate that the production of Portland cement
accounts for 7% to 10% of global CO2 emissions [19–21]. Therefore, finding an alternative
to Portland cement is critical. In recent years, geopolymer has emerged as a new and
environmentally friendly cementing agent, proposed as a substitute for Portland cement,
which could lead to a reduction in the environmental issues associated with Portland
cement production [22–26]. Geopolymer was first introduced in 1978 by Davidovits, a
prominent French chemist, as a new class of binders belonging to the family of inorganic
polymers [27]. Geopolymer concrete is characterized by the use of silica (Si) and alumina
(Al)-rich aluminosilicate materials and an alkaline solution as the binding agent. The
advantages of geopolymer concrete, in addition to its low energy production, include
desirable mechanical properties and high durability in corrosive environments [28–31].

Geopolymer consists of two terms: (i) geo and (ii) polymer. The term ‘geo’ indicates
geological or industrial materials (such as slag, fly ash, etc.), and modification of ‘polymer’
is also called a chain of molecules derived from macromolecules [32,33]. Figure 1a shows
a schematic view of the geopolymer mortar/concrete creation process [34,35]. The two
main pillars in the production of geopolymer mortar/concrete are the precursor (the result
of agricultural/industrial waste) and the alkaline activator [34]. Geopolymerisation or
alkali activation is a name that refers to the set of reactions between precursor (product
of agricultural/industrial waste) and alkali sources (fly ash, slag, etc.) [35–37]. In this
regard, Figure 1b presents a conceptual model of the geopolymerisation reaction based
on Doxon et al. [38]. In the first stage (dissolution), the precursor and alkali activator
are dissolved (amorphous components = aluminates and silicates). In the second stage,
aluminates and silicates react with each other to finally produce aluminosilicate gel in the
third stage. The resulting gel (Gel 1) is rich in aluminum because the reactive aluminum
dissolves much faster than the silicon [35]. In the next step, when more silicon dissolves and
participates in the process, the gel undergoes reorganization to form Gel 2 (zeolite precursor
gel). Gel 2 is more stable than Gel 1 because Si-O bonds offer higher resistance than Al-O
bonds [35]. Reorganization processes are carried out again to finally result in the formation
of crystallized zeolite. Finally, similarly to OPC hydration, the gels coalesce and form a
solid mass. Figure 1c reports some of the differences between conventional concrete/mortar
and geopolymer [35]. Despite all the advantages of geopolymer elements, they have a
downside as well; if alkalies are used excessively, efflorescence occurs, in which alkalies
spread on the surface and react with CO2, and finally, white carbonate develops [34,39].
Figure 1d schematically shows the efflorescence of geopolymers. Unfortunately, the great
potential in using geopolymer concrete/mortar, which would lead to strides in sustainable
development, is limited due to the lack of consistent guidelines [40]. However, some
countries have provided standards for the use of these materials, which are (1) GB/T
29423 [41], (2) PAS 8820 (United Kingdom) [42], and (3) RSN 336-84 (Ukraine) [43].

Geopolymer concrete exhibits excellent resistance to chemical attacks, including acid,
alkali, and sulfate attacks. This makes it ideal for applications in marine environments,
industrial areas, and regions with aggressive soil conditions [44]. It also has demonstrated
excellent resistance to chloride ion penetration, making it a promising material for use in
harsh environments, particularly marine and coastal structures [45]. The dense microstruc-
ture of geopolymer concrete results in low permeability, reducing the ingress of water and
chloride ions. This enhances the durability of the material in aggressive environments [46].
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Geopolymeric materials, similarly to cementitious materials, exhibit weaknesses under
tensile stresses and display brittle behavior. One effective strategy for enhancing ductility
and transforming brittle behavior into ductile behavior is the incorporation of fibers into
geopolymeric mixtures. The addition of fibers to concrete not only influences the improve-
ment of the static resistance characteristics of the concrete but also significantly impacts
the isotropy and homogeneity of the concrete body [47–55]. According to the definition
by ACI 544, fiber-reinforced concrete is composed of hydraulic cement, fine or coarse
aggregates, and discrete and discontinuous fibers. In fiber-reinforced concrete, pozzolans
and other supplementary materials can be utilized similarly to conventional concrete [56].
In a laboratory study [57], the mechanical properties of glass fiber-reinforced geopolymer
concrete based on fly ash were investigated, and sodium hydroxide (NaOH) and sodium
silicate (Na2SiO3) were utilized as alkaline solutions (to activate the geopolymer reaction)
at molar concentrations of 12, 16, and 20. Glass fibers were added to the geopolymer
concrete in varying volumetric percentages from 0.1% to 0.5%. The concrete samples were
cured under two conditions: one set was subjected to heat in an oven at 90 ◦C for 24 h,
while the other set was cured in a natural environment. According to the results, the
heat-cured samples exhibited better mechanical properties compared to the naturally cured
ones. The heat-cured concrete sample, containing 0.3% glass fibers and a 16-molar sodium
hydroxide, achieved a maximum compressive strength of 24.8 MPa after 28 days, whereas
the naturally cured sample resulted in a strength of 22.2 MPa. A significant increase in
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the tensile strength of the geopolymer concrete was observed due to the addition of glass
fibers [57].

In another study [58], various durability tests on the impact of polypropylene fibers
on geopolymer concrete were performed. The results indicate that the laboratory samples
exhibited high compressive strength as well as extended longevity. For all mix propor-
tions, particularly for mixtures containing up to 0.6% polypropylene fibers, the quality
of the geopolymer concrete was assessed as excellent. Additionally, the results demon-
strate that drying shrinkage in geopolymer concretes can be minimized by incorporating
polypropylene fibers into the mix. The polypropylene fibers enhance the performance of
geopolymer concrete by providing resistance to chloride penetration and increasing its
lifespan [58]. In [59], the effects of three different proportions of basalt fibers on geopolymer
mortars based on metakaolin produced with three types of aggregates were investigated.
By adding 0%, 0.4%, 0.8%, and 1.2% basalt fibers for each group, a total of 12 different
geopolymer mixes were obtained. According to the results, basalt fibers exhibited posi-
tive effects, particularly when used in a 0.8% to 1.2% range, leading to improvements of
up to 25% in compressive strength and 50% in flexural strength [59]. Ruizhe et al. [60]
experimentally investigated the impact of glass powder on the mechanical properties of
metakaolin-based geopolymer concrete. The glass powder used in the preparation of the
laboratory samples ranged from 0% to 20%. The results indicate that using low amounts
of glass powder (5–10%) positively affects the samples’ mechanical properties [60]. The
compressive strength and microstructure of geopolymer concrete containing waste glass
powder and fly ash were examined by Tawatchai et al. [61]. The results indicate that waste
glass powder can be used as a substitute for fly ash in the production of geopolymer paste,
achieving a 7-day compressive strength of 34–48 megapascals [61]. The damage caused
by acidic environments to geopolymer mortars based on waste glass powder and calcium
aluminate cement with moderate concentration was experimentally investigated by Vafaei
et al. [62]. Their research findings demonstrate that the samples made with geopolymer
cements exhibited better acid resistance compared to the reference samples [62].

In recent years, researchers have shown a growing interest in employing modern tech-
niques such as artificial intelligence (AI) for the evaluation and prediction of the mechanical
resistance of concrete [53,54,63–69], particularly geopolymer concrete, as an alternative
to traditional statistical methods. Rathnayaka et al. [70] have provided a comprehensive
review of machine learning methodologies utilized to predict the compressive strength of
fly ash-based geopolymer concrete, a sustainable alternative to Ordinary Portland Cement.
The authors categorized input parameters for model development based on feature selec-
tion and extraction and classify various machine learning approaches such as nonlinear
regression, ensemble learning, and evolutionary programming. Their findings indicate the
significance of hyperparameter adjustments on model performance and highlight existing
gaps in the research. Their work aims to enhance the understanding of machine learning’s
role in optimizing geopolymer concrete design, providing insights for future investigations
into sustainable, cement-free concrete solutions. Alaneme et al. [71] have explored the ap-
plication of artificial intelligence in optimizing sustainable structural materials, particularly
focusing on agro-waste-based green geopolymer concrete. The study involved a systematic
literature review to assess AI techniques like FL, adaptive neuro-fuzzy inference systems
(ANFIS), artificial neural networks (ANN), and gene expression programming (GEP), an-
alyzing their methodologies and findings. Laboratory experiments were conducted to
optimize aluminosilicate precursors and alkaline activators. The findings highlight the
advantages and challenges of AI in improving geopolymer-concrete production, empha-
sizing its potential to enhance mix design, curing conditions, and material selection while
minimizing environmental impacts. Wang et al. [72] have explored the use of AI to predict
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the compressive strength of geopolymer concrete as a sustainable alternative to ordinary
Portland cement. The study employed various AI techniques, including ANN, ANFIS, and
GEP, to develop predictive models. Statistical parameters assessed model performance,
while sensitivity and parametric analyses were conducted on input variables. The findings
indicated that GEP outperforms other methods in accurately predicting the compressive
strength of fly ash and ground granulated blast furnace slag-based GP concrete. Dao
et al. [73] have investigated the use of hybrid AI methods to predict the compressive
strength of geopolymer concrete made with 100% waste slag aggregates. They introduce
two models: a particle swarm optimization-based adaptive network-based fuzzy inference
system (PSOANFIS) and a genetic algorithm-based adaptive network-based fuzzy infer-
ence system (GAANFIS). Using 21 different mixes and 210 specimens, the study varied
parameters like sodium hydroxide concentration and mixing ratios to assess compressive
strength. The results indicate that both models effectively predict strength, with PSOANFIS
slightly outperforming GAANFIS. This research offers a faster, more cost-effective approach
to optimizing GPC formulations.

Ali et al. [74] have conducted a systematic literature review on the utilization of
machine learning (ML) and deep learning (DL) techniques to predict the properties of eco-
friendly concrete alternatives, including self-compacting concrete and geopolymer concrete.
The study analyzed various predictive models such as ANN, support vector machines
(SVM), and boosting methods. The findings reveal that ANNs are particularly effective
for geopolymer concrete, while bagging and boosting methods perform well in predicting
self-compacting concrete properties. The review highlights AI’s significant potential to
optimize concrete mix designs, enhance sustainability in the construction industry, and
reduce the need for costly experimental testing, while also identifying key challenges and
gaps for future research. Krishna and Rao [75] investigated the potential of geopolymer
concrete as a sustainable alternative to traditional cement-based concrete, which has signif-
icant environmental impacts. They focused on predicting the strength and durability of
geopolymer concrete based on molar concentration of the binder using fuzzy logic (FL). The
study demonstrated that accurate strength predictions can be achieved through the analysis
of molar concentration data. The findings highlight the viability of using FL to assess
the mechanical properties of geopolymer concrete, paving the way for more eco-friendly
construction materials. Terrones-Saeta et al. [76] investigated the potential of geopolymers
made from biomass bottom ashes and brick dust as a sustainable alternative to traditional
ceramics in the building materials industry. The study involved creating various test
samples with different proportions of these waste materials and analyzing their physical
and mechanical properties. FL and data mining techniques were employed to explore the
relationships between these properties and the compressive strength of the geopolymers.
The findings demonstrate that geopolymers can be effectively produced using these waste
materials, achieving acceptable properties for replacing conventional ceramics.

2. Research Framework and Significance
The construction industry has increasingly moved towards sustainable development

in recent years, paying greater attention to reducing environmental impacts. Reports [1,77]
indicate that a significant portion of greenhouse gas emissions, particularly CO2, are associ-
ated with the construction sector. In this context, the cement production process, recognized
as one of the major polluters, significantly contributes to CO2 emissions. Given the sub-
stantial share of CO2 in greenhouse gases emissions produced by various countries, it is
essential to seek sustainable alternatives and materials such as geopolymer mortars that
can mitigate negative environmental effects. This study examines geopolymer mortars
containing glass powder, metakaolin, and polypropylene fibers, analyzing various experi-
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mental results, including compressive strength, flexural strength, electrical resistivity, water
absorption, and chloride ion penetration resistance. Additionally, the use of FL to predict
the compressive strength of geopolymer mortars in this research presents an innovative
and efficient approach for evaluating these materials’ performance.

Moreover, this research holds particular significance considering the lack of studies on
the examination of geopolymer mortars in chloride environments. The development and
utilization of such mortars in various structures can enhance durability and sustainability
in corrosion-prone environments. Structures such as bridges, coastal constructions, and
marine infrastructure, which are exposed to chloride conditions, can greatly benefit from
the findings of this study. Overall, the objective of this research is to provide innovative
and sustainable solutions that meet the growing demands of the construction industry
and contribute to achieving sustainable development goals. An illustrative flowchart is
provided to represent the structure of the methodology and the interconnections between
different aspects of the research (Figure 2). This comprehensive approach facilitates a thor-
ough understanding of the behavior and performance of geopolymer mortars in varying
conditions.
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3. Experimental Program
3.1. Materials and Mix Proportions

To achieve the objectives of this research, 13 mix designs of geopolymer mortars based
on blast furnace slag have been developed. The slag used was sourced from the Isfahan
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Steel Company in Esfahan, Iran and has a specific weight of 2410 kg/m3. The chemical
composition of the slag is presented in Table 1. The control mix does not contain fibers
or any substitute for slag, while in the other mix designs, glass powder and metakaolin
have been used as substitutes for slag at weight percentages (relative to the weight of
the slag) of 5% and 10%, individually and in combination. The chemical analysis of the
metakaolin used is also presented in Table 1. The fiber-containing mixtures were divided
into two groups based on the volumetric percentage of polypropylene fibers: 0.2% and
0.4%. The fibers utilized have a length of 12 mm, a density of 910 kg/m3, and a tensile
strength of 35 MPa. In the present study, slag was utilized as a source of aluminosilicate
for the production of geopolymer mortar. In the control sample, 700 kg/m3 of slag was
used, while in the other samples, a portion of the slag (with varying weight percentages)
was replaced with glass powder and metakaolin. The activation of the alkaline base
material (slag) was facilitated using sodium hydroxide and sodium silicate as the alkaline
activating solution. Caustic soda (sodium hydroxide, NaOH) was mixed with water in
powder form at a molarity concentration of 10 for the preparation of geopolymer mortar
samples. Furthermore, a water glass solution (sodium silicate, Na2SiO3) with a density
of 1250 kg/m3 was utilized. The ratio of the alkaline silicate solution to the geopolymeric
aluminosilicates for all samples was maintained at 0.5 by weight.

Table 1. Chemical composition of the used blast furnace slag, metakaolin, and glass powder.

Chemical Analysis Slag Metakaolin Glass Powder

SiO2 37.21 51.52 70.02
Al2O3 11.56 40.18 3.52
Fe2O3 1.01 1.23 1.65
CaO 36.75 2 10.41
MgO 8.25 0.12 1.32
SO3 0.97 0 0.08

Na2O 0.61 0.08 11.18
K2O 0.7 0.53 0.89
MnO 0.99 0 0
TiO2 1.23 2.27 0.1
L.O.I 0.02 2.01 0.78

To achieve optimal fluidity and facilitate improved particle distribution within the
mortar mixture, a polycarboxylate ether-based superplasticizer, marketed under the trade
name FARCO PLAST P10N and manufactured by the Shimi Sakhteman Company (Tehran,
Iran), has been employed. The specifications of the superplasticizer used are reported
in Table 2. To ensure consistent workability across all mixture designs, the flow value of
the geopolymer mortar was maintained at a constant value of 105 ± 5%. The flow value
was measured using a flow table in accordance with ASTM C1437. The sand employed in
this study is a river-rounded type. The saturated surface-dry bulk density of the sand is
2611 kg/m3 with a water absorption of 2.4%. The gradation of the sand conforms to ASTM
C33 [78], as illustrated in Figure 3. Detailed mix designs are presented in Table 3.

Table 2. Specifications of superplasticizer.

Technical Features

Generation 3
Physical state Liquid

Color Opaque green
Specific weight 1.2 ± 0.02 kg/lit
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Table 2. Cont.

Technical Features

Chlorides (PPM) 500 max.
Chemical base Modified polycarboxylate ether
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Table 3. Mix proportions of geopolymer mortar.

N.O. Mix Code
Slag Metakaolin Glass Powder PP Fiber Na2SiO3 NaOH Sand SP

Kg/m3 % % % Kg/m3 Kg/m3 Kg/m3 Kg/m3

1 Control 700 0 0 0 250 100 1191 1.633

2 M5P2 665 5 0 0.2 250 100 1191 1.100

3 M10P2 630 10 0 0.2 250 100 1191 1.433

4 G5P2 665 0 5 0.2 250 100 1191 1.333

5 G10P2 630 0 10 0.2 250 100 1191 1.567

6 M2.5G2.5P2 665 2.5 2.5 0.2 250 100 1191 1.167

7 M5G5P2 630 5 5 0.2 250 100 1191 2.400

8 M5P4 665 5 0 0.4 250 100 1191 1.833

9 M10P4 630 10 0 0.4 250 100 1191 1.233

10 G5P4 665 0 5 0.4 250 100 1191 1.400

11 G10P4 630 0 10 0.4 250 100 1191 2.400

12 M2.5G2.5P4 665 2.5 2.5 0.4 250 100 1191 1.767

13 M5G5P4 630 5 5 0.4 250 100 1191 2.667

In the naming convention of the mix designs, ‘ctrl’ denotes the control mix, while ‘G’
and ‘M’ represent glass powder and metakaolin, respectively. The numbers following these
letters indicate the percentage replacement of these materials with slag. Additionally, the
letter ‘P’ denotes polypropylene fibers. After demolding, the specimens were cured in a
water tank at a temperature of 23 ± 2 ◦C until testing.
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3.2. Tests

This study comprises five tests: (i) compressive strength, (ii) flexural strength, (iii) elec-
trical resistivity, (iv) water absorption, and (v) rapid chloride ion migration. Table 4 presents
the specifications and details of the tests conducted in this study.

• The compressive strength was tested according to ASTM C-109 [79] on cubic specimens
measuring 50 × 50 × 50 mm at the ages of 7 and 28 days.

• The flexural test was conducted using the three-point method in accordance with
ASTM C348 [80] after curing for 28 days. In this test, prism specimens measuring
160 × 40 × 40 mm were utilized.

• Electrical resistivity, as one of the characteristics of mortar and concrete, indicates
certain important properties, including permeability and, consequently, water absorp-
tion. The higher the electrical resistivity, the lower the permeability. This test was
performed according to ASTM C1760 [81], but was conducted on cubic specimens
(measuring 50 × 50 × 50 mm) after curing the samples for 28 days. While cylindrical
specimens are preferred for standardized testing according to ASTM C1760, the use of
cubes is not uncommon in the scientific literature, especially in studies where direct
comparison with other properties obtained from cube specimens is desired. Figure 4
shows the experimental setup for measuring electrical resistivity used in this study.
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• The final water absorption test was conducted according to ASTM C-642 [82] at 28 days
on cubic specimens measuring 50 × 50 × 50 mm.

• The Rapid Chloride Migration Test (RCMT) accelerates the penetration of chloride
ions into cementitious composites by applying an electric potential across the ends
of the mortar or concrete specimen. Subsequently, the specimen is broken, and the
depth of chloride ion penetration is visually observed and measured to calculate the
chloride ion diffusion coefficient. The RCMT is conducted according to the NT BUILD
492 standard [83]. This test was performed on specimens with a diameter of 100 mm
and a height of 50 mm after curing for 28 days. The arrangement of the specimens in
the experimental setup is depicted in Figure 5. This test simulates an unsteady state
and evaluates the resistance of cementitious composites to chloride penetration.
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Table 4. The specifications and details of the tests.

N.O. Test Standard Curing
Dimension (cm) Number

of Samples Shape
a b c

1 CS ASTM
C-109 [79] 7 and 28 5 5 5 78 Cube
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4. Prediction Model—Fuzzy Logic (FL)
Fuzzy set theory was first introduced by Professor Lotfi A. Zadeh in 1965 [1,84].

Then, in the early 1970s, the first applications of this theory were presented in engineering
sciences with the emergence of FL. Since then, we have witnessed the rapid growth of both
theoretical and practical aspects of fuzzy set theory by scientists from various disciplines.
Today, this theory is applied in almost all areas of industry and academia [1]. The most
significant advantage of FL compared to classical logic is its ability to represent human
knowledge and experience in mathematical terms. This enables us to effectively model
real-world problems. Fuzzy Inference Systems (FIS) are built upon “if-then” rules, allowing
for the establishment of relationships between multiple input and output variables [1].
Consequently, FIS can be employed as a predictive model for scenarios involving high
levels of uncertainty in input and output data, as classical prediction methods such as
regression often struggle to adequately account for such uncertainties. FIS are developed
using fuzzy implication operators and fuzzy relation compositions [85]. Numerous studies
have successfully employed FIS to investigate concrete and mortar and to predict the
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outcomes of experiments [85]. A minimum-maximum FIS was employed in this study. The
center of gravity method was utilized for defuzzification. Furthermore, the Mamdani fuzzy
implication method was adopted. Table 5 presents the range of input and output values
along with their corresponding linguistic grading. Figure 6 illustrates the membership
functions of the input and output variables used in the fuzzy system.

Table 5. Range of input and output values and corresponding linguistic gradation.

Input Fuzzy MF Range

Slag [kg/m3]

Low 0–661

Medium 650–690

High 680–700

Metakaolin [%]

Low 0–3

Medium 1.5–4.5

High 4–8

Very High 6–10

Glass powder [%]

Low 0–3

Medium 1.5–4.5

High 4–8

Very High 6–10

Polypropylene fiber [%]

Low 0–0.15

Medium 0.1–0.3

High 0.25–0.4

Superplasticizer [kg/m3]

Low 1.1–1.7

Medium 1.6–2.2

High 2–2.667

Output Fuzzy MF Range

Compressive strength
[Mpa]—7 days

Very Low 55.63–60

Low 58–64

Medium 62.04–68

High 65–70

Very High 69–72.39

Compressive strength
[Mpa]—28 days

Very Low 75.37–78

Low 77.18–80.50

Medium 79.04–82.46

High 82–85

Very High 84–86.84
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5. Results and Discussion
5.1. Compressive Strength

Compressive strength is a fundamental property that underpins the mechanical per-
formance of mortars and concretes. In this study, compressive strength was evaluated at
both early age (7 days) and at 28 days.

5.1.1. Early Compressive Strength (7-Day)

Figure 7 illustrates the results of compressive strength at 7 and 28 days. The changes
(decreases/increases) in the compressive strength of the geopolymer mortar mixtures rela-
tive to the control mixture are reported in Figure 8. The compressive strength for the control
mixture was found to be 63.412 MPa (Figure 7a). Based on the obtained results, substituting
a portion of slag with weight percentages of 5% and 10% of metakaolin in both groups
containing 0.2% and 0.4% fibers (M5P2, M10P2, M5P4, and M10P4) resulted in a decline
in compressive strength compared to the control sample. Notably, as the percentage of
metakaolin substitution increased, the degree of strength reduction also increased. In this
regard, the recorded reductions in strength for mixtures M5P2, M10P2, M5P4, and M10P4
were 0.978%, 0.398%, 5.716%, and 10.194%, respectively. On the other hand, the incorpora-
tion of glass powder led to an increase in compressive strength. The analysis of mixtures
G5P2 and G10P2 demonstrates an increase in compressive strength of 5.268% and 4.807%,
respectively, at early ages, while mixtures G5P4 and G10P4 exhibited increases of 5.154%
and 14.168%, respectively. The enhancement in strength caused by increasing the glass
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powder content in the mixture was observed by other researchers [60,61]. In the hybrid
mixtures (containing metakaolin, glass powder, and polypropylene fibers), the analysis of
the mixture M2.5G2.5P2 indicated an increase in compressive strength of 7.854%. How-
ever, increasing the substitution percentage of polypropylene fibers to 0.4% (M2.5G2.5P4)
disrupted the performance of the matrix, resulting in a reduction of approximately 12% in
compressive strength. The investigation of hybrid mixtures M5G5P2 and M5G5P4 revealed
improvements in compressive strength of 2.94% and 1.054%, respectively.
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Figure 8. Changes in compressive strength at 7 and 28 days.

5.1.2. Standard Compressive Strength (28-Day)

According to Figure 7b, the 28-day compressive strength for the control mixture was
recorded at 82.272 MPa. Similarly to the 7-day compressive strength, the presence of
metakaolin in the mixture weakened the structure of the geopolymer mortar such that the
increase in the percentage of metakaolin substitution from 5% to 10% resulted in a more
rapid decline in compressive strength (Figure 8). In this regard, the analysis of mixtures
M5P2, M10P2, M5P4, and M10P4 showed reductions in strength of 3.593%, 3.754%, 5.951%,
and 8.382%, respectively. The mixtures containing metakaolin consistently exhibited lower
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compressive strength than the control mixture with increasing curing age. This may be due
to increased metakaolin content consuming more alkali activators, leading to a reduced
amount of alkali available for the geopolymerization reaction. A similar trend was observed
by Mohamed Amin et al. [86]. The use of glass powder in the geopolymer mixture at a level
of 5% combined with 0.2% polypropylene fibers (G5P2) increased in 28-day compressive
strength of 1.482%. This could be due to an improvement in microstructure caused by the
filler effect of glass powder. Glass powder can also act as nucleation sites for the growth of
geopolymer gel, leading to a more refined microstructure with smaller pores. Conversely,
when the amount of polypropylene fibers was increased to 0.4% (G5P4), a reduction in
compressive strength of 2.655% was observed. More fiber content can disrupt the formation
of the geopolymer matrix by interfering with the reaction between the alkaline activator
and the source materials. When glass powder was substituted at a level of 10% in the
mixtures, the results for G10P2 and G10P4 showed improvements in compressive strength
of 5.553% and 2.363%, respectively. This may be related to the stronger bonding between
fibers and the matrix, which is caused by enhancing the matrix by incorporating glass
powder [87]. The analysis of hybrid mixtures (containing metakaolin, glass powder, and
polypropylene fibers) indicated an increase in compressive strength of 2.339% for the
mixture M2.5G2.5P2, while a decrease in compressive strength of 2.384% was observed
for the mixture M2.5G2.5P4. This suggests that when metakaolin and glass powder were
present at a level of 2.5%, the inclusion of 0.4% polypropylene fibers yielded a more optimal
result; however, for the combination of metakaolin and glass powder at 5%, the results
were reversed. In this context, the examination of the mixture M5G5P2 revealed an increase
in compressive strength of 4.794%, while the analysis of the mixture M5G5P4 indicated a
decrease in compressive strength of 4.824%.

5.2. Flexural Strength—28 Days

Figure 9a displays the flexural strength results of the geopolymer mixtures at 28 days
of curing. Additionally, Figure 9b illustrates the changes in the flexural strength of the
mixtures in comparison to the control mixture. The flexural strength for the control mixture
was determined to be 12.01 MPa. The results of the flexural strength test on the geopolymer
mortar indicate that the combination of polypropylene fibers and metakaolin powder
has a positive effect on its flexural strength. This could be attributed to the improved
microstructure resulting from the incorporation of metakaolin and the fiber reinforcement
effect of the polypropylene fibers. Similar findings were reported in previous studies [88].
The mixture M5P2 (5% metakaolin and 0.2% fibers) exhibited the best performance with
an 8.774% increase in flexural strength, while the mixture M5P4 (5% metakaolin and 0.4%
fibers) showed only a 6.001% increase, indicating the potential for interference in the
mortar matrix with an increase in fiber content. The mixture M10P2 (10% metakaolin and
0.2% fibers) demonstrated only a 4.585% improvement in flexural strength, and M10P4
(10% metakaolin and 0.4% fibers) achieved a 5.751% increase, making it a successful
combination for optimizing flexural strength. These results indicate that the appropriate
and correct ratios of polypropylene fibers and metakaolin can lead to enhanced mechanical
properties. The examination of mixtures containing polypropylene fibers and glass powder
also indicates that these materials have a positive effect on flexural strength. The mixture
G10P2 (10% glass powder and 0.2% polypropylene fibers) displayed the highest flexural
strength with a 17.487% increase, likely due to the high reinforcing properties of glass
powder and its synergistic effect with polypropylene fibers, as this combination facilitates
more effective energy absorption and load distribution. Meanwhile, the mixture G5P2 (5%
glass powder and 0.2% fibers) showed a 12.568% increase, and G5P4 (5% glass powder and
0.4% fibers) exhibited a 10.747% increase, respectively, achieving acceptable performance.
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However, it is evident that increasing the percentage of glass powder and using a lower
percentage of fibers compared to the mixture G10P4 had a greater impact on flexural
strength. These results suggest that the optimal ratio of glass powder and fibers can play a
key role in enhancing the mechanical properties of concrete [60,61,89].
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Figure 9. (a) Flexural strength results. (b) Flexural strength changes.

Furthermore, the results indicate that increasing the percentage of glass powder and
metakaolin, along with polypropylene fibers, generally leads to an enhancement in the
flexural strength of geopolymer mortar. The findings reveal that, as the percentage of
polypropylene fibers increases, particularly from 0.2% to 0.4%, the flexural strength signifi-
cantly increases as observed in the mixture M2.5G2.5P4, which exhibited a 10.746% increase
compared to the mixture M2.5G2.5P2, which showed an 8.744% increase. The mixture
M5G5P2 (containing 5% glass powder, 5% metakaolin, and 0.2% fibers) demonstrated
the best performance with a 14.911% increase. This improvement may be attributed to
enhanced bonding between the different components and better stress distribution [88,90].
Conversely, the mixture M5G5P4 (5% glass powder, 5% metakaolin, and 0.4% fibers)
showed a 6.658% increase, indicating a potential negative effect of increased fiber percent-
age on flexural strength, which may be due to interference between the fibers and the
mortar structure, thereby reducing cohesion within the mortar matrix. Therefore, main-
taining an appropriate balance between the components is essential to achieve maximum
flexural strength [88].

5.3. Electrical Resistivity—28 Days

Figure 10a illustrates the electrical resistivity results of the 28-day geopolymer mixtures.
Additionally, Figure 10b reports the changes in electrical resistivity of the geopolymer
mixtures compared to the control mixture. The 28-day electrical resistivity for the control
mixture was 9.68 KΩ·cm. The results of the electrical resistivity indicate that the ratio of
metakaolin to polypropylene fibers has a significant impact on the electrical resistivity of
geopolymer mortar. Specifically, the M5P2 sample, which contains 5% metakaolin and 0.2%
polypropylene fibers, demonstrates a 9.505% increase in electrical resistivity. This increase
may be attributed to the improved dispersion of metakaolin particles and the enhancement
of interconnections between them, leading to reduced permeability and better distribution
of electrical charge [91]. Conversely, an increase in polypropylene fiber content to 0.4%
in the M5P4 mixture results in a 3.203% decrease in electrical resistivity, which may be
due to increased porosity caused by the fiber’s introduction. Furthermore, increasing the
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metakaolin percentage to 10% in the M10P2 and M10P4 mixtures has a positive effect
on electrical resistivity, indicating that the quality of metakaolin has a more dominant
influence on the electrical properties of mortar compared to the content of polypropylene
fibers [91]. Overall, the results suggest that optimizing the combination of polypropylene
fibers and metakaolin can lead to improved electrical performance of geopolymer mortars.
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Figure 10. (a) Electrical resistivity results. (b) Electrical resistivity changes.

Based on the electrical resistivity results of geopolymer mortar samples containing
glass powder and polypropylene fibers, the combination of these two materials has a
significant impact on the electrical resistivity of the mortar. The G5P2 mixture, which
contains 5% glass powder and 0.2% polypropylene fibers, exhibits a 7.439% increase in
electrical resistance. This increase may be attributed to improvements in the microstruc-
ture of the mortar due to the glass powder, which contributes to increased density and
reduced permeability, thereby enhancing electrical resistivity [60]. Furthermore, in the
G5P4 mixture, with an increased fiber content of 0.4% while maintaining 5% glass powder,
a 5.372% increase in electrical resistivity is observed, indicating that fibers also contribute
to strengthening electrical resistivity in this composition. However, in the G10P4 mixture,
where the glass powder percentage is increased to 10% and fibers are maintained at 0.4%,
a decrease of 9.194% in electrical resistance occurs. This may be due to an imbalance in
the ratios of glass powder to fibers, ultimately leading to structural weakness and reduced
electrical resistance. Thus, it appears that excessive amounts of glass powder may neg-
atively affect the stress and positive charge distribution within the composite, while the
combination of fibers and glass powder can enhance the electrical resistivity of the mortar
at appropriate levels.

The results of the electrical resistivity tests on geopolymer mortar samples composed of
polypropylene fibers, glass powder, and metakaolin indicate that a precise balance among
these materials can have a significant impact on the electrical resistance of the mortar.
Specifically, the M2.5G2.5P2 mixture, which contains 2.5% glass powder, 2.5% metakaolin,
and 0.2% polypropylene fibers, demonstrates a 9.505% increase in electrical resistivity. This
increase may be attributed to the formation of an optimal structure and mechanical and
chemical synergy between metakaolin and glass powder, leading to improved microscopic
properties and reduced permeability in the matrix [92]. Additionally, in the M2.5G2.5P4
mixture with an increased fiber content of 0.4%, a continued rise in electrical resistance
(1.653%) is observed; however, this increase is less pronounced compared to the previous
mix (M2.5G2.5P2) due to several influencing factors. Conversely, in the M5G5P2 and
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M5G5P4 mixtures, where the percentages of glass powder and metakaolin are increased
to 5%, a decrease in electrical resistivity of 2.686% and 1.447% is observed, respectively.
This decline may result from the saturation of the mortar with higher contents of glass
powder and metakaolin, which can lead to the formation of networks that are imbalanced
and exhibit poor electrical conductivity. Therefore, it seems that the optimal ratios of these
materials are critical, and failing to maintain these ratios could result in a reduction in the
mortar’s functional properties.

5.4. Final Water Absorption—28 Days

Figure 11a presents the final water absorption results of the geopolymer mixtures.
Additionally, Figure 11b reports the changes in water absorption relative to the control
mixture. The water absorption value for the control mixture was found to be 3.97%. The
results of water absorption for geopolymer mortar samples indicate that variations in the
dosage of metakaolin and polypropylene fibers have a significant impact on this property.
For the M5P2 mixture, which contains 5% metakaolin and 0.2% polypropylene fibers, a
reduction in water absorption of 11.839% was observed, likely due to improvements in
the microstructure of the mortar and increased matrix adhesion. Conversely, in the M5P4
mixture, where the polypropylene fiber content was increased to 0.4% while maintaining
5% metakaolin, water absorption increased by 2.016%. This increase may be attributed to
the presence of an additional fibrous structure, which creates more voids and potentially
enhances the water absorption force [58]. Furthermore, in the M10P2 and M10P4 mixtures,
an increase in the percentage of metakaolin to 10%, alongside polypropylene fibers, led to
reductions in water absorption of 9.824% and 3.779%, respectively. This decrease may be
due to the formation of a denser and stronger structure resulting from metakaolin, which
enhances the water-repellent properties [93].
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Figure 11. (a) Final water absorption results, (b) Final water absorption changes.

An analysis of the water absorption results in geopolymer mixtures containing glass
powder and polypropylene fibers indicates that the combination and dosage of these two
components significantly affect water absorption. In the G5P2 mixture, which consists of
5% glass powder and 0.2% polypropylene fibers, water absorption was reduced by 10.328%,
likely due to improved adhesion properties and the formation of a denser microstructural
framework. Additionally, in the G5P4 mixture with 5% glass powder and an increase in
fiber content to 0.4%, a decrease in water absorption of 6.802% was observed, suggesting
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enhanced strength and reduced void spaces in the mortar. In the G10P2 mixture containing
10% glass powder and 0.2% polypropylene fibers, the water absorption reduced to 3.527%,
which may be attributable to notable changes in the prevailing microstructure. However, in
the G10P4 mixture, where a greater fiber content (0.4%) was added while maintaining the
same amount of glass powder (10%), a 3.779% increase in water absorption was observed.
This increase may result from the additional fibrous structure, which could create more
voids and, consequently, elevate the water absorption levels [58]. Therefore, it appears
that an optimal ratio of glass powder and polypropylene fibers is necessary to achieve the
lowest possible water absorption.

The water absorption results in geopolymer mixtures that contain glass powder,
metakaolin, and polypropylene fibers demonstrating the influence of the composition and
proportion of these materials on this property. The M2.5G2.5P2 mixture, comprising 2.5%
glass powder, 2.5% metakaolin, and 0.2% polypropylene fibers, experienced a reduction
in water absorption of 7.557%, which may be attributed to an improved microscopic
structure and enhanced cohesion between components. In the M2.5G2.5P4 mixture, with
an increase in fiber content to 0.4%, water absorption decreased by 6.298%, indicating
further reinforcement of the mortar structure. However, in mixtures M5G5P2 and M5G5P4,
with increased quantities of glass powder and metakaolin to 5%, and polypropylene fibers
at 0.2% and 0.4%, respectively, water absorption increased by 1.512% and 3.023%. This
increase in water absorption may be due to excessive compaction and reduced permeability
resulting from the abundance of materials, which creates more void space and leads to an
increase in the amount of water absorbed.

5.5. Rapid Chloride Migration Test (RCMT)—28 Days

The results obtained from the RCMT for geopolymer mixtures are reported in
Figure 12a. The changes in RCMT values for different mixtures relative to the control
mixture are observable in Figure 12b. The RCMT value for the control mixture was recorded
as 5.1 × 10−12 m2/s. RCMT results for geopolymer mixtures containing metakaolin and
polypropylene fibers indicate a variable influence of the material composition on mortar
permeability. In mixture M5P2, with 5% metakaolin and 0.2% polypropylene fibers, a
9.804% decrease in RCMT was observed, suggesting this combination can improve the mi-
croscopic structure and reduce chloride ion penetration. This reduction may be attributed
to increased bonding and decreased void phases within the mortar matrix. The positive
effects of using polypropylene fibers on durability of geopolymer concrete were reported
by other researchers [58]. Conversely, mixture M5P4, containing 5% metakaolin and 0.4%
fibers, exhibited a 5.883% increase in RCMT, indicating that the addition of excess fibers
may lead to the formation of weak zones within the mortar, as well as non-uniform mate-
rial distribution, consequently increasing permeability. A similar trend was observed in
mixtures M10P2 and M10P4; while M10P2, with 10% metakaolin and 0.2% fibers, showed
a 3.922% decrease in RCMT, M10P4, with 10% metakaolin and 0.4% fibers, experienced a
similar increase. Overall, these findings demonstrate that an optimal ratio of metakaolin
and polypropylene fibers is essential to enhance the mortar’s permeability properties, and
higher concentrations can have detrimental effects.

The RCMT results for geopolymer mixtures incorporating glass powder and polypropy-
lene fibers demonstrate a variable influence of material composition on concrete permeability.
Mixtures G5P2 and G5P4, containing 5% glass powder, exhibited reductions in RCMT
of 7.844% and 3.922%, respectively, indicating enhanced structural integrity and reduced
chloride ion ingress. Notably, increasing the polypropylene fiber content from 0.2% to 0.4%
in these mixtures did not adversely affect performance. Conversely, the G10P2 mixture
(10% glass powder, 0.2% fibers) showed a modest 1.961% decrease in RCMT, suggesting a
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negative impact of higher glass powder content on permeability. Furthermore, the G10P4
mixture (10% glass powder, 0.4% fibers) exhibited a significant 11.765% increase in RCMT,
indicative of compromised structural integrity due to the high concentrations of both ad-
ditives. This deterioration is likely attributed to the formation of voids and microcracks
resulting from non-uniform distribution of fibers and glass powder, facilitating increased
permeability. These findings underscore the critical role of achieving an optimal balance
between glass powder and polypropylene fiber content to optimize the mechanical and
chemical properties of geopolymer mortar.
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Figure 12. (a) RCMT results. (b) Variation in RCMT results.

An investigation into RCMT findings for geopolymer mortar containing glass pow-
der, metakaolin, and polypropylene fibers reveals the significant influence of material
composition on mortar permeability. In mixtures M2.5G2.5P2 and M2.5G2.5P4, despite
incorporating equal proportions of glass powder and metakaolin alongside polypropy-
lene fibers, no discernible change in RCMT was observed, indicating a favorable balance
within this composition. This phenomenon can be attributed to the formation of a suit-
able microscopic structure and reduced permeability resulting from the stabilization of
constituents. However, in mixtures M5G5P4 and M5G5P4, where the proportions of glass
powder and metakaolin were increased, substantial increases of 3.922% and 7.844% in
RCMT were detected, respectively. These elevations can be ascribed to the congestion
of the mortar matrix and the creation of weak zones arising from high concentrations of
admixtures, consequently leading to enhanced permeability and compromised structural
integrity. Therefore, it appears that elevated ratios of glass powder and metakaolin may
exert a detrimental impact on the permeability characteristics of mortar in this instance,
underscoring the necessity of maintaining a balanced admixture composition to optimize
the performance of geopolymer mortar.

5.6. Regression Analysis

Figure 13 displays the regression results among various tests of geopolymer mixtures.
The regression outcomes indicate that there are significant relationships among the different
tests of geopolymer mortar. As shown in Figure 13a, the relationship between compressive
strength and flexural strength is represented by the equation y = 25.861e0.0866x with a
coefficient of determination R2 = 0.8637, indicating a strong correlation between these
two parameters. This suggests that, as compressive strength increases, flexural strength
also significantly increases. Additionally, as illustrated in Figure 13b, the relationship
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between electrical resistance and final water absorption is represented by the equation
y = 9.0869e−0.087x with R2 = 0.8472. This indicates that, with an increase in electrical
resistance, water absorption decreases, which may be attributed to a reduction in porosity
and an increase in the density of the mortar matrix. Finally, the relationship between
RCMT and electrical resistance, represented by a linear equation y = −0.4436x + 9.528 with
R2 = 0.7045, indicates (as shown in Figure 13c) that as electrical resistance increases, the
chloride migration amount decreases. This may be attributed to the enhanced resistance of
mortar against the penetration of chloride ions. These regression relationships can serve as
valuable tools for predicting and improving the mechanical properties and durability of
geopolymer mortar.
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Figure 13. Regression results for different tests. (a) Compressive and flexural strength. (b) Electrical
resistivity and final water absorption. (c) Electrical resistivity and RCMT.

5.7. Predicting Compressive Strength Using Fuzzy Logic

Table 6 provides a comprehensive report on the predicted compressive strength results
(7 and 28 days) obtained through the FL model, along with the associated prediction errors.
Additionally, Figure 14 displays the compressive strength results obtained from laboratory
operations and predictions made by the FL model. The prediction error for the compressive
strength at 7 and 28 days as determined by the FL model is presented in Figure 15. The
results obtained from predicting the compressive strength of geopolymer mortar using the
FL model indicate the high accuracy of this model in estimating the mechanical properties
of this type of mortar. The prediction errors for compressive strength at 7 days and 28 days
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were found to be 0.79% and 0.52%, respectively, demonstrating the model’s capability
and accuracy in assessing mortar performance under various conditions. Furthermore,
according to Figure 16, the R2 values for 7-day and 28-day compressive strength were
found to be 0.9842 and 0.9884, respectively, indicating a very strong correlation between
the experimental results and the FL model predictions. In other words, values close to 1
for R2 confirm that nearly all the variance in the experimental data is accounted for by the
model, highlighting its high capability in simulating mortar behavior. These characteristics
enhance the validity and reliability of the FL model in predicting the mechanical behavior
of geopolymer mortars, making it a useful tool for the design and optimization of various
compositions of these concrete and mortar types. Moreover, the findings may pave the
way for future research in related fields concerning sustainable building materials and the
optimization of their mechanical properties, particularly in the context of the growing use
of bio-based and high-performance materials.

Table 6. Percentage absolute relative errors of predicted and measured compressive strengths by
FL model.

Mix Code
Measured Results FL Results % Relative Error of FL Model

7 Days 28 Days 7 Days 28 Days 7 Days 28 Days

Control 63.412 82.272 63.60 82.40 0.30 0.16

M5P2 62.792 79.316 63.00 79.80 0.33 0.61

M10P2 59.788 77.376 59.50 77.70 0.48 0.42

G5P2 66.752 83.48 66.00 83.50 1.14 0.02

G10P2 66.68 86.84 66.10 85.70 0.88 1.33

M2.5G2.5P2 68.392 80.348 68.50 80.10 0.16 0.31

M5G5P2 65.276 86.216 65.00 85.80 0.42 0.48

M5P4 63.16 79.184 63.00 78.80 0.25 0.49

M10P4 56.948 75.376 57.00 76.20 0.09 1.08

G5P4 66.46 80.088 66.10 79.80 0.54 0.36

G10P4 72.396 84.216 71.30 83.50 1.54 0.86

M2.5G2.5P4 55.632 84.608 57.20 84.60 2.74 0.01

M5G5P4 64.08 78.304 65.00 78.80 1.42 0.63

Average error 0.79 0.52
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Figure 14. Experimental results and compressive strength predictions using the FL model: (a) 7 days,
(b) 28 days.
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Figure 16. The correlation of the measured and predicted compressive strengths: (a) 7 days,
(b) 28 days.

6. Validation of Results
Table 7 presents a summary of the results of research on various geopolymer mortars.

The results obtained from the geopolymer mortar developed in this study were found
to fall within an acceptable range when compared to previous research, demonstrating
alignment with past findings. Particularly, the properties of compressive strength, tensile
strength, and flexural strength of the samples were clearly found to be consistent with the
results of earlier studies, as presented in the accompanying table. This overlap not only
enhances the credibility of the findings but also indicates the reliability of geopolymer
mortar incorporating pozzolans and fibers. Moreover, these results confirm the effectiveness
and high potential of this type of mortar and concrete in various construction and civil
engineering applications. Thus, the outcomes of this research are aligned with recent
advancements in the field, effectively showcasing the positive impacts of additive materials
on the improvement of geopolymer mortar/concrete properties.
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Table 7. Summary of research findings on various geopolymer mixtures.

N.O. Precursor Alcaline Activator Curing Temperature W (mm) ST (Min) CS (MPa) TS (MPa) FS (MPa) Ref.

1 Fly Ash NaOH + KOH +
Na2SiO3

- - - 24.96–30.11 3.72–4.95 5.22–6.03 [94]

2 Fly Ash NaOH + Na2SiO3 - 240 IST = 405
FST = 570 47.21 - - [95]

3 Fly Ash NaOH + Na2SiO3 Ambient temperature - IST = 66–112
FST = 160–245 40 - - [96]

4 Fly Ash NaOH + Na2SiO3 60–90 ◦C 710 - 47.54–53.99 - - [97]

5 Fly Ash NaOH + Na2SiO3 80 ◦C - - 48 - - [98]

6 Fly Ash NaOH + Na2SiO3 75 ◦C 110–135 - 10–65 - - [99]

7 Fly Ash NaOH + Na2SiO3 Ambient temperature 11.8–29.2 [100]

8 Fly Ash + Slag +
Palm oil fuel ash NaOH + Na2SiO3 65 ◦C 145–160 - 66 - 7.7 [101]

9

Fly Ash + Slag +
Portland cement +

Calcium
hydroxide

NaOH + Na2SiO3 Ambient temperature - IST = 110–607
FST = 110–607 26–58 - - [102]

10 Fly Ash + Slag NaOH + Na2SiO3 Ambient temperature - - 30.5–80.5 8.35 17.95 [103]

11 Fly Ash + Slag +
Nano silica NaOH + Na2SiO3 Ambient temperature - - 40.28–56.7 - - [104]

12
Fly Ash + Slag +

High calcium
wood ash

NaOH + Na2SiO3 - - IST = 20–280
FST = 90–360 36.56 - - [105]

13 Fly Ash + GGBS + Red Mud NaOH + Na2SiO3 Ambient temperature - - 25–39.7 - 3.96–5.45 [106]

14 Fly ash + GGBS + Silica fume NaOH + Na2SiO3 Ambient temperature - IST = 18–168
FST = 284–620 9–79 3.3–5.4 4.6–7.4 [107]

15 GGBS NaOH + Na2SiO3 Ambient temperature 654–752 - 31–69 1.66–3.97 [108]

16 Algerian Beni Saf natural
Pozzolan (BSP) NaOH + Na2SiO3 20, 40, 60, 80 ◦C - - 22.8–38.8 - 5.3–12.4 [109]
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Table 7. Cont.

N.O. Precursor Alcaline Activator Curing Temperature W (mm) ST (Min) CS (MPa) TS (MPa) FS (MPa) Ref.

17
Steel,

Polypropy-
lene

Fly Ash +
GGBS NaOH + Na2SiO3 22 ± 2 ◦C - - 59–65 5.23–3.78 - [50]

18 Steel, PVA Fly Ash +
GGBS NaOH + Na2SiO3 20 ◦C - - 42.2–54.3 - 5.3–7.8 [110]

19 Basalt
Fly Ash +

GGBS+ Silica
Fume

NaOH + Na2SiO3 25 ± 5 ◦C 69–164 - 46.60–57.97 3.91–4.81 - [111]

20 Steel Fly Ash +
GGBS NaOH + Na2SiO3 20 ± 3 ◦C 51–198 - 37.4–56.4 2.99–4.79 - [112]

ST = Setting Time, CS = Compressive Strength, TS = Tensile Strength, FS = Flexural Strength, IST = Initial Setting Time, FST = Final Setting Time, W = Workability.
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7. Conclusions
In this study, the mechanical properties and durability of fiber-reinforced geopolymer

mortars containing metakaolin and glass powder in chloride environments were investi-
gated. Based on the findings from the conducted experiments, the following conclusions
can be drawn:

• The incorporation of glass powder at 5% and 10% levels positively influences the 7-day
compressive strength of geopolymer concrete, with strength increases ranging from
4.8% to 14.2%. Conversely, metakaolin substitution at 5% and 10% levels leads to a
decline in compressive strength. In hybrid mixtures, the combination of metakaolin,
glass powder, and polypropylene fibers shows varied effects, with some composi-
tions demonstrating strength improvements while others experience performance
degradation. At 28 days, the incorporation of metakaolin consistently reduced the
compressive strength of geopolymer concrete, with strength decreases becoming more
pronounced as metakaolin content increased. Glass powder showed varying effects,
with 5% and 10% additions yielding modest strength improvements. The impact of
polypropylene fibers was complex, with fiber content of 0.2% generally improving
strength, while 0.4% fiber content often led to strength reductions. The performance of
hybrid mixtures was notably sensitive to the precise proportions of metakaolin, glass
powder, and polypropylene fibers.

• The incorporation of metakaolin, glass powder, and polypropylene fibers significantly
influences the 28-day flexural strength of geopolymer concrete. Optimal performance
was achieved with specific combinations, notably mixtures containing 5% metakaolin
with 0.2% fibers and 10% glass powder with 0.2% fibers, which demonstrated sub-
stantial increases in flexural strength. The research highlights the critical importance
of maintaining precise proportions of these additives, as excessive fiber content can
potentially disrupt the mortar matrix and compromise mechanical properties.

• Electrical resistivity in geopolymer mortar is significantly influenced by the ratios
of metakaolin, glass powder, and polypropylene fibers. Optimal mixtures, such
as M5P2 and M2.5G2.5P2, achieve 9.505% increases in resistivity due to improved
particle interaction. Conversely, excessive amounts of glass powder in G10P4 lead to a
9.194% decrease. Therefore, maintaining precise material ratios is crucial for enhancing
electrical performance and structural integrity.

• The use of glass powder and metakaolin in the geopolymer mortar mixture as a partial
replacement for slag results in decreased permeability and consequently reduced
ultimate water absorption. Optimal mixtures, such as M5P2 and G5P2, demonstrate
significant reductions in water absorption due to improved microstructural properties
and enhanced matrix adhesion. However, excessive fiber content or high proportions
of metakaolin and glass powder can lead to increased water absorption, indicating the
necessity of achieving precise material ratios to minimize water ingress and improve
overall performance. The effect of glass powder on reducing water absorption is more
significant compared to that of metakaolin.

• The proportions of metakaolin, glass powder, and polypropylene fibers play a crucial
role in the chloride ion permeability of geopolymer concrete. Mixtures with balanced
amounts, such as those containing 5% metakaolin and 0.2% polypropylene fibers,
achieved significant reductions in permeability due to an enhanced microstructure.
However, using too much fiber or high levels of these additives can actually increase
permeability. This highlights the necessity for careful mix design to optimize perfor-
mance and durability against chloride ion penetration.

• The material composition significantly impacts the chloride ion permeability of
geopolymer concrete. Mixtures with 5% metakaolin and 0.2% polypropylene fibers
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showed a 9.804% reduction in permeability, enhancing microstructural integrity. How-
ever, when using 0.4% fibers, permeability increased by 5.883%. Similarly, mixtures
with 5% glass powder also reduced permeability, while increasing the additive content
led to adverse effects. Maintaining balanced proportions is crucial for optimizing
permeability performance and ensuring the durability of geopolymer mortar.

• The results indicate that the FL model serves as a robust and accurate tool for pre-
dicting the compressive strength of geopolymers. The high accuracy of this model is
evidenced by low prediction errors (approximately 0.79% and 0.52% for 7-day and
28-day compressive strengths, respectively) and an R2 value close to 1 in the regression
between experimental and predicted results, demonstrating its capability to elucidate
and simulate the mechanical behavior of this type of mortar. Furthermore, the findings
of this research could aid in optimizing the compositions of geopolymer mortars and
enhancing the sustainability of building materials, which is crucial for improving
the performance and stability of modern construction networks, particularly in the
efficient use of bio-based materials.

8. Future Research Recommendations
This study opens several promising avenues for further investigation in geopolymer

mortar development:

1. It would be beneficial to assess how these geopolymer mortars perform under short-
term dynamic loads, such as those experienced in seismic events or heavy traffic
conditions. Understanding the material’s response to such stresses will provide
deeper insights into its applicability in critical infrastructure.

2. Investigating the effects of functionalized nanomaterials, such as graphene oxide,
could lead to further enhancements in mechanical properties and durability. The
inclusion of nanotechnology in construction materials is a burgeoning field that
warrants exploration to optimize performance.

3. Future studies could also focus on the lifecycle assessment of geopolymer concrete,
evaluating its overall carbon footprint compared to traditional concrete mixtures.
Understanding the environmental benefits or drawbacks will be crucial for promoting
the adoption of geopolymer technologies.

4. Long-term durability studies: Extended research into the long-term durability of
these geopolymer mortars in various environmental conditions will provide essential
data for practical applications. This includes exposure to humidity, temperature
fluctuations, and aggressive chemical environments.

5. Future research should explore advanced predictive modeling techniques for geopoly-
mer concrete, focusing on quantum machine learning, physics-informed neural net-
works, and multi-scale generative models that integrate domain-specific material
science principles to enable more sophisticated prediction methodologies beyond
traditional statistical learning.
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